Data-flow Frameworks

Data-flow Analysis

• Efficient technique for proving properties about programs
• Not as powerful as theorem provers, but requires less human expertise
• Uses an annotated control-flow graph model of the program
 • Compute facts for each node
• Use the flow in the graph to compute facts about the whole program
 • Facts that are true at a stmt in a program, for all possible executions to that stmt
Previously

- Looked at several data-flow analysis problems
 - Reaching definitions
 - Live variables
 - Constant propagation
- All done in a somewhat informal way
 - This time, define these problems more formally

Deriving global behavior from local information

- We know the effect of each node in isolation
- Global behavior is found by using the structure of the control-flow graph
 - Edges represent flow out from the source into the destination
 - Can flow information either forward or backward over the edges
 - Merge points in the flow graph require that information flowing from multiple sources be combined
 - This combination must be conservative
 - The appropriate combination operator depends on whether we are interested in gathering facts along
 - all paths leading to a node
 - any (some) path leading to a node
Initial Facts about a node: GEN and KILL sets

- For each node i associate sets:
 - $\text{GEN}(i)$ - what is to be added (generated)
 - $\text{KILL}(i)$ - ωηατ ισ to be eliminated (killed)

- The definitions of GEN and KILL depend on the problem that is being solved.

- Often the GEN and KILL sets can be derived from the abstract syntax tree:
 - E.g., variables defined in a node
 - variables referenced in a node

General Approach

- **Initial node values**
 - for each node define GEN and KILL information

- **In Equations for each node**
 - for each node we have an equation of the form:
 $$\text{IN}(n_i) := \text{Merge} \left(\forall n_j \text{ OUT}(n_j) \right)$$
 - “Merge” operation over the {predecessors|successors} of n_i depending on whether it is a {forward|backward}-flow problem

- **OUT Equations for each node**
 - for each node we have an equation of the form:
 $$\text{OUT}(n_i) := f(\text{IN}(n_i))$$
 - Transfer function f usually depend on GEN and KILL information that is computed for each node
 - Usually: $\text{OUT} := (\text{IN} \setminus \text{KILL}) \cup \text{GEN}$
General Approach (continued)

- Propagation rule
 - Forward or backward
 - IN value for the initial node
 - Since IN depends on OUT, need to initialize OUT for each node
 - Initial value depends on the problem
 - Merge operator determined by whether it is an all-path or an any-path problem

- Final result rule
 - Usually based on IN, OUT, GEN, and KILL for each node
 - Sometimes only need to look at the final node

Fixed point

- Compute the new In and Out values for each node, until all the values stabilize
- Reaches a fixed point, if
 - there are only a finite number of possible sets that can be associated with a node, and
 - if the function that determines the sets that can be associated with a node is monotonic
- Can visit each node in any order, but algorithm is more efficient if a worklist is used
 - Worklist holds the nodes that need to have new In values computed
Typical Merge Functions

<table>
<thead>
<tr>
<th></th>
<th>Forward-flow for i ≠ initial</th>
<th>Backward-flow for i ≠ final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any-path</td>
<td>(\text{IN}(i) = \bigcup_{j \in \text{preds}(i)} \text{OUT}(j))</td>
<td>(\text{IN}(i) = \bigcup_{j \in \text{succs}(i)} \text{OUT}(j))</td>
</tr>
<tr>
<td>All-path</td>
<td>(\text{IN}(i) = \bigcap_{j \in \text{preds}(i)} \text{OUT}(j))</td>
<td>(\text{IN}(i) = \bigcap_{j \in \text{succs}(i)} \text{OUT}(j))</td>
</tr>
</tbody>
</table>

Formalizing Data-flow Analysis

- Compute facts for each node of a control-flow graph
 - The IN and OUT sets
 - Depends on the direction facts are propagated
Reaching Definitions

- Which definitions can “reach” a statement
- \(x_i \) means that the definition of variable \(x \) at node \(i \) reached the current node

```plaintext
int x,y;
...
x := foo();
y := x + 2;
if x > 0 then
  x := x + y;
end if;
...
```

Forward-flow, any-path problem

Reaching Definitions - Formalized

- In what direction are the facts propagated?
 - Choice of forwards or backwards:
 - Could propagate definitions forward to the statements that they reach, or
 - could propagate statements backwards to the definitions
- Reaching definitions
 - Here, easier to identify definitions and propagate them forward
 - Solved as a forward-flow problem
Reaching Definitions - Formalized

- How should facts be merged when a node has multiple predecessors?
 - Union for an any-path problem
 - Intersection for an all-path problem

- Reaching definitions
 - Since both X_1 and X_4 can reach the highlighted node, we want both definitions to be propagated
 - Use union to merge facts

$IN(i) = \bigcup_{j \in \text{preds}(i)} OUT(j)$

Use predecessors for a forward-flow problem

Reaching Definitions - Formalized

- What new facts are known after a node is processed?
 - Called the GEN set of a node

- For reaching definitions
 - If node i defines a variable v_i, then we want to add v_i to the set of reaching definitions after the node is processed

$\text{GEN}(i) = \begin{cases} v_i & \text{if node } i \text{ defines } v \\ \emptyset & \text{otherwise} \end{cases}$
Reaching Definitions - Formalized

• What facts are no longer known after a node is processed?
 • Called the KILL set of a node

• For reaching definitions
 • If node i defines a variable v, then we know that for any j, v_j is no longer a potential reaching definition after the node is processed

\[\text{KILL}(i) = \begin{cases} \forall j, v_j & \text{if node } i \text{ defines } v \\ \emptyset & \text{otherwise} \end{cases} \]

Reaching Definitions - Formalized

• How should facts be propagated over a node?
 • Called the transfer function of a node

• For each node i, have an equation
 • \(\text{OUT}(i) = f_i(\text{IN}(i)) \)
 • Usually depends on GEN and KILL for each node

• Usually:
 \[\text{OUT}(i) = (\text{IN}(i) \setminus \text{KILL}(i)) \cup \text{GEN}(i) \]

• Reaching definitions
 • The usual equation works
Reaching Definitions - Formalized

• What facts are known initially?

• Reaching definitions
 • Assuming nothing is defined before this program runs, no definitions can flow in, so no facts are known initially

IN(1) = ∅

∀j, OUT(j) = ∅

Reaching Definitions - Formalized

• How should the facts be interpreted once data-flow analysis stops propagating?

• Reaching definitions
 • The definitions that reach a node are the IN set of that node

REACH(i) = IN(i)
Reaching Definitions - Formalized

• Reaching definitions summary
 - Forward-flow problem
 - Any-path problem

\[
\begin{align*}
x &= \text{foo()} & \{X_1, y_1\} \\
y &= x + 2 & \{X_1, y_2\} \\
\text{if}(x > 0) & & \{X_1, y_2\} \\
x &= x + y & \{X_1, y_2, y_3\} \\
& & \{X_1, y_2, x_4\}
\end{align*}
\]

Initial values: \(\forall j, \text{OUT}(j) = \emptyset\)

\[
\begin{align*}
\text{GEN}(i) &= \begin{cases} v_i & \text{if node } i \text{ defines } v \\ \emptyset & \text{otherwise} \end{cases} \\
\text{KILL}(i) &= \begin{cases} \forall j, v_j & \text{if node } i \text{ defines } v \\ \emptyset & \text{otherwise} \end{cases} \\
\text{IN}(i) &= \begin{cases} \emptyset & \text{if } i = n_s \\ \bigcup_{j \in \text{preds}(i)} \text{OUT}(j) & \text{otherwise} \end{cases} \\
\text{OUT}(i) &= (\text{IN}(i) \setminus \text{KILL}(i)) \cup \text{GEN}(i) \\
\text{REACH}(i) &= \text{IN}(i)
\end{align*}
\]

Using Reaching Definitions for Anomaly Detection

• Undefined referenced variable:
 For each node \(i\),
 for each \(v \in \text{REF}(i)\)
 if there is no \(j\),
 such that \(v_j \in \text{REACH}(i)\)
 then \(v\) is an undefined ref at node \(i\)
Example: Live Variables

- What definitions are live at a statement?
- A variable, x, is live at node i if there exists a definition path for x from node i to a use of x

```
int x,y;
...  
x := foo();
y := x + 2;
if(x > 0 then
   x := x + y;
end if;
...
```

Live Variables - Formalized

- In what direction are the facts propagated?
- Live variables
 - Keep track of which variables have a use on some path in the future
 - Solve as a backward-flow problem
 - Flow the uses of variables backwards to their definitions
Live Variables - Formalized

- What new facts are known after a node is processed?
- For live variables
 - If node i uses a variable v, then that variable is live before the node is executed
 - Assume that uses occur before definitions on a node
 - Let REF(i) be the set of variables referenced on node i

 \[
 \text{GEN}(i) = \text{REF}(i)
 \]

Live Variables - Formalized

- What facts are no longer known after a node is processed?
- For live variables
 - If node i defines a variable v, then this means the current path is not def-clear with respect to that variable
 - Definitions kill liveness
 - Let DEF(i) be the set of variables defined on node i

 \[
 \text{KILL}(i) = \text{DEF}(i)
 \]
Live Variables - Formalized

- How should facts be propagated over a node?
- For live variables
 - The usual equation works
 \[\text{OUT}(i) = (\text{IN}(i) \setminus \text{KILL}(i)) \cup \text{GEN}(i) \]

Live Variables - Formalized

- How should facts be merged when a node has multiple successors?
- Live variables
 - A variable is live if there is some def-clear path
 - This is an any-path problem
 - Use union to merge facts

\[\text{IN}(i) = \bigcup_{j \in \text{succs}(i)} \text{OUT}(j) \]

Use successors for a backward-flow problem
Live Variables - Formalized

- What facts are known initially?
 - Live variables
 - Assuming nothing is used after this program runs, no live variables can flow in, so no facts are known initially

\[
\text{IN}(5) = \emptyset
\]

\[
\forall_j, \text{OUT}(j) = \emptyset
\]

Live Variables - Formalized

- How should the facts be interpreted once data-flow analysis stops propagating?
 - Live variables
 - The variables that are live on a node are the OUT set for that node

\[
\text{LIVE}(i) = \text{OUT}(i)
\]
Live Variables - Formalized

- Live variables summary
 - Backward-flow problem
 - Any-path problem

\[
\begin{align*}
x &= \text{foo()} \\
y &= x + 2 \\
\text{if}(x > 0) & \\
x &= x + y
\end{align*}
\]

\[
\begin{align*}
\{ \} & \quad \{x\} & \quad \{x\} & \quad \{x,y\} & \quad \{x,y\} \\
\{x\} & \quad \{x,y\} & \quad \{x,y\} & \quad \{x,y\} \\
\{x,y\} & \quad \{x,y\} & \quad \{x,y\} & \quad \{x,y\} \\
\emptyset & \quad \emptyset & \quad \emptyset & \quad \emptyset \\
\emptyset & \quad \emptyset & \quad \emptyset & \quad \emptyset
\end{align*}
\]

Initial values: \(\forall j, \text{OUT}(j) = \emptyset \)

\[
\begin{align*}
\text{GEN}(i) &= \text{REF}(i) & \text{KILL}(i) &= \text{DEF}(i) \\
\text{IN}(i) &= \begin{cases} \\
\emptyset & \text{if } i = n_f \\
\bigcup_{j \in \text{succs}(i)} \text{OUT}(j) & \text{otherwise} \\
\end{cases} \\
\text{OUT}(i) &= (\text{IN}(i) \setminus \text{KILL}(i)) \cup \text{GEN}(i) \\
\text{LIVE}(i) &= \text{OUT}(i)
\end{align*}
\]

Example - Uninitialized Variables

- Want to determine if it may be possible for a variable to be used without having been defined
- Use data-flow analysis to determine which variables are undefined at each node in the control-flow graph
 - A variable is uninitialized on a node if it is undefined and referenced on that node

- Similar to undefined referenced variables shown previously, but will incorporate variables becoming undefined and not be concerned about where (just if) they are defined
Example - Uninitialized Variables

- In what direction are the facts propagated?
 - Flow the set of undefined variables forward to potential references
 - A forward-flow problem

- What new facts are known after a node is processed?
 - If a variable becomes undefined on a node, then that variable should be added to the OUT set of that node
 - A variable becomes undefined when it is no longer in scope or declared without an initial value

\[\text{GEN}(i) = \text{UNDEF}(i) \]

Example - Uninitialized Variables

- What facts are removed after a node is processed?
 - If a node defines a variable, it is no longer undefined

\[\text{KILL}(i) = \text{DEF}(i) \]

- How should facts be propagated over a node?
 - The usual equation works

\[\text{OUT}(i) = (\text{IN}(i) \setminus \text{KILL}(i)) \cup \text{GEN}(i) \]
Example - Uninitialized Variables

1. How should facts be merged when a node has multiple predecessors?
 - Want to determine if a variable may be uninitialized
 - This is an any-path problem, use union

2. What facts are known initially?
 - Every variable starts out undefined

 \[\text{IN}(i) = \begin{cases} \text{All vars} & \text{if } i = 1 \\ \bigcup_{j \in \text{preds}(i)} \text{OUT}(j) & \text{otherwise} \end{cases} \]

3. How should the facts be interpreted once data-flow analysis stops propagating?
 - A variable may be uninitialized on a node if it is undefined and referenced
 - UNINIT(i) = IN(i) \cap REF(i)

Example - Uninitialized Variables

1. Summary
 - Forward-flow problem
 - Any-path problem

 Initial values: \forall j, \text{OUT}(j) = \emptyset
 \text{GEN}(i) = \text{UNDEF}(i)
 \text{KILL}(i) = \text{DEF}(i)
 \text{IN}(i) = \begin{cases} \text{All vars} & \text{if } i = 1 \\ \bigcup_{j \in \text{preds}(i)} \text{OUT}(j) & \text{otherwise} \end{cases}
 \text{OUT}(i) = (\text{IN}(i) \setminus \text{KILL}(i)) \cup \text{GEN}(i)
 \text{UNINIT}(i) = \text{IN}(i) \cap \text{REF}(i)
Example: Uninitialized Variables

1. pos int: numVal;
2. for i in 1..numVal loop
3. read(x);
4. if i = 1 then
5. sum := x;
6. else
7. sum := sum + x;
8. endif;
9. end loop;
10. write(sum);

Node 2 is the loop init. ($i := 1$)
Node 3 is the loop test ($i \leq \text{numVal}$)
Node 8 is the loop increment ($i := i+1$)
Node 9 is leaving the loop (i goes out of scope)

Example: Uninitialized Variables

1. pos int: numVal;
2. for i in 1..numVal loop
3. read(x);
4. if i = 1 then
5. sum := x;
6. else
7. sum := sum + x;
8. endif;
9. end loop;
10. write(sum);

numVal will be abbreviated as n
sum will be abbreviated as s
Ref and Def facts

1. `pos int: numVal;`
2. for `i` in `1..numVal` loop
3. `read(x);`
4. if `i = 1` then
5. `sum:= x;`
6. else
7. `sum:= sum + x;`
8. endif;
9. end loop;
10. `write(sum);`

Visualizing the iterative worklist algorithm

- **GEN(i) = UNDEF(i)**
- **KILL(i) = DEF(i)**
- **OUT(i) = (IN(i) \ KILL(i)) \ GEN(i)**

Worklist:
- `def(n)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `def(x)`
- `ref(i)`
- `ref(x)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(x)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(i)`
- `def(x)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undef(i)`
- `ref(s)`
- `def(s)`
- `ref(x,s)`
- `def(s)`
- `ref(s)`
- `def(i)`
- `ref(i,n)`
- `undefined`
Skipping Ahead to the End

Worklist: \(X \times X \)

<table>
<thead>
<tr>
<th>NODE</th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>i,n,s,x</td>
<td>i,s,x</td>
</tr>
<tr>
<td>2</td>
<td>i,s,x</td>
<td>s,x</td>
</tr>
<tr>
<td>3</td>
<td>s,x</td>
<td>s,x</td>
</tr>
<tr>
<td>4</td>
<td>s,x</td>
<td>s</td>
</tr>
<tr>
<td>5</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>6</td>
<td>s</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>s</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>s</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>s,x</td>
<td>i,s,x</td>
</tr>
<tr>
<td>10</td>
<td>i,s,x</td>
<td>i,n,s,x</td>
</tr>
</tbody>
</table>

- Processing stops when there are no more nodes on the Worklist
 - Some nodes processed more than once
 - Most nodes processed once

Determining the result

UNINIT(i) = IN(i) \(\cap \) REF(i)

<table>
<thead>
<tr>
<th>NODE</th>
<th>IN</th>
<th>REF</th>
<th>UNINIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>i,n,s,x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>i,s,x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>s,x</td>
<td>i,n</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>s,x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>s</td>
<td>i</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>s</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>s</td>
<td>s,x</td>
<td>s</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>i</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>s,x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>i,s,x</td>
<td>s</td>
<td>s</td>
</tr>
</tbody>
</table>

- \(s \) may be uninitialized on nodes 7 and 10
Finding a Violating Path

```
1  pos int: numVal;
2,3,9 for i in 1..numVal loop
4       read(x);
5       if i = 1 then
6           sum:= x;
7           else
8               sum:= sum + x;
9           endif;
10      end loop;
10      write(sum);
```

- 1, 2, 3, 9, 10
- 1, 2, 3, 4, 5, 7, 8,…
 - An infeasible path

A Few Loose Ends to Tie Off

- Order of operations in a node
- Termination
- Constant propagation
- Efficient representations for facts
The Order of Operations in a Node

• When defining the GEN sets for live variables, we assumed that uses occur before definitions on a node
 • \(x = x + 1 \)

• Sometimes control-flow graphs have multiple statements contained within a single node
 • Need to consider the order of operations within a node in this case

• For simplicity, the examples have nodes with single statements

The Order of Operations in a Node

A variable, \(x \), is live at node \(i \) if there exists a def-clear path for \(x \) from node \(i \) to a use of \(x \)

\[
\begin{align*}
X &:= Y+Z \\
Y &:= \ldots X\ldots
\end{align*}
\]

\(X \) is defined but only after it is referenced. Needs to be live on entry to node

\(Y \) is defined but only after it is referenced.

\(\text{GEN} := \text{referenced variables that are not defined previously in the node e.g.} \ Y, \ Z \)

\(\text{KILL} := \text{defined variables that are not referenced previously in the node e.g.,} \ X \ \text{but not} \ Y \)
Facts in Data-flow Analysis

- Facts are represented by a meet semi-lattice
 - a set of values
 - a partial order on the values
 - a meet operator that computes the greatest lower bound of two values with respect to the partial order
- Practical lattices have:
 - a finite set of values
 - distinguished top (T) and bottom (⊥) elements
- For the uninitialized variables example, the values of the lattice are the power set of the variables in the program
 - Variables are i, n, s, x

Example Meet Semilattice

values=PowerSet({i,n,s,x})

\[T = \{ \} \]

\[\bot = \{i,n,s,x\} \]

Ordering = \(\subseteq \)

Meet = \(\cup \)
Example Meet Semilattice

Moves values down the lattice, from top (T) to bottom (⊥)

\[\{n\} \cup \{s, x\} = \{n, s, x\} \]

Well-formed Fixed Point Problem

- Conditions under which the data-flow analysis will always terminate
 - If there are only a finite number of possible sets that can be associated with a node
 - Lattice is finite
 - If the function that determines the sets that can be associated with a node is monotonic
 - Always move down or stay at the same place on the lattice
Facts for Constant Propagation

values = \{Unk,C,NC\}

T = \{ Not Constant \}

⊥ = \{ Unknown \}

Meet = \cap

At each node in the control-flow graph, each variable has one of these 3 values

Limitations of Data-flow Analysis

- Conservative, approximate approach
 - Assumes that all paths in the program model are executable

- Aliasing problem
 - A[I] := 2
 - If there is an action on any element of an array, to be conservative, assume that there is an action on all elements of that error

- Thus, may get false positives (error reports)
 - Spurious results, as seen in the uninitialized variable example
 - Accurate up to "symbolic execution"
 - Techniques are available for incrementally improving accuracy
Representing sets of variables

• Typically use bit vectors

\[
\begin{array}{ccccccc}
i & n & s & x & \ldots \\
1 & 0 & 1 & 1 & 0 & \ldots \\
\end{array} = \{i, s, x\}
\]

• GEN, KILL, DEF, REF, IN, and OUT are represented by bit vectors
 • Union becomes logical OR
 • Intersection becomes logical AND

Data-flow Frameworks

• We can reason about the structure of the mathematical objects and infer properties of the analysis
 • if we can prove monotonicity and boundedness we get solution techniques with small upper bounds
 • There other categories of function spaces, lattices, and flow graphs
• We can generate implementations of an analyzer from a specification of the mathematical objects
In Summary

- Automated static analysis approaches provide a means for "knowing" something about a system
- Examples shown so far are useful in program optimization
 - Transform program so it executes faster
 - Determine potential use to optimize resource usage
- Information can all be derived automatically
 - Definitions and references to variables
 - Constant propagation: evaluate expressions
- Desired information is application independent