Data Flow Coverage

Today's Reading Assignment

- Background reading
New reading assignment

- **Background**

Control-Flow-Graph-Based Coverage Criteria

- Statement Coverage
- Branch Coverage
- Hidden Paths
- Path Coverage
- Loop Guidelines
 - General
 - Boundary - Interior
Paths for Boundary Interior Example

Boundary paths
1,2,3,5,7 a
1,2,3,6,7 b
1,2,4,5,7 c
1,2,4,6,7 d

Interior paths
(for 2 executions of the loop)
 a,a
 a,b
 a,c
 a,d
 b,a
 b,b
 ...
 x,y for x,y = a, b, c, d

Need Control Flow AND Data Dependence

x := ...
y := x
z := ...

1 2 3 4 5 6 7 8
Simple Non-looping Example

\[x := 1 \]

\[2 \rightarrow 3 \]

\[4 \]

\[5 \rightarrow 6 := x \]

\[7 \]

All branches 1, 2, 4, 5, 7
1, 3, 4, 6, 7

does not exercise the relationship between the definition of \(X \) in statement 2 and the reference to \(X \) in statement 6.

Definitions

- \(d_n(x) \) denotes that variable \(x \) is assigned a value at node \(n \) (*defined*)
- \(u_m(y) \) denotes that variable \(y \) is used (referenced at node \(m \))
 - a definition clear path \(p \) with respect to (wrt) \(x \) is a subpath where \(x \) is not defined at any of the nodes in \(p \)
 - a definition \(d_m(x) \) reaches a use \(u_n(x) \) iff there is a subpath \((m) \cdot p \cdot (n) \) such that \(p \) is definition clear wrt \(x \)
Data Flow Path Selection

- Rapps and Weyuker
 - definition-clear subpaths from definitions to uses

- Ntafos
 - chains of alternating definitions and uses linked by definition-clear subpaths

- Laski and Korel
 - combinations of definitions that reach uses at a node via a subpath

Assumptions: every control flow graph is well formed

- single start and single final node
- no edges of the form \((n, n_s)\) or \((n_f, n)\)
- no edges of the form \((n, n)\)
- there is at most one edge \((m, n)\) for all \(m, n\)
- graph is connected
 - Can syntactically reach all nodes from the start node
- every loop has a single entry and a single exit
More assumptions

- at least one variable is associated with a node representing a predicate
- no variable definitions are associated with a node representing a predicate
- every definition of a variable reaches at least one use of that variable
- every use is reached by at least one definition
- every control graph contains at least one variable definition
- no variable uses or definitions are associated with n_s and n_f

Rapps' and Weyuker's Data Flow Criteria

Foundation:
- Definition-clear subpaths from each definition to {some|all} use(s)

All-Defs
- Some definition-clear subpath from each definition to some use reached by that definition

![Diagram](attachment:diagram.png)
Rapps’ and Weyuker’s Data Flow Criteria

All-Uses
- Some definition-clear subpath from each definition to each use reached by that definition and each successor node of the use.

![Diagram showing definition-clear paths]

C-use is a “computation use”

P-use is a “predicate use”

All-C-Uses, Some-P-Uses
- either All-C-Uses for $d_m(x)$ or at least one P-Use

All-P-Uses, Some-C-Uses
- either All-P-Uses for $d_m(x)$ or at least one C-Use
Rapps’ and Weyuker’s Data Flow Criteria

All-Du-Paths

- All definition-clear subpaths that are cycle-free or simple-cycles from each definition to each use reached by that definition and each successor node of the use

\[x := x \]

Difference between All-Uses and All-DU-paths

\[x := x \]

\[:= x \]
Difference between All-Uses and All-DU-paths

\[x := X \]

…

def-clear

…

def-clear

…

def-clear

\[:= X \]

\[:= X \]

cycle-free or simple-cycles

def-clear

…

cycle-free or simple-cycles

def-clear
Example

![Diagram](image)

All-Defs

Requires:
- $d_0(x)$ to a use

Satisfactory Path:
- $0, 1, 2, 4, 6$
All-Uses

Requires:
- \(a: d_0(x) \text{ to } u_2(x)\)
- \(b: d_0(x) \text{ to } u_3(x)\)
- \(c: d_0(x) \text{ to } u_5(x)\)

Satisfactory Paths:
- \(0, 1, 2, 4, 5, 6\) (satisfies \(a, c\))
- \(0, 1, 3, 4, 6\) (satisfies \(b\))

All-Du-Paths

Requires:
- \(a: d_0(x) \text{ to } u_2(x)\)
- \(b: d_0(x) \text{ to } u_3(x)\)
- \(c: d_0(x) \text{ to } u_5(x)\) [T path]
- \(d: d_0(x) \text{ to } u_5(x)\) [F path]

Satisfactory Paths:
- \(0, 1, 2, 4, 5, 6\) (satisfies \(a, c\))
- \(0, 1, 3, 4, 5, 6\) (satisfies \(b, d\))
- \(0, 1, 2, 4, 6\)
 (satisfies \((4, 6)\) branch coverage)
All-Du-Paths

Requires:
- a: \(d_0(x) \) to \(u_2(x) \)
- b: \(d_0(x) \) to \(u_5(x) \)
- c: \(d_3(x) \) to \(u_5(x) \)
- d: \(d_3(x) \) to \(u_2(x) \)

Satisfactory Paths:
- 0,1,2,4,5,6 (satisfies a,b)
- 0,1,3,4,5,6 (satisfies c)
- 0,1,3,4,1,2,4,6 (satisfies d)

Ntafos' Data Flow Criteria

• Foundation:
 - Chains of alternating definitions and uses linked by definition-clear subpaths (k-dr interactions)
 - \(i^{th} \) definition reaches \(i^{th} \) use,
 - which defines \(i^{th}+1 \) definition
 - \(K \) is number of branches
k-dr interactions

1-dr

```plaintext
x := def-clear : x
```

2-dr

```plaintext
x := def-clear : y := ..x.. def-clear := ..y..
```

Ntafos’ Data Flow Criteria

- **Required K-tuples**

 Some subpath propagating each k-dr interaction

 + if last use is a predicate, both branches

 + if first definition or last use is in a loop, minimal and some larger number of loop iterations
1-DR interaction

From 1-DR to 2-DR

PATHS
0, 1, 2, 4, 5, 6 (satisfies a-d, j)
0, 1, 2, 3, 5, 6 (satisfies e-h)
0, 1, 2, 3, 5, 2, 4, 5, 2, 3, 5, 6
(satisfies i, k, l)
2-DR interactions

\begin{itemize}
\item a_j: $d_1(x), u_4(x), d_4(y), u_6(y)$
\item a_k: $d_1(x), u_4(x), d_4(y), u_2(y)$
\item a_l: $d_1(x), u_4(x), d_4(y), u_3(y)$
\item e_g: $d_0(y), u_3(y), d_3(x), u_5(x)$
\item e_h: $d_0(y), u_3(y), d_3(x), u_6(x)$
\item e_i: $d_0(y), u_3(y), d_3(x), u_4(x)$
\item i_j: $d_3(x), u_4(x), d_4(y), u_6(y)$
\item i_k: $d_3(x), u_4(x), d_4(y), u_2(y)$
\item i_l: $d_3(x), u_4(x), d_4(y), u_3(y)$
\item l_g: $d_4(y), u_3(y), d_3(x), u_5(x)$
\item l_h: $d_4(y), u_3(y), d_3(x), u_6(x)$
\item l_i: $d_4(y), u_3(y), d_3(x), u_4(x)$
\end{itemize}

Paths:

0, 1, 2, 4, 5, 6 (satisfies a_j)
0, 1, 2, 3, 5, 6 (satisfies e_g, e_h)
0, 1, 2, 3, 5, 2, 4, 5, 2, 3, 5, 6
\hspace{10pt} (satisfies e_i, i_j, i_k, i_l, l_h)
0, 1, 2, 4, 5, 2, 3, 5, 6 (satisfies a_k, a_l, l_g)
\hspace{10pt} (but not l_i)

Laski's and Korel's Criteria

- **Foundation:**
 - Combinations of definitions that reach uses at some node via a subpath
 - A single node can reference more than one variable
 - Need to consider all the combinations of definitions that can reach a node

- **Reach Coverage**
 - Some definition-clear subpath from each definition to all uses reached by that definition
 - basically the same as all-uses
Laski's and Korel's Criteria

• **Context Coverage**

 Some subpath along which each set of definitions reach uses at each node

 \[:=x..y..z \]

![Diagram showing context coverage](image)

Laski's and Korel's Criteria

• **Ordered Context Coverage**

 Some subpath along which each sequence of definitions reach uses at each node

 \[:=x..y..z \]

![Diagram showing ordered context coverage](image)
Context Coverage

\[DC(n_6) = \{d_1(x), d_4(y)\} \quad a \]
\[\quad \{d_3(x), d_0(y)\} \quad b \]
\[\quad \{d_3(x), d_4(y)\} \quad c \]

Paths
1, 2, 4, 5, 6 (satisfies a)
1, 2, 3, 5, 6 (satisfies b)
1, 2, 3, 5, 2, 4, 5, 6 (satisfies c)

Note: must compute the sets for each node

Ordered Context Coverage

\[ODC(n_6) = [d_1(x), d_4(y)] \quad a \]
\[\quad [d_0(y), d_3(x)] \quad b \]
\[\quad [d_3(x), d_4(y)] \quad c \]
\[\quad [d_4(y), d_3(x)] \quad d \]

Paths
1, 2, 4, 5, 6 (satisfies a)
1, 2, 3, 5, 6 (satisfies b)
1, 2, 3, 5, 2, 4, 5, 6 (satisfies c)
1, 2, 4, 5, 2, 3, 5, 6 (satisfies a,c)

Note: must compute the sequences for each node
How can we compare these criteria?

• all select a set of paths, so compare the paths that they select
 set of paths that satisfy a criterion are not necessarily unique
 e.g., s1 or s2 satisfies criterion A
 s1, s2, or s3 satisfy criterion B

• define a subsumption relationship
 criterion A subsumes criterion B iff for any set of paths P in a flow graph
 P satisfies A => P satisfies B
 criterion A is equivalent to criterion B
 iff A subsumes B and B subsumes A
Relationships among these criteria

ORDERED CONTEXT COVERAGE \(\rightarrow\) All-Paths

CONTEXT COVERAGE \(\rightarrow\) All-Uses

REACH COVERAGE \(\rightarrow\) All-Defs

All-C-Uses/Some-P-Uses \(\rightarrow\) All-P-Uses/Some-C-Uses

Should we define yet another criteria?

- could subsume all the others (except all paths)?

"the NEW Winner"
Problems with data flow coverage criteria

• infeasible paths
 • Don't usually get 100% coverage

• Need to understand fault detection ability

• Artificially combines control with data flow
 • Considering p-uses or all predicate alternatives, tacked on to incorporate control flow

Conclusions

• An improvement over control flow techniques
• Provides a rational for how many times to iterate a loop or which combinations of subpaths to consider
• Most commonly used criterion is all-uses (with branch coverage)
• Need more empirical evidence to evaluate effectiveness
• Typically used in a tool that monitors coverage