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ABSTRACT

AUTOMATING AND EVALUATING ASSUME-GUARANTEE
REASONING

FEBRUARY 2007

JAMIESON M. COBLEIGH

B.Sc., RUTGERS UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Lori A. Clarke

Software systems are taking on an increasingly important role in society and are being

used in critical applications where their failure could result in human casualties or substan-

tial economic loss. Thus, it is important to validate software systems to ensure their quality.

One technique for validating software systems is finite-state verification, in which a finite

model of a system is analyzed to ensure that it satisfies a property that specifies a desired

system behavior. Unfortunately, the cost of finite-state verification can be exponential in

the size of the system being analyzed.

Compositional analysis is a “divide-and-conquer” approach to verification that aims to

reduce the cost of verification. One proposed compositional technique is assume-guarantee

reasoning. With this technique a system is decomposed into subsystems and these sub-

systems are analyzed individually. By composing the results of these analyses, it can be

vii



determined whether or not a system satisfies a property. Because each subsystem is smaller

than the whole system, analyzing each subsystem individually may reduce the overall cost

of verification. Often the behavior of a subsystem is dependent on the subsystems with

which it interacts, and thus it is usually necessary to provide assumptions about the en-

vironment in which a subsystem executes. Because developing assumptions has been a

difficult manual task, the evaluation of assume-guarantee reasoning has been limited.

In this thesis we present an algorithm that automatically learns assumptions. Using this

algorithm, we undertook a study to determine if assume-guarantee reasoning provides an

advantage over monolithic verification. Using two different verifiers, we considered all

two-way decompositions for a set of systems and properties. By increasing the number

of repeated tasks in these systems, we evaluated the decompositions as they were scaled.

We found that in only a few cases can assume-guarantee reasoning verify properties on

larger systems than monolithic verification can and in these cases the systems that can be

analyzed are only a few sizes larger. Although these results are discouraging, they provide

insight about research directions that should be pursued and highlight the importance of

experimental evaluation.
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CHAPTER 1

INTRODUCTION

Software systems are taking on an increasingly important role in society and are being

used in critical applications where their failure could result in human casualties or substan-

tial economic loss. Thus, it is important to validate such software systems to ensure their

quality. This task is becoming more difficult, however, as software systems continue to

increase both in size and in complexity. There are many techniques that can be used to

validate software systems, one of which is finite-state verification (FSV). FSV techniques

work by analyzing a finite model of a system to ensure that it satisfies a property that speci-

fies a desired system behavior. Since FSV techniques examine all paths through the system

model, they can be used to determine whether or not the property being verified is vio-

lated. If the property is violated, FSV techniques usually provide a counterexample, a path

through the model that reveals this violation.

A more commonly used technique to validate software systems is testing (e.g., [1]).

With testing, a system is executed and reasoning is performed based on the observed be-

haviors of that system. Since the number of possible ways that a system can execute is often

prohibitively large, it is usually infeasible to test all possible executions of a system. Thus,

testing can only show the existence of errors, not the absence of errors. This limitation is

exacerbated for concurrent systems where a test case can produce different results for the

same input depending on how actions in the threads are scheduled. Although testing is im-

portant to validate a software system in its actual runtime environment, for critical systems

it needs to be supplemented with techniques that can provide more definitive results.
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Another validation technique that can provide such definite results is theorem proving.

With theorem proving, a formal model of the system is built and mathematical reasoning

is employed to prove properties about the model (e.g, [68]). While some tools have been

developed to help automate the writing of proofs (e.g., [92]), automated theorem provers are

usually not guaranteed to terminate. Furthermore, theorem provers often require significant

human interaction and expertise to use. While FSV techniques cannot prove as wide a range

of properties as theorem provers, FSV techniques are usually considered easier to use.

FSV techniques, therefore, seek a middle ground between testing and theorem proving

based verification. FSV techniques, however, are limited in the size of the system that they

can evaluate since the cost of verification can be exponential in the size of the system being

verified, a problem known as state explosion.

Compositional analysis techniques have been proposed as one way to address the state-

explosion problem. These techniques use a “divide-and-conquer” approach to verifica-

tion. One of the most frequently advocated compositional analysis techniques is assume-

guarantee reasoning [78, 97] in which a system under analysis is decomposed into subsys-

tems and these subsystems are analyzed individually. By composing the results of these

analyses, it can be determined if a system satisfies a property. By individually analyzing

each subsystem, which is smaller than the whole system, the effect of the state-explosion

problem may be reduced. Often the behavior of a subsystem is dependent on the subsys-

tems with which it interacts and thus it is usually necessary to provide assumptions about

the environment in which a subsystem executes.

In assume-guarantee reasoning, a verification problem is represented as a triple,

〈A〉 S 〈P〉, where:

• S is the subsystem being analyzed,

• P is the property to be verified, and

• A is an assumption about the environment in which S is used.
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Premise 1: 〈A〉 S1 〈P〉
Premise 2: 〈true〉 S2 〈A〉

〈true〉 S1 ‖ S2 〈P〉

Figure 1.1: Simplest assume-guarantee rule

Note that although this notation resembles a Hoare triple [68], A is not a precondition and

P is not a postcondition. Instead, A is a constraint on the behavior of S. If S, as constrained

by A, satisfies P, then the formula 〈A〉 S 〈P〉 is true.

Consider a system that is decomposed into two subsystems, S1 and S2 (which may then

be further decomposed). Figure 1.1 shows the simplest assume-guarantee rule that can be

used to verify that a property P holds on the system composed of S1 and S2 running in

parallel, denoted S1 ‖ S2. This rule states that if a subsystem S2 satisfies an assumption A

and that if under assumption A subsystem S1 satisfies property P, then the system S1 ‖ S2

satisfies property P. This allows a property to be verified on S1 ‖ S2 without ever having to

examine a monolithic model for the entire system.

In addition, assume-guarantee reasoning can be applied at different phases of the soft-

ware lifecycle. For example, if a design for a software system has been written in a formal-

ism with well-defined semantics, then that design can be analyzed using assume-guarantee

reasoning to detect property violations. By detecting such violations before they can be

implemented in a software system, the overall cost of developing that software system can

be reduced. Furthermore, assumptions found during verification of the design of a software

system can aid in the verification of the actual software system.

There are several issues that make using the assume-guarantee rule shown in Figure 1.1

difficult. First, if the system under analysis is made up of more than two subsystems,

which is often the case, then S1 and S2 may each need to be made up of several of these

subsystems. How this decomposition is done can have a significant impact on the time and

memory needed for verification, but it is not clear how to select an effective decomposition.

In fact, we have found that the memory usage between two different decompositions can
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vary by over an order of magnitude. Second, once a decomposition is selected, it can

be difficult to manually find an assumption A that can be used to complete an assume-

guarantee proof because the assumption must:

1. be strong enough to sufficiently restrict the behavior of S1 so that 〈A〉 S1 〈P〉 holds,

and

2. be weak enough to not overly restrict the behavior of S2 so that 〈true〉 S2 〈A〉 holds.

Because selecting a decomposition and developing an assumption are difficult tasks, it had

not been practical previously to undertake an empirical evaluation of assume-guarantee

reasoning, although several case studies have been reported (e.g., [49, 67, 83]).

Recent work on automatically computing assumptions for assume-guarantee reason-

ing [5, 14, 23, 36, 52, 65] eliminates one of the obstacles to empirical evaluation by making

it feasible to examine a large number of decompositions without having to manually pro-

duce a suitable assumption for each one. Using one algorithm that learns assumptions [36],

we undertook such a study to evaluate the effectiveness of assume-guarantee reasoning.

We initially undertook a study to gain insight into how to best decompose systems

and to learn what kind of savings could be expected from assume-guarantee reasoning.

We began by using FLAVERS [43], a finite-state verifier, to verify properties of several

systems written in Ada, but the results of these experiments were not as promising as the

results seen in [36], which used LTSA [80], another finite-state verifier. Although the two

tools use different models and verification methods, this discrepancy was surprising to us.

As a result, we translated these systems into FSP, the input language of LTSA, to see if our

choice of tool affected our results. In the study reported here, we applied both tools to a

small set of scalable systems and properties.

Initially, we selected several decompositions for each example at the smallest reason-

able system size based on our understanding of the system, the property, and of assume-

guarantee reasoning. We expected that in most cases assume-guarantee reasoning would
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save memory over monolithic verification. In these experiments, we were surprised to dis-

cover that in over half of the subjects we verified the decompositions we selected did not

use less memory than monolithic verification.

Based on these initial results, we undertook a more comprehensive study in which, for

each property of each system at that system’s smallest size, we examined all of the ways to

decompose the subsystems of that system into S1 and S2 to find the best decomposition in

the sense that assume-guarantee reasoning explores the fewest states. Because examining

all decompositions at larger system sizes quickly becomes infeasible due to the explo-

sion in the number of decomposition that need to be considered and the increased cost for

evaluating each decomposition, we generalized the best decompositions found for smaller

system sizes and used those generalized decompositions when applying assume-guarantee

reasoning for larger system sizes. To evaluate these generalized decompositions we tried

to explore all two-way decompositions for a few larger system sizes, although we were not

always able to find the best decomposition in all cases because of the time required. In

total, we examined over 43,500 two-way decompositions and used over 1.54 years of CPU

time.

The results of our experiments are not very encouraging and raise concerns about the ef-

fectiveness of assume-guarantee reasoning. For the vast majority of decompositions, more

states are explored using assume-guarantee reasoning than are explored using monolithic

verification. If we restrict our attention to just the best decomposition for each property,

we found that in about half of these cases our automated assume-guarantee reasoning tech-

nique explores fewer states than monolithic verification for the smallest system size. When

we used generalized decompositions to scale the systems, assume-guarantee reasoning of-

ten explores fewer states than monolithic verification. This memory savings, however, is

rarely enough to increase the size of the systems that can be verified beyond what can be

done with monolithic verification. Although these results are discouraging, they provide
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insight about research directions that should be pursued and highlight the importance of

experimental evaluation.

This thesis begins with a discussion of related work and then chapter 3 provides

background information about the two finite-state verifiers and the learning algorithm we

used. Chapter 4 describes how the learning algorithm can be used for automated assume-

guarantee reasoning with these two finite-state verifiers. Chapter 5 describes our exper-

imental methodology and results. Chapter 6 discusses another application of assume-

guarantee reasoning, using assumptions learned while verifying the design of a software

system to complete assume-guarantee reasoning proofs on the actual software system.

Chapter 7 presents our conclusions and discusses future work.
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CHAPTER 2

RELATED WORK

Both finite-state verification and compositional analysis are active areas of research

with long histories and in this chapter we first focus on related work in the area of finite-

state verification and then turn to the area of compositional analysis.

2.1 Finite-State Verification

Finite-state verification (FSV) techniques work by analyzing a finite model of a system

to ensure that it satisfies a property that specified a desired system behavior. Properties are

usually classified into two categories: safety and liveness [3]. Intuitively, a safety property

is one that states that some “bad thing” never happens, for example, that an elevator never

moves while its doors are open. A liveness property is one that states that some “good

thing” will eventually happen, for example, that if a call button is pushed on a floor then

the elevator will eventually stop at that floor. If the property being verified is violated,

FSV techniques usually provide a counterexample, a path through the model that reveals

this violation. FSV techniques, however, are limited in the size of the system that they

can verify since the cost of verification can be exponential in the size of the system being

verified, a problem known as state explosion. Many different approaches to FSV have been

proposed and in this section we will discuss four of these: reachability based, data-flow

based, SAT based, and integer necessary condition based.

2.1.1 Reachability Based

Reachability based finite-state verifiers attempt to prove properties about systems by

building a reachability graph for the system under analysis. The reachability graph of a
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system contains a node for every state in the system being analyzed, where a state consists

of information about the values of variables and the program counters for each thread in

the system. A property can then be checked by analyzing the reachability graph, looking

for paths on which that property is violated.

One of the first FSV tools used a reachability-based approach and was called

APPROVER [59]. APPROVER was capable of verifying a predefined set of safety prop-

erties, a predefined set of liveness properties, and deadlock using a heuristic search.

APPROVER was used to check correctness properties of several protocols and was ca-

pable of verifying programs written in Algol. Because of the state-explosion problem,

APPROVER was limited to verifying properties of relatively small systems.

Later FSV tools based on building reachability graphs have adopted a wide range of

optimizations to lessen the effect of the state-exposition problem. In this section, we will

look at some of the optimization techniques that have been developed and discuss some of

the tools that employ them.

Symbolic Approaches Instead of building the reachability graph explicitly, symbolic ap-

proaches represent the states (and transitions) of the reachability graph using Ordered Bi-

nary Decision Diagrams (OBDDs), an efficient representation for Boolean functions [19].

The most well-known FSV tool that uses a symbolic representation of the reachability

graph is SMV [82], which can check systems for freedom from deadlock and properties

specified in CTL [35]. NuSMV [31] is a reimplementation and reengineering of SMV,

which adds several new features, including the ability to check properties specified in

LTL [35].

Although OBDDs can often compactly represent very large sets, saving memory over

explicit approaches, one challenge in using them is that they require that the Boolean

variables they operate over be ordered. As seen by Chan et al. in their analysis of the

TCAS II specification, the amount of memory used by two different variable orderings for

a given system and property can vary by over an order of magnitude [24]. In addition,
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there are some sets for which the smallest representation using OBDDs is be exponentially

large [18]. Still, symbolic approaches have been very successful at verifying hardware

systems, although their success with software systems has been more limited.

Partial Order Approaches Partial order approaches are another way to reduce the effect

of the state explosion problem (e.g., [55, 95, 110]). These approaches work by noticing

that if certain interleavings of events in different tasks are equivalent with respect to the

property being checked, then only one interleaving from each equivalence class needs to be

explored during verification. While partial order methods can reduce the time and memory

needed for verification, they are not always effective and can sometimes increase the time

needed for verification because of the overhead of computing equivalence classes [37, 87].

Still, this overhead is usually minimal and many reachability-based FSV tools, including

SPIN [70] and LTSA [80], make use of partial-order approaches when building reachability

graphs.

State Compaction FSV tools based on building and analyzing reachability graphs often

employ optimizations to reduce the amount of memory needed to store each state in the

reachability graph. For example, if it is known that an integer variable in a system only

ranges in value from zero to seven, then only three bits are needed to store the state of this

variable, not the number of bits needed to store an integer. Even early FSV tools, such as

APPROVER, made use of this technique and tried to use the fewest number of bits to store

the state of the system.

A more sophisticated optimization called state compression is used by SPIN to reduce

the amount of memory needed to store a state of the system. Holzmann observed that often

a task in a system only takes on a small number of “local” states and that the exponential

number of “global” states in the entire system can be attributed to the large number of

possible combinations of these local states [69]. Thus, SPIN stores the local states of each

task separately and a global state is constructed by pointing to the local states from which
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v w x y z

1 2 1 2 1

1 2 1 2 2

1 2 2 2 1

1 2 2 2 2
(a) Without state compression

v w x y

1 2 1 2

1 2 2 2

T1 T2 z

2

1

(b) With state compression

Figure 2.1: State compression in SPIN

it is composed. Consider a task T1 with integer variables v, w, x, and y and a second task

T2 with an integer variable z. Four possible states of this system are shown in Figure 2.1a.1

Figure 2.1b shows what happens when state compression is employed. In this Figure, the

local states of T1 are shown on the left, the local states of T2 are shown on the right, and

the global states of the system are shown in the middle. Each global state has a pointer to

a local state of T1 and to a local state of T2. Assuming a pointer is the same size as an

integer, then without state compression 20 integers are needed to store these four states,

while with state compression only 18 integers are needed. With more states, this memory

savings can be significant.

Even with aggressive optimization techniques, state explosion can still result in proper-

ties that cannot be verified on a system because of the amount of memory needed to store

all of the states of that system. Fingerprinting is another technique that can be used to re-

duce the memory needed to store the states of a system. With fingerprinting, a fingerprint

for a state in the system is stored rather than the entire state. Let the function fingerprint

compute the fingerprint of a state. Then, for states s1 and s2:

1For simplicity, we are assuming that a system state is made up of just the values of variables. We are
ignoring, for example, the program counter for each task.
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NEG ZERO POS
NEG NEG NEG NEG, ZERO, POS

ZERO NEG ZERO POS
POS NEG, ZERO, POS POS POS

Figure 2.2: Addition for abstracted integers

• The number of bits needed to store fingerprint(s1) should be less than the number of

bits needed to store s1,

• If states s1 and s2 are equivalent then fingerprint(s1) = fingerprint(s2), and

• If fingerprint(s1) = fingerprint(s2), then s1 and s2 are equivalent with a high proba-

bility.

This means that two states may be judged to be equivalent even when they are not equiv-

alent, thus FSV tools that use this technique may miss exploring some states and report

unsound results. Still, because the fingerprint of a state is smaller than the actual state,

using fingerprinting can allow an FSV tool to explore more states of a system than could

otherwise be explored [69]. Some FSV tools, like SPIN, make fingerprinting an option.2

Other FSV tools, such as ZING [6], only use fingerprinting and are therefore inherently

unsound.

Abstraction Another technique that can be used to reduce the number of states that need

to be generated during reachability analysis is abstraction [40]. Abstraction works by map-

ping the values of a program data type to a set of abstract values and operations over that

data type to operations over the set of abstract values. For example, the integer data type

could be abstracted to three values: NEG, which represents a negative integer, ZERO,

which represents zero, and POS, which represents a positive integer. Figure 2.2 shows the

addition operator for this abstraction. For some values the result of adding two abstract

2In SPIN, fingerprinting is called bit-state hashing or the supertrace technique.
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1) Abstract: An abstract model of the system is built.

2) Verify: The model is analyzed to determine if the desired property holds. If the
property holds, then this is reported and the CEGAR algorithm stops. Otherwise, a
counterexample is produced.

3) Refine: The counterexample is analyzed to determine if it is a feasible or an in-
feasible counterexample. If the counterexample is feasible, this is reported and the
CEGAR algorithm stops. If the counterexample is infeasible, the model is refined
automatically to eliminate the infeasible counterexample and the CEGAR algorithm
goes back to the abstraction phase, where a new, more precise model of the system
is built.

Figure 2.3: CEGAR phases

integers is unique. For example, adding two positive integers always results in a positive

integer. For other values, the result of adding two abstract integers is not unique. For ex-

ample, adding a positive integer to a negative integer may result in a positive integer, zero,

or a negative integer depending on the original unabstracted integer values. During veri-

fication, if an operation over an abstracted data type results in multiple values, then to be

conservative the FSV tool must nondeterministically choose between all possible results of

that operation.

Some tools require that abstractions be manually applied to a system. For example,

abstractions in SPIN need to be written by hand and are not automatically checked for cor-

rectness [71]. Other tools provide more automated support. For example, Bandera [39]

provides support for automatically checking abstractions for correctness and applying ab-

stractions to program data types [44]. The use of abstractions in Bandera has allowed them

to verify some properties using Java PathFinder (JPF) [111] that could not be verified on

the original unabstracted system [44]. Still, the abstraction mechanism in Bandera requires

that the analyst manually select which data types to abstract.

An even more automated abstraction approach is Counterexample Guided Abstraction

Refinement (CEGAR) [33]. One tool that uses CEGAR is the Berkeley Lazy Abstraction
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Software verification Toolkit (BLAST) [66], which starts with an abstract model of the

system and iteratively adds precision to that model. The refinements BLAST makes to

the model to add precision are performed automatically based on the counterexamples that

were previously returned by the verifier. To be more specific, CEGAR proceeds in three

phases, shown in Figure 2.3. Unlike other CEGAR tools, in which a new model is built each

time the abstract phase is performed, BLAST performs abstraction lazily. This means that

in the refinement phase if the counterexample is infeasible, then a state in the model called

the pivot state is identified. The pivot state is the first state in the infeasible counterexample

which does not have a concrete counterpart in the unabstracted system, in other words, the

state in the counterexample in which the counterexample first becomes infeasible. Then,

when abstraction is performed, the model before the pivot state is kept unchanged, but

the model after the pivot state is discarded and made more precise using the automatically

selected refinements. This allows different parts of the model to have different levels of

precision and allows better reuse of artifacts and information between the different phases

of CEGAR.

2.1.2 Data-Flow Based

In data-flow analysis, a model of the system is analyzed to determine what facts about

that system are true at each node in the model [63]. Data-flow analysis is often used for

software optimization, but also has a long history in the realm of verification. Early systems

were limited to checking for a fixed set of properties over sequential code [77,91,101]. The

Cecil/Cesar system generalized this approach and was capable of checking user-defined

properties of sequential Fortran software [89, 90]. FLAVERS builds upon this work, ex-

tending it to handle concurrent Ada [43] and concurrent Java [86], and also adding in the

ability to improve the precision of the model through constraints. FLAVERS also makes

use of some optimizations described in the previous section, including partial-order opti-

mization [87] and symbolic representation of the states [106].
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SLAM [13] uses data-flow analysis to check user-defined properties of sequen-

tial Boolean programs, programs with only Boolean variables, using the Bebop model

checker [12]. It was designed to verify C software, which can be automatically trans-

lated into Boolean programs [11]. SLAM uses CEGAR in its analyses and uses a tool

called Newton to determine how the model should be refined during the CEGAR pro-

cess. Although the domain of Boolean programs is limited, SLAM has been successful for

checking properties of Windows device drivers.

ESP performs data-flow analysis of user-defined properties of sequential Java sys-

tems [41]. It reduces the complexity of analysis by only accurately modeling branches

of a system when the state of the property differs on the different arms of the branch. This

approach, however, can lead to ESP reporting that a property does not hold when it actually

does. Unfortunately, there is no support in ESP for improving the precision of the model to

remove such incorrect results.

More recently, BLAST has been modified to use data-flow analysis to verify properties

of sequential systems [46]. Often the refinement performed in CEGAR is based on Boolean

predicates. For example, if to prove a property the verifier needs to know whether or not a

variable x was equal to another variable y, then the predicate “x==y” is added to the model.

Then, in the next verify phase, the verifier would keep track of whether or not the value

of x equaled the value of y. Rather than just determining which Boolean predicates should

be added to the model during the refinement phase, BLAST now learns which pointers

and which parts of the heap need to be modeled without expressing these refinements as

Boolean predicates. By not forcing refinement to just be based on Boolean predicates, an

improvement in efficiency can be seen over CEGAR based just on Boolean predicates.

2.1.3 SAT Based

SAT based verifiers translate the system under analysis and the property to be verified

into a Boolean formula. These verifiers then use a SAT solver to determine whether or
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not the formula has a solution. From this, it can be determined whether or not the model

satisfies the property being verified.

The Alloy Analyzer [74] checks systems written in Alloy [75]. Systems in Alloy are

translated into a Boolean formula which is analyzed by a SAT solver to determine whether

or not the formula has a solution. The model is bounded during translation so that the

Boolean formula only allows a fixed number of objects to be allocated and only allows

each loop to be iterated a fixed number of times. Since the Alloy Analyzer uses a bounded

model, it may not find a property violation in a system if the violation only exists in a system

configuration that exceeds the specified bounds, but the Alloy Analyzer is guaranteed to

find a property violation if one exists within the specified bounds.

MAGIC (Modular Analysis of proGrams in C) is a tool that uses CEGAR to verify

user-defined properties of sequential C software [22]. MAGIC uses Labeled Transition

Systems as its model and checks for weak simulation [84] between a system and the desired

properties of that system. This check is done by creating a Boolean formula that has a

solution if the system weakly simulates the properties being verified. To obtain scalability,

MAGIC requires that the analyst provide procedure abstractions (PAs) to summarize the

effects of procedure calls. PAs allow MAGIC to analyze recursive software and are used in

two ways. First, PAs are used as properties to ensure that each PA accurately summarizes

the procedure it corresponds to. Second, when a procedure call is encountered, the PA

corresponding to that call is used to determine the effect of the call on the state of the

system.

2.1.4 Integer Necessary Condition Based

INCA (Integer Necessary Condition Analyzer) does not represent the states of a system

explicitly, but rather models the system and property as a set of integer linear equations [8].

An integer linear programming solver is then used to verify the property by determin-

ing whether or not the set of equations has a solution. Since the reachability graph for
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Input: A system R made up of subsystems S1,S2, . . . ,Sn

Output: A model M that is semantically equivalent to R

Algorithm:
• Let G be the set {S1,S2, . . . ,Sn}
• While |G|> 1

1. Select F ⊆ G, where |F | ≥ 2
2. Compute Q =‖T∈F T
3. Hide events in Q that are “local” to Q
4. Minimize Q, maintaining semantic equivalence
5. Let G = (G\F)∪{Q}

• Return as M the only element left in G

Figure 2.4: Typical compositional construction algorithm

the system is never built, INCA can sometimes verify properties of large systems very

quickly [9, 10].

2.2 Compositional Analysis

While all of the previously described FSV techniques use different approaches and

optimizations to make checking properties tractable, the state-explosion problem can still

result in verifications that require a significant amount of time and memory. To reduce the

cost of verification, compositional analysis techniques advocate a “divide-and-conquer”

approach to verification. We classify compositional analysis techniques into two cate-

gories, as proposed in [56], which we call compositional construction and compositional

reasoning. Compositional construction techniques are those in which a model is built for

the system that is (hopefully) smaller than the full reachability graph, but is semantically

equivalent to the full reachability graph with respect to the property being verified. Com-

positional reasoning techniques are those in which a model for the entire system is not

built.
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2.2.1 Compositional Construction

Most compositional construction techniques share a common core algorithm, shown in

Figure 2.4 [56]. In this algorithm, a model M is built for a system R made up of subsystems

S1,S2, . . . ,Sn. These subsystems are put into a set G, and a while loop is iterated until the

size of G is one. Once there is only one element in G, the model M being built is the only

element left in G. The while loop iterates selecting some subsystems in G (line 1), building

a model of those subsystems3 (line 2), hiding events local4 to just the selected subsystems

(line 3), minimizing the model5 built while maintaining semantic equivalence with respect

to the property being checked (line 4), and finally replacing the selected subsystems with

the newly created model for those subsystems (line 5).

When compositional construction is used, the order in which the subsystems are se-

lected in line 1 can have significant impact on the amount of memory needed to perform

the verification. Several heuristics have been proposed to guide the selection of subsystems.

Both Sabnani et al. [102] and Tai et al. [105] proposed using the amount of communication

between subsystems as a heuristic. Alternatively, Yeh and Young [112] use the hierar-

chy of modules in Ada software to guide their process. Unfortunately, there are examples

for which there is no good order for selecting subsystem and the size of the intermediate

model Q computed in line 3 can be exponentially larger than the size of the original sub-

systems. Several researchers have proposed using constraints to reduce this intermediate

state-explosion problem.

Graf and Steffen proposed an approach which allows the analyst to specify interfaces

to different subsystems [56]. These interfaces act as constraints to reduce the size of the

intermediate models. If an incorrect interface is written, the analysis will never report that

3In line 2, the parallel composition operator ‖ is used to combine two subsystems that run in parallel with
each other. It is both associative and commutative.

4A local event is an event that occurs only in the subsystems selected in line 1.

5Since some events were hidden in line 3, this minimization will hopefully produce a smaller model.
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a property holds if it does not hold. The analysis, however, might report that a property

does not hold even if it does hold.

To avoid errors introduced by incorrect manually written constraints, Cheung and

Kramer show how in LTSA constraints can automatically be computed based on the be-

havior of other subsystems being analyzed [29]. Later, they showed how user-specified

constraints could be incorporated [30]. Unlike the approach of Graf and Steffen, their

technique will detect an incorrect constraint and report this as an error. Although origi-

nally developed for safety properties, this approach was later extended to support liveness

properties [28].

Bultan et al. also proposed building constraints automatically, but instead of basing

the constraints on the behavior of other subsystems, they build constraints based upon the

negation of the property being verified [20]. Since the property being verified is expected

to hold, this approach only models the violating subset of the state space, possibly reducing

the size of the model that is built.

Clarke et al. describe a framework for compositional minimization that automatically

computes interfaces of subsystems [32]. The interface for a subsystem is computed by

hiding all local events to that subsystem and then minimizing the result. An interface for

a subsystem can be used to replace that subsystem when verifying properties. While the

examples in this paper group subsystems together to compute their interface (akin to line 1

in Figure 2.4), this paper only gives some guidelines on how such grouping is to be done.

Rather than build constraints Cheng et al. propose an approach where the system being

analyzed is refactored to make it more amenable to compositional construction [27]. This

approach is not always applicable and its applicability can be affected by the data structures

used in the system [26]. Furthermore, even if a way to refactor the system can be found,

a suitable order for selecting subsystems in line 1 is still needed, something the authors do

not address.
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〈true〉 S1 〈A1〉
〈A1〉 S2 〈A2〉
〈A2〉 S1 〈A3〉

...
〈An〉 S(n mod 2)+1 〈P〉
〈true〉 S1 ‖ S2 〈P〉

(a) Alternating chain

〈true〉 S1 〈A1〉
〈A1〉 S2 〈A2〉
〈A2〉 S3 〈A3〉

...
〈An−1〉 Sn 〈P〉
〈true〉 S1 ‖ · · · ‖ Sn 〈P〉

(b) n-subsystem chain

〈true〉 S1 〈A1〉
〈A1〉 S2 〈P1〉
〈true〉 S2 〈A2〉
〈A2〉 S1 〈P2〉
〈true〉 S1 ‖ S2 〈P1∧P2〉

(c) Property conjunction

〈A1〉 S1 〈P〉
〈A2〉 S2 〈P〉
A1∩A2 = /0
〈true〉 S1 ‖ S2 〈P〉

(d) Circular

Figure 2.5: Alternative assume-guarantee rules

2.2.2 Compositional Reasoning

Unlike compositional construction techniques in which a model is built for the system

under analysis, with compositional reasoning techniques a model for the entire system is

not built. Assume-guarantee reasoning [78,97] is the most common compositional reason-

ing technique. In this section, we will discuss some alternative assume-guarantee rules,

some tools that make use of assume-guarantee reasoning, and some techniques for auto-

mated assumption generation.

Assume-Guarantee Rules In Figure 1.1 we presented the simplest assume-guarantee

rule and other more complicated rules have been developed, some of which are shown

in Figure 2.5. Figure 2.5a shows a rule for verifying a property on a system with two

subsystem by using multiple assumptions [58, 103]. A similar rule for a system with n

subsystems is shown in Figure 2.5b. One challenge with using both of these rules is that

they require finding more than one assumption. In [32], a framework for assume-guarantee

reasoning is presented as well as several assume-guarantee rules. One of these rules is

shown in Figure 2.5c. While it is an interesting generalization of the simple rule shown in
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Figure 1.1, it requires that the property being verified is written as the conjunction of two

other properties and requires finding two assumptions.

Circular assume-guarantee reasoning rules (sometimes called symmetric rules) have

also been suggested. An example of this type of rule is shown in Figure 2.5d [14]. In

this rule, A1 denotes the complement of A1. Circular rules are difficult to develop and use,

because no circular rule without some side condition can be both sound and complete [81].

Intuitively, a side condition is a premise that breaks the circularity of the premises or is not

expressible as an assume-guarantee triple. The rule shown in Figure 2.5d is both sound and

complete, but its third premise is a side condition which is not expressible as an assume-

guarantee triple.

Tools that Use Assume-Guarantee Reasoning Dwyer shows how FLAVERS can be

used for checking assume-guarantee properties of Ada software [42]. This work only deals

with interactions resulting from rendezvous, while the approach we used also deals with

shared variables. Also, Dwyer’s work requires that analysts manually develop the assump-

tions, unlike our work in which assumptions are learned automatically.

Henzinger et al. performed a case study [67] in which they used assume-guarantee

reasoning to verify several protocols using MOCHA [4]. Their use of assume-guarantee

reasoning allowed them verify larger systems than could be verified monolithically. This

work, however, requires that assumptions be developed manually.

Fournet et al. incorporated assume-guarantee reasoning for message passing systems

into ZING [49]. This approach checks that each message that is sent is received and that

no subsystem blocks waiting for a message that will never be sent but requires that the

assumptions (called contracts) be written manually. They did not compare their approach

to monolithic verification, however, so it is unknown if their use of assume-guarantee rea-

soning offers a benefit over monolithic verification.

CALVIN performs compositional analysis using a theorem prover to verify user-defined

properties of concurrent Java software [47]. CALVIN analyzes each thread in the system
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individually and requires that the analyst provide an environment assumption to describe

the effects of other threads on the state of the system. In order to handle loops, either

the analyst needs to provide a loop invariant or CALVIN will unroll each loop a small

number of times. The latter approach is unsound, but has been effective in detecting errors

in a number of systems. To check properties, they use an automated theorem prover that

requires no input from the analysts. However, the theorem prover may fail to terminate.

Automated Assumption Generation One difficulty with applying assume-guarantee

reasoning has been finding suitable assumptions to complete assume-guarantee proofs.

There has been recent work on addressing this problem and several techniques have been

developed to compute assumptions automatically.

Inverardi et al. showed how assumptions could automatically be computed [73] to check

for freedom from deadlock for systems specified in CHAM [15]. Assumptions are dis-

charged by finding one or more components that satisfy each generated assumption. This

approach has a better worst-case memory bound than the standard reachability analysis but

it does not improve upon the worst-case time bound for reachability analysis. This work,

however, does not provide an empirical evaluation of the approach, so it is unknown if it

offers a benefit over monolithic verification.

Data mining techniques [2] have been used by de la Riva et al. [99] for building assump-

tions for SA/RT models (which resemble StateCharts [60]). This work was later extended

to allow assumptions for multiple components to be generated simultaneously using the

assumptions that have already been generated to prune the search space [98]. In the worst

case, though, this work still requires building a reachability graph for each subsystem. This

approach was applied to one system, but they do not report on how their approach compared

to monolithic verification, so it is not known if it provides an advantage.

Giannakopoulou et al. showed how assumptions could be built automatically for

LTSA [52]. This approach requires that a model be built for the subsystem for which

an assumption is generated. Since this work is for LTSA, this subsystem model can be

21



built using compositional construction, which can reduce the cost of assumption genera-

tion. Still, it can still be expensive to build models for an entire subsystem. In later work

we showed that the approach we used, based on the L* algorithm, can reduce the memory

cost of assumption generation [36]. This learning approach was later extended to handle

circular assume-guarantee rules [14]. Chaki et al. implemented this approach and their

experimental results show that while using circular rules can reduce the memory needed

compared to using the non-circular rule presented in [36], using circular rules can increase

the time needed [21].

Jeffords and Heitmeyer show how an invariant generation tool can be used to generate

invariants for subsystems that can be used to complete assume-guarantee proofs [76]. These

invariants are “facts” that are guaranteed to be true about a given subsystem. While the

assume-guarantee proof rules they use are sound and complete, the invariant generation

algorithm they use is not guaranteed to produce invariants that will complete an assume-

guarantee proof even if such invariants exist. Still, in their experiments, their approach

provided a time savings over monolithic verification. They do not, however, report on

memory usage.

BLAST incorporates thread-modular reasoning into its CEGAR process and learns as-

sumptions automatically to detect race conditions in concurrent C software [65]. This

approach is based on a technique that was proposed for CALVIN but was never imple-

mented [48]. Thread-modular reasoning in BLAST is incomplete, meaning there are some

properties that can be verified by monolithic analysis but not by their compositional ap-

proach. Still, they used their approach to successfully prove properties of several systems.

They do not report on how their approach compared to monolithic verification, so it is not

known if it provides a memory savings or a time savings.

Chaki et al. developed the LT algorithm, based on the L* algorithm, which can learn de-

terministic tree automata [23]. They show how this algorithm can be used to learn assump-

tions to complete assume-guarantee proofs for checking simulation conformance. They
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looked at 8 properties of 1 system that had only 2 subsystems and were able to verify sim-

ulation conformance compositionally on some examples that could not be checked mono-

lithically. Since the system they verified only had two subsystems, they did not have to

address the decomposition problem, as we did in our study.

Alur et al. adapted the learning approach we used for NuSMV [5]. In addition to repre-

senting the subsystems symbolically using BDDs, they also represent the learned assump-

tion and the data structures used by the L* algorithm symbolically as well. They found

some properties that could be verified using assume-guarantee reasoning but not verified

monolithically. Some of these properties were for scalable systems and, on these systems,

they were able to increase the size of the system that could be verified by 1 or 2. They did

not determine if assume-guarantee reasoning could scale farther than this, but, based on

their data, it seems unlikely. They also reported on one property where assume-guarantee

reasoning used more time and more memory than monolithic verification.
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CHAPTER 3

BACKGROUND

This chapter gives a description of FLAVERS and LTSA, the two verifiers we will

use in our study. It also describes the L* algorithm, the algorithm we will use to learn

assumptions to complete assume-guarantee proofs. To explain the two verifiers, we will

use the example shown in Figure 3.1, which shows an elevator system in Ada. The system

has two tasks, a car and a controller, and a variable x that is shared by both tasks. In this

system, the variable x is first set by both tasks and then the tasks rendezvous on sync.1 This

ensures that x is set, but uses a race condition so that the variable of x could be either true

or false when the rendezvous sync occurs. If x is true when sync occurs, then, through the

rendezvous open doors and close doors, the controller instructs the car to first open and

then close its doors. Once that is done, the rendezvous move car occurs, which causes the

car to move. If x is false when sync occurs, then only the rendezvous move car occurs.

Note that this system assumes that the car’s doors are closed to start.

3.1 FLAVERS

FLAVERS is a finite-state verification tool that use data-flow analysis to check user-

defined safety properties of systems. In this section, we describe for FLAVERS how prop-

erties are specified, how systems are modeled, and how properties are verified.

1Rendezvous are a form of synchronous communication used in Ada. A task may call a named entry
in another task. Execution of the calling task is blocked until the called task accepts the call and the two
task complete the rendezvous. During a rendezvous, information may be passed in both directions. Both the
calling task and accepting task continue execution after their rendezvous is completed.
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task body car
x := true;
accept sync;

if (x) then
accept open_doors;

end if;

if (x) then
accept close_doors;

end if;

accept move_car;
end car;

task body controller
x := false;
car.sync;

if (x) then
car.open_doors;

end if;

if (x) then
car.close_doors;

end if;

car.move_car;
end controller;

Figure 3.1: Elevator system in Ada

3.1.1 Specifying Properties

The properties that FLAVERS verifies need to be expressed as sequences of events that

should (or should not) happen on any execution of the system. A property can be expressed

in a number of different notations, but is translated into a Finite-state Automaton (FSA).

Formally, an FSA is a tuple, F = 〈Σ,Q,∆,A,q〉 where:

• Σ is a set of events, called the alphabet of the FSA,

• Q is the finite set of states,

• ∆ : Q×Σ → Q is the total transition function,

• A ⊆ Q is the set of accepting states, and

• q ∈ Q is the initial state.

We use L (F) to denote the set of all strings accepted by an FSA F , meaning the sequences

of events that occur on paths from the initial state to an accepting state. FSAs are closed
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Figure 3.2: Example property for FLAVERS

under complement, meaning if F is an FSA, then there exists an FSA that accepts every

string rejected by F and that rejects every string accepted by F . Thus, for simplicity we will

assume that properties in FLAVERS always describe event sequences that should happen.

One property that should hold on the elevator system is that the car should never move

while its doors are open. The FSA for this property is shown in Figure 3.2, in which

the events close, move, and open correspond to the rendezvous close doors, move car, and

open doors, respectively. Each of the three states in this FSA is represented by a circle. The

initial state, state 1, is denoted by a state with an incoming arrow that does not originate at

another state. The accepting states, states 1 and 2, are denoted by states with two concentric

circles. State 1 represents the state in which the car’s doors are closed, state 2 represents

the state in which the car’s doors are open. The transition on move from state 2 to state 3

represents the car moving when its doors are open. State 3, the only non-accepting state,

represents a violation of the property, since the only way to enter it is having the elevator

move while the car’s doors are open.

3.1.2 System Model

To verify a property, FLAVERS uses a model of the system based on annotated Control

Flow Graphs (CFGs). Annotations are placed on nodes of the CFGs to represent events

that occur during execution of the actions associated with a node. Formally, a CFG is a

labeled directed graph C = 〈N,ni,n f ,E,Label〉, where:

• N is the finite set of CFG nodes,
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2) accept sync

3) if (x)

4) accept open

6) if(x)

1) x=true

7) accept close

8) end if

5) end if

9) accept move

10) end car

12) car.sync

13) if (x)

14) car.open

16) if(x)

11) x=false

17) car.close

18) end if

15) end if

19) car.move

20) end controller

Figure 3.3: CFG for task car Figure 3.4: CFG for task controller

• ni ∈ N is the initial node,

• n f ∈ N is the final node,

• E ⊆ N×N is the set of directed edges, and

• Label : N → Σsys∪{τ} is the function that labels each node with its associated event,

where Σsys is the set of all events for a given system and τ is a special “empty” event

that is associated with a node that does not have an event from Σsys associated with

it.
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2) accept sync

3) τ

4) accept open

6) τ

7) accept close

9) accept move

10) τ

12) car.sync

13) τ

14) car.open

16) τ

17) car.close

19) car.move

20) τ

Figure 3.5: Refined CFG for task car Figure 3.6: Refined CFG for task con-
troller

The CFGs for the car and controller tasks from Figure 3.1 are shown in Figures 3.3 and 3.4,

respectively.

Since the efficiency of FLAVERS’ verification is dependent on the size of the model it

analyzes, CFGs are refined to remove nodes that are not of interest to the property being

analyzed. This refinement is safe so long as there is a weak bisimulation relationship [84]

between each original CFG and its corresponding refined CFG. Let ΣI be the alphabet of

interest, which must at least contain the events in the alphabet of the property and events

related to intertask communication via rendezvous. Since the property in Figure 3.2 only

uses the events close, move, and open, and these events correspond to rendezvous, the
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2) τ

3) τ

6) τ

9) τ

12) τ

13) τ

16) τ

19) τ

10) τ 20) τ

21) τ

22) τ

23) 
open

24) 
close

25) 
move

26) τ

task car task controller

Figure 3.7: TFG for the elevator system

only nodes in the CFGs that are needed are those representing intertask communication.

Figures 3.5 and 3.6 show the CFGs for the car and controller tasks refined with respect to

the property shown in Figure 3.2. Note that the refinement algorithm also relabels with τ

those nodes that do not have an event label in ΣI but are necessary for control flow reasons.

Since a CFG corresponds to the control flow of a sequential system, this representation

is not sufficient for modeling a concurrent system. FLAVERS uses a Trace Flow Graph

(TFG) to represent concurrent systems. The TFG consists of a collection of CFGs with

additional nodes and edges to represent intertask control flow. Formally, a TFG is a labeled

directed graph T = 〈N,ni,n f ,E,ΣI,Label〉, where:
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• N is the finite set of TFG nodes,

• ni ∈ N is the initial node,

• n f ∈ N is the final node,

• E ⊆ N×N is the set of directed edges,

• ΣI is the set of events of interest, and

• Label : N → ΣI ∪{τ} is a function that labels each node with its associated event.

For a TFG T , let L (T ) be the language of T , where each element of L (T ) is in (ΣI)∗ and

is a sequence of non-τ events that occurs on a path from the initial node of T to the final

node of T .

The TFG that is built from the CFGs in Figures 3.5 and 3.6 is shown in Figure 3.7. In

this figure, nodes 21 and 26 are the unique initial node and final node of the TFG, respec-

tively. To represent intertask communication via rendezvous, extra nodes and edges are

added to the TFG. For example, node 23 and its incident edges represent the rendezvous

open doors and replace nodes 4 and 14 from the refined CFGs. Additional edges are needed

to represent the possible flow of control between nodes in different tasks due to task inter-

leaving. These May Immediately Precede (MIP) edges are computed by the May Happen

in Parallel (MHP) algorithm [85] and are shown as dashed edges in Figure 3.7. Note that

not every pair of nodes from the car and controller tasks are connected by a MIP edge. For

example, the MHP algorithm can determine that nodes 9 and 20 cannot happen in parallel

because the rendezvous car move (node 25) must happen between them.

A TFG is an over-approximation of the sequences of events that can occur when exe-

cuting a system. Every sequence of events that can occur on an execution of the system has

a corresponding path in the TFG. To help keep the size of the TFG small, there usually are

paths in the TFG that do not correspond to any actual execution of the system. Full details

of TFG construction and the proof of TFG conservativeness are given in [43].
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3.1.3 Verifying Properties

FLAVERS uses an algorithm called state-propagation to determine if a property rep-

resented by an FSA P = 〈ΣP,QP,∆P,AP,qP〉 holds on a TFG T = 〈N,ni,n f ,E,ΣI,Label〉.

Note that by construction, the alphabet of the property is a subset of the alphabet of the

TFG, meaning, ΣP ⊆ ΣI . P holds on T if

∀ρ ∈L (T ),ρ|ΣP ∈L (P)

where ρ|ΣP denotes the projection of ρ onto ΣP, which is defined as follows: let

ρ = σ0,σ1, . . . ,σk where each σi ∈ ΣI , then the projection operator retains only those ele-

ments of ρ that are in ΣP, meaning ρ|ΣP = σ j0,σ j1, . . . ,σ jm where

1. σi ∈ ΣP if and only if ∃ jk such that jk = i, and

2. the order of elements in the projected sequence is preserved, meaning jk < jk+1.

FLAVERS analyses are conservative, meaning FLAVERS will only report that the prop-

erty holds when the property holds for all TFG paths. If FLAVERS reports that the property

does not hold, this can be because at least one of the violating traces through the TFG cor-

responds to an actual execution of the system and thus there is an error in the system, in the

property, or in both. Alternatively, the property may only be violated on infeasible paths

through the TFG, paths that do not correspond to any possible execution of the system but

are an artifact of the imprecision of the model.

FLAVERS would report that the property shown in Figure 3.2 does not hold on the

TFG shown in Figure 3.7 because the property is violated on the path 21→ 2→ 22→ 3→

23 → 6 → 9 → 25 → 10 → 26, which corresponds to the event sequence 〈open, move〉.

This counterexample is infeasible, however, because the variable x must be true for the

edge 3 → 23 to be taken and false for the edge 6 → 9 to be taken. Since the value of x

is not changed in the system between nodes 23 and 6, this path cannot occur on an actual

execution of the elevator system and is therefore infeasible.
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true
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x=false

x=true
x==truex==false

x=false
x==false

x=true
x==true

x=false
x==false
x=true
x==true

Figure 3.8: Variable automaton for x

3.1.4 Improving Precision

This infeasible path was introduced because all information related to the variable x

was removed during CFG refinement. In order to improve the precision of the model

and remove some infeasible paths from consideration, the analyst can introduce feasi-

bility constraints, also represented as FSAs, to the analysis. An analyst might need to

iteratively add feasibility constraints and observe the analysis results several times be-

fore determining whether or not a property holds. Feasibility constraints give analysts

some control over the analysis process by letting them determine exactly which parts

of a system need to be modeled in order to prove a property. To verify a property

P = 〈ΣP,QP,∆P,AP,qP〉 on a TFG T = 〈N,ni,n f ,E,ΣI,Label〉 with feasibility constrains

C1, . . . ,Ck where C j = 〈ΣC j ,QC j ,∆C j ,AC j ,qC j〉, state-propagation can still be used, although

it has to be modified to track the state of the property and the feasibility constraints at each

node of the TFG [88]. P holds on T as constrained by C1, . . . ,Ck if

∀ρ ∈L (T ), if
(
∀1 ≤ j ≤ k,ρ|ΣCj

∈L
(
C j

))
then ρ|ΣP ∈L (P)
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One type of feasibility constraint is a Variable Automaton (VA), which can be used to

track a small number of values for a variable. In the elevator system example, the value

of the variable x is important to the property being verified, so a VA can be introduced to

keep track of its value. In the VA for x, shown in Figure 3.8, events with “=” represent an

assignment to x, while the events with “==” represent a test of the value of x. The three

accepting states of the VA represent the unknown, true, and false values of x. The one non-

accepting state is the violation state and is entered when a path is explored that is infeasible

because of an operation on x. For example, if x is known to be true and a branch is taken

where the value of x is false (i.e., the event x==false occurs), then the violation state would

be entered.

To make use of this VA, the TFG from Figure 3.7 needs to be modified so it has nodes

with events corresponding to operations on x, as shown in Figure 3.9. In this TFG,2 each

node corresponding to a branch (nodes 3, 6, 13, and 16 from Figure 3.7) has been split into

two nodes, one for the true branch (the nodes labeled x==true) and one for the false branch

(the nodes labeled x==false). The previously reported counterexample path maps to the

path 21 → 1 → 2 → 22 → 3a → 23 → 6b → 9 → 25 → 10 → 26 in the modified TFG and

corresponds to the event sequence 〈x=true, x==true, open, x==false, move〉. Because the

VA for x would transition from the unknown state to the true state on node 1, remain in the

true state on node 3a, and transition from the true state to the violation state on node 6b, this

path would not be considered during state propagation since it is infeasible. With just the

VA for x, FLAVERS would report that the property shown in Figure 3.2 holds and conclude

that the elevator’s car cannot move while its doors are open.

It is important to note that even when this VA is used in an analysis, there are still in-

feasible paths in this model that will be considered during state-propagation. For example,

any path that starts 21 → 11 → 2 is infeasible because it visits node 2 without having first

2In our implementation, nodes 2 and 12 would be refined away, but they have been left in Figure 3.9 for
clarity of the presentation.
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9) τ 19) τ

6a) x==true 16a) x==true

3a) x==true

1) x=true

13a) x==true

12) τ

26) τ

21) τ

2) τ

11) x=false

6b) x==false

13b) x==false

16b) x==false

3b) x==false

22) τ

23) 
open

24) 
close

25) 
move

10) τ 20) τ

task
car

task
controller

Figure 3.9: TFG with events relating to the variable x
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Figure 3.10: TA for task car

visited node 1. Task automata (TAs) are another type of feasibility constraint that can be

used to remove such infeasible paths from consideration. A task automaton enforces the

flow of control within a single task of a system. Unlike VAs, which have transitions based

on the annotations on the TFG nodes, TAs have transitions based on the IDs of the TFG

nodes. The alphabet of a TA is the set made up of the IDs of every node in the task that the

TA models.3 The TA for the car task is shown in Figure 3.10. Unlike previous FSAs which

have been total,4 we omit transitions from this FSA that cannot ever lead to an accepting

state for simplicity. This TA would prevent paths starting 21 → 11 → 2 from being con-

sidered during verification since, from the initial state of the TA, if any node from the car

task other than node 1 is visited, the TA will not accept that sequence. Since the first node

visited from the car task on these paths is node 2, this TA would not accept these paths.

The state-propagation algorithm used by FLAVERS has worst-case complexity that

is O
(
|N|2 · |SP| · |SC1| · · · |SCk |

)
, where |N| is the number of nodes in the TFG, |SP| is the

number of states in the property, and |SC j | is the number of states in the j-th feasibility

constraint. If a large number of feasibility constraints are needed, than this worst-case com-

plexity could become large resulting in a high cost for analysis. In our experience, however,

properties can often be proven using only a small number of feasibility constraints. Exper-

imental evidence shows that the performance of FLAVERS is often sub-cubic in the size

3The initial and final nodes of the TFG are considered to be in every task. Nodes corresponding to
rendezvous are considered to be in the two tasks that are participating in the rendezvous.

4A total FSA is one which has a transition from every state on every event in its alphabet.
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open

close

move
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close
move

Figure 3.11: Example property for LTSA

of the system [43] and that the performance of FLAVERS is good when compared to other

finite-state verifiers [9, 10].

3.2 LTSA

LTSA (Labeled Transition Systems Analyzer) is a finite-state verifier that can prove

user-specified properties of sequential and concurrent systems [80]. LTSA can check both

safety and liveness properties. Since the assume-guarantee algorithm we use can only

handle safety properties, when we talk about properties in LTSA we will henceforth mean

only safety properties. In this section, we describe for LTSA how properties are specified,

how systems are modeled, and how properties are verified.

3.2.1 Specifying Properties

Properties in LTSA are specified in Finite State Process (FSP), which is described in

detail in [80], and are represented using Labeled Transition Systems (LTSs). LTSs are

similar to FSAs, but with several differences. Formally, let States be the universal set

of states, let π ∈ States be the designated error state, let Σ be the universal set of labels,

and let Act = Σ∪{τ} where τ denotes an internal action that cannot be observed by the

environment of an LTS. Then an LTS L is a four-tuple, 〈Q,A,∆,q〉 where:

• Q ⊆ States is a finite set of states,

• A = ΣL∪{τ} is the set of actions, where ΣL ⊆ Σ denotes the alphabet of L,
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• ∆ ⊆ {Q\{π}}×A×Q is the transition relation, and

• q ∈ Q is the initial state of L.

The only LTS that is allowed to have the error state as its initial state is denoted Π and is

defined as Π = 〈{π},Act,{},π〉. An LTS L = 〈Q,A,∆,q〉 transits with action a ∈ A into an

LTS L′, denoted as L a−→ L′, if:

• L′ = 〈Q,A,∆,q′〉 where q′ 6= π and (q,a,q′) ∈ ∆, or

• L′ = Π and (q,a,π) ∈ ∆.

The LTS in Figure 3.11 shows the LTS that captures the property that the elevator’s

car should never move while its doors are open. Since LTSs do not have accepting and

non-accepting states as FSAs do, every state except the error state can be thought of as an

accepting state in an FSA. Thus, LTSA can only check properties that are prefix closed, i.e.

if an event sequence is allowed by a property, then every prefix of that event sequence must

also be allowed by that property.

3.2.2 System Model

LTSA also uses LTSs to represent the system being analyzed. Thus, unlike FLAVERS,

in which the nodes of the model are labeled with the events of interest, in LTSA the edges

(or transitions) of the LTSs are labeled with the events of interest. Figures 3.12 and 3.13

give the LTSs for the car and controller task for the Ada example in Figure 3.1. To model

the shared variable x, a third LTS is needed,5 shown in Figure 3.14.

To build a model for the entire system, individual LTSs are combined using the par-

allel composition operator (‖). The parallel composition operator is a commutative and

associative operator that builds an LTS that captures the behavior of two LTSs running in

5Unlike the VA shown in Figure 3.8 for the variable x, there is no state in the LTS for the variable x
corresponding to the violation state. In LTSA, transitions that are not explicitly shown cannot occur, so, only
three states are needed to model this variable.
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8

car.x=true

sync

car.x==true
car.x==false

open

9

car.x==true
car.x==false

close

10

move

11

12
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15

16

controller.x=true

sync

controller.x==true
controller.x==false

open

17

controller.x==true
controller.x==false

close

18

move

Figure 3.12: LTS for task car Figure 3.13: LTS for task controller
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20 21
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car.x=false
controller.x=false
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controller.x=false
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controller.x=true

car.x==false
controller.x==false

car.x==true
controller.x==true

Figure 3.14: LTS for variable x
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parallel by synchronizing the events common to both and interleaving the remaining events.

The parallel composition of two LTSs L = 〈QL,AL,∆L,qL〉 and M = 〈QM,AM,∆M,qM〉, de-

noted L ‖ M, is defined as follows. If L = Π or M = Π, then L ‖ M = Π. Otherwise

L ‖ M = 〈QL×QM,AL∪AM,∆,(qL,qM)〉, where ∆ is the smallest relation satisfying the

following rules where a ∈ Act:

L a−→ L′

L ‖ M a−→ L′ ‖ M
where a /∈ ΣM

M a−→ M′

L ‖ M a−→ L ‖ M′
where a /∈ ΣL

L a−→ L′ and M a−→ M′

L ‖ M a−→ L′ ‖ M′
where a 6= τ

Figure 3.15 shows the result of composing the LTSs for the car, controller, and x to-

gether using the parallel composition operator. Each state in the composed LTS is labeled

with states it corresponds to in each of the three original LTSs. Notice that events (such

as sync) which are common to multiple LTSs cause transitions in all LTSs in which those

events occur. The state (2,10,19) has an edge to (3,11,19) since there is an edge 2 → 3 in

the car LTS and there is an edge 10 → 11 in the controller LTS that are each labeled with

the event sync. Since sync does not occur in the LTS for variable x, it remains in state 19

when this transition occurs. This synchronization mechanism is the reason that the events

related to the variable x have been prefixed with the name of the task in which they occur.

If these prefixes were not added, edges 3 → 4, 5 → 6, 11 → 12, and 13 → 14 would all

be labeled with “x==true”. As a result of this, the event “x==true” could only occur in the

composed system in a state that corresponded to the car being either in state 3 or 5 and

the controller being either in state 11 or 13. Since, in the original Ada system, no such

synchronization requirement exists, the prefixes are necessary to make the model accurate.
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Figure 3.15: LTS for the composed elevator system, (car ‖ controller ‖ x)
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τ τ

open

close

move

Figure 3.16: Minimal LTS for the elevator system with respect to the property shown in
Figure 3.11

LTSA uses a compositional construction technique called Compositional Reachability

Analysis (CRA), which is based on the hierarchical structure of a system. CRA incremen-

tally computes and abstracts the behavior of composite components using the architecture

of the system as a guide to the order to perform the composition [50]. If several LTSs

form a subsystem of a larger system and the system is well designed, then those LTSs will

likely have many events in common, but have few events in common with other LTSs in

the system. With CRA, the LTSs of the subsystem are first composed using the parallel

composition operator. Then, the events common to just the LTSs of that subsystem can be

hidden, which replaces then with τ . Finally, the resulting system can be minimized. Since

the events that are replaced with τ are local to just the LTSs in the subsystem, those events

have no effect on other LTSs in the system, so the resulting LTS is a minimal model that

captures the interactions of that subsystem with the rest of the system.

Figure 3.16 shows the LTS that would result from taking the LTS in Figure 3.15, hiding

all events other than close, move, and open, and performing minimization. This LTS has

only 5 states, while the original (shown in Figure 3.15) has 25 states. If the subsystem made
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up of the car, controller, and x were used in a larger system that only interacted with this

subsystem using the events close, move, and open, the minimal LTS shown in Figure 3.16

could be used instead of the LTS shown in Figure 3.15. Since the former is smaller than

the latter, using the former would reduce the cost of verification. While CRA can reduce

the cost of verification, state explosion can still occur when several LTSs are composed

together.

3.2.3 Checking Properties

The algorithm which computes the parallel composition of two LTSs is the same algo-

rithm used to check properties in LTSA. To check a property, the property LTS is composed

into the system via the parallel composition operator. The property holds if, in the final

model, there is a not a path from the initial state to the error state π . If the LTS for the

property shown in Figure 3.11 and the LTS for the elevator system, either the full version

shown in 3.15 or the minimized version shown in Figure 3.16, were combined using the

parallel composition operator, the error state would not be reachable. Thus, LTSA would

conclude that the property holds on the elevator system.

3.3 The L* Algorithm

The L* algorithm was developed by Angluin [7] to learn an FSA for an unknown regular

language and was later improved by Rivest and Schapire [100]. In this work, we use the

L* algorithm to learn assumptions to complete assume-guarantee proofs. We used Rivest

and Schapire’s version of the L* algorithm because it has a better worst-case running time.

Let U be an unknown regular language over an alphabet Σ. The L* algorithm learns an

FSA that recognizes U by building an observation table through its interactions with a

minimally adequate teacher, henceforth referred to as a teacher. The teacher needs to

answer two types of questions, queries and conjectures. A query consists of a string σ ∈ Σ∗

and the teacher returns true if σ ∈ U and false otherwise. A conjecture consists of an
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1) let S = E = {λ}
loop {

2) Update T using queries
while (S,E,T ) is not closed {

3) Make S closed by adding an element to S
4) Update T using queries

}
5) Construct candidate DFA C from (S,E,T )
6) Make the conjecture C

if C is correct
7) return C

else
8) Add e ∈ Σ∗ that witnesses the counterexample to E

}

Figure 3.17: The L* algorithm

FSA, C, that the L* algorithm believes will recognize U . The teacher returns true if C is

correct. Otherwise, the teacher returns false and a counterexample, a string in Σ∗ that is in

the symmetric difference of the language of the conjectured automaton and the language

being learned, meaning a string that is one language but not the other. The observation

table built by the L* algorithm is a tuple, 〈S,E,T 〉, where

• S is a set of prefixes, each in Σ∗,

• E is a set of suffixes, each in Σ∗, and

• T is a function mapping every element in ((S∪S ·Σ) ·E) to either true or false.

In the definition of T , the operator “·” is defined as follows: given two sets of events

sequences X and Y , X ·Y = {xy | x ∈ X and y ∈ Y}, where xy represents the concatenation

of the event sequences x and y.

The L* algorithm is shown in Figure 3.17. Initially, the L* algorithm sets S and

E to {λ} (line 1), where λ represents the event sequence of length zero. Next, it up-

dates the function T by making queries so that it has a value for every event sequence in
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((S∪S ·Σ) ·E) (line 2). It then checks whether or not the observation table is closed. The

observation is closed if and only if

∀s ∈ S,∀a ∈ Σ,∃s′ ∈ S,∀e ∈ E,T (sae) = T (s′e)

If the observation table is not closed, then sa is added to S where s ∈ S and a ∈ Σ are

elements for which there is no s′ ∈ S (line 3). Once sa has been added to S, T needs to be

updated (line 4). Lines 3 and 4 are repeated until the observation table is closed.

Once the observation table is closed, a candidate DFA C = 〈Σ,Q,∆,A,q〉 is constructed

(line 5), with states Q = S and initial state q = λ . The alphabet of C, Σ, is the alphabet

of U . The set A consists of the states s ∈ S such that T (s) = true. The transition relation

∆ is defined as ∆(s,a) = s′ where ∀e ∈ E : T (sae) = T (s′e). Such an s′ is guaranteed to

exist when the observation table is closed. The DFA C is presented as a conjecture to the

teacher (line 6). If the conjecture is correct, the L* algorithm returns C as correct (line 7),

otherwise it receives a counterexample c ∈ Σ∗ from the teacher.

The counterexample c is analyzed using a process described below to find a suffix e

of c that witnesses a difference between the language accepted by C and the language

being learned (line 8). e must be such that adding it to E will cause the next conjectured

automaton to reflect this difference. Once e has been added to E, the L* algorithm repeats

the entire process by looping back to line 2.

As stated previously, in line 8 the L* algorithm must analyze the counterexample c

to find a suffix e of c that witnesses a difference between the language accepted by C,

the conjectured automaton, and U , the language being learned. This is done by finding

the earliest point in e at which the conjectured automaton and the automaton that would

recognize the language U diverge in behavior. This point found by determining where

αi 6= αi+1, where αi is computed as follows:

1. Let p be the event sequence made up of the first i events in c. Let r be the event

sequence made up of the events after the first i events in c. Thus, c = pr.
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2. Run C on p. This moves C into some state q. By construction, this state q corresponds

to a row s ∈ S of the observation table.

3. Perform a query on the event sequence sr.

4. Return the result of the membership query as αi.

By using binary search, the point where αi 6= αi+1 can be done in log(|c|) queries, where

|c| is the length of c.

To learn a regular language, Rivest and Schapire’s version of the L* algorithm performs

at most l−1 conjectures and O
(
kl2 + l logm

)
queries, where k is the size of Σ, the alphabet

of the FSA being learned, l is the number of states in the minimal deterministic FSA that

recognizes the language being learned, and m is the length of the longest counterexample

returned when a conjecture is made.
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CHAPTER 4

USING THE L* ALGORITHM TO LEARN ASSUMPTIONS FOR
ASSUME-GUARANTEE REASONING

As described in [36], the L* algorithm can be used to learn an assumption to verify a

property P with assume-guarantee reasoning. In this approach, the system under analysis

needs to be divided into two subsystems, S1 and S2. The L* algorithm is then used to learn

an assumption to complete an assume-guarantee proof using the assume-guarantee rule

given in Figure 1.1. To do this, a teacher capable of answering the queries and conjectures

made by the L* algorithm must be provided. Conceptually, this teacher is the same for

both FLAVERS and LTSA, however, differences in the models used by these two verifiers

necessitate differences in the implementation of their teachers. In this chapter, a high level

of the teacher is presented, followed by a detailed description of its implementation for

both LTSA and FLAVERS.

4.1 Implementing the Teacher

4.1.1 Answering Queries

A query posed by the L* algorithm consists of a sequence of events, where each event

is in Σ. The teacher must answer true if this sequence is in the language being learned and

false otherwise. To answer a query, the model of S1 is examined to determine if the given

sequence results in a violation of the property P. If this results in a violation of the property

P, then the assumption needed to make 〈A〉 S1 〈P〉 true should not allow the event sequence

in the query and false will be returned to the L* algorithm. Otherwise, the event sequence

is permissible and true will be returned to the L* algorithm.
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4.1.2 Answering Conjectures

A conjecture posed by the L* algorithm consists of an FSA that the L* algorithm be-

lieves recognizes the language being learned. To answer a conjecture, the teacher needs to

find an event sequence in the symmetric difference of the conjectured FSA and the language

being learned, if such an event sequence exists. Since the conjectured FSA is a candidate

assumption to be used to complete an assume-guarantee proof, conjectures are answered by

determining if the candidate assumption makes the two premises of the assume-guarantee

proof rule true.

First, the conjectured automaton, A, is checked to see if it satisfies Premise 1. To check

this, the model of S1, as constrained by the assumption A, is verified. If this verification

reports that P does not hold, then the counterexample returned by the verifier represents

an event sequence permitted by A that also causes S1 to violate P. Thus, the conjecture is

incorrect and the counterexample is returned to the L* algorithm. If the verification reports

that the property does hold, then A is good enough to satisfy Premise 1 and Premise 2 can

be checked.

Premise 2 states that 〈true〉 S2 〈A〉 should be true. To check this, the model for S2 is

verified to see if it satisfies A. If this verification reports that A holds, then both Premise 1

and Premise 2 are true, so it can be concluded that P holds on S1 ‖ S2. If this verification

reports that A does not hold, then the resulting counterexample is examined to determine

what should be done next.

First, a query is made to see if the event sequence of the counterexample leads to a

violation of the property P on S1. If a property violation results, then the counterexample

is a behavior that occurs in S2 that will result in a property violation when S2 interacts with

S1, so it can be concluded that P does not hold on S1 ‖ S2. If a property violation does

not occur, then the counterexample is a behavior that occurs in S2 that will not result in a

property violation when S2 interacts with S1 and, thus, A is restricting the behavior of S2
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unnecessarily. The counterexample is then returned to the L* algorithm in response to the

conjecture.

4.1.3 Correctness and Termination

This approach to assume-guarantee reasoning is correct and will terminate [36]. The

learning algorithm will converge on the weakest assumption [52] under which S1 satisfies

P. The weakest assumption, Aw, is the assumption such that:

1. 〈Aw〉 S1 〈P〉 is true, and

2. If A is an assumption such that L (Aw)⊂L (A), then 〈A〉 S1 〈P〉 is false.

4.2 Implementing the Teacher for LTSA

In this section the implementation of the teacher for LTSA is described. Consider the

elevator system with the LTSs car, controller, and x (shown in Figures 3.12, 3.13, and 3.14,

respectively). Let P be the property that the elevator’s car cannot move while its doors are

open, shown in Figure 3.11. Suppose that S1 = car ‖ x and S2 = controller.

4.2.1 The Alphabet of the Assumption

In order to use the L* algorithm to learn an assumption, the L* algorithm must be

supplied with an alphabet, Σ. In the assume-guarantee proof, the learned assumption will

act as a bridge between S1 and S2, so it must contain every event that S1 and S2 have in

common. In addition, the alphabet must contain all the events that S2 has in common with

the property, so that those events can be suitably constrained by the assumption. Thus,

the alphabet for the assumption, denoted ΣA, is (ΣS1 ∪ΣP)∩ΣS2 . For the elevator example,

ΣA = {close, controller.x==false, controller.x==true, controller.x=false, controller.x=true,

move, open, sync}.
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Figure 4.1: LTS for S1 ‖ P, with a counterexample for the query
〈sync, controller.x==false, open, move〉 highlighted
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4.2.2 Answering Queries

To answer a query, the model of S1 is examined to determine if the given sequence

results in a violation of the property P. If so, then false will be returned to the L* algo-

rithm, otherwise true will be returned to the L* algorithm. To answer a query, S1 ‖ P can

be computed, as shown in Figure 4.1 for the elevator example.1 Then, it is a matter of

determining if the sequence of events in the query can cause the error state π to be reached.

Consider the query 〈sync, controller.x==false, open, move〉. The highlighted path in Fig-

ure 4.1 shows how that sequence of events can lead to the error state. Note that while there

are other events in the path, those shown in italics and prefixed with “car”, these events are

not part of the query. Since these events are not in the alphabet of the assumption being

learned, the assumption cannot put any constraints on the occurrence of these events. Thus,

they are free to occur at any point during a search for a path to the error state in response

to a query.

4.2.3 Answering Conjectures

There are several steps that need to be performed to answer a conjecture, as described

in Section 4.1.2. First, the conjectured automaton, A, is checked in Premise 1, 〈A〉 S1 〈P〉.

Since LTSs resemble FSAs, the conjectured automaton is turned into an LTS in the obvious

way. Then, the LTS A ‖ S1 ‖ P is constructed. If the error state is reachable, the conjec-

ture is incorrect and the sequence of events in the counterexample is returned to the L*

algorithm.2 If the error state is not reachable, then the assumption is sufficient to satisfy

Premise 1 and Premise 2 can be checked.

1For simplicity, all self-loop transitions have been omitted from Figure 4.1. In particular, every state that
has an 20 in its label has self-loop transitions on controller.x=true and controller.x==true. Similarly, every
state that has a 21 in its label has self-loop transitions on controller.x=false and controller.x==false.

2When a counterexample is returned to the L* algorithm, it must be projected onto the alphabet of the
assumption being learned.
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Premise 2 states that 〈true〉 S2 〈A〉 should be true. To check this, the conjectured au-

tomata can be converted into a property LTS by making the non-accepting trap state of the

automata into the error state of a property LTS.3 Let this property LTS be designated AP.

Then, to check Premise 2, the LTS S2 ‖ AP is constructed. If the error state is not reachable,

then both Premise 1 and Premise 2 are true, so it can be concluded that the property P

holds on S1 ‖ S2. If the error state is reachable, then, as described previously, a query can

be performed to determine if P does not hold on S1 ‖ S2 or if the L* algorithm needs to

continue learning a new assumption.

4.3 Implementing the Teacher for FLAVERS

In this section the implementation of the teacher for FLAVERS is described. Consider

the elevator example with the two tasks car and controller shown in Figures 3.3 and 3.4,

respectively. Let P be the property that the elevator’s car cannot move while its doors are

open, shown in Figure 3.2. Suppose that S1 = car and S2 = controller.

4.3.1 The Model

To answer queries and conjectures, we need to build TFG models for S1 and S2, the two

subsystems used in the assume-guarantee proof rule. The TFGs for S1 and S2 are similar to

the TFGs that FLAVERS would normally create, but must be extended to simulate the en-

vironment in which each subsystem will execute. If the TFG for S1 were built just from the

CFG for the car task, then this TFG would not have any entry calls made to the rendezvous

it accepts. Thus, to model S1 in the context of the whole system, an environment needs to

be constructed to represent interactions between S1 and S2.

3Because of the semantics of LTSs and the way queries are answered, we are guaranteed that the con-
jectured automata will have only a single non-accepting state and that that non-accepting state will be a trap
state (i.e., have only self-loop transitions).
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The environment for S1 needs to have accept statements4 from S2 that are called by S1

and entry calls made by S2 to accept statements in S1. In this example, these would be the

entry calls close doors, move car, open doors, and sync.

Additionally, the environment for S1 needs to contain events from S2 that can affect the

property or feasibility constraints. To determine these events, each property and feasibility

constraint automaton that contains events in both S1 and S2 is examined. For these au-

tomata, events that occur in S2 need to be added to the environment of S1. In this example,

the VA for the variable x has events in both the car and controller tasks, so the events from

S2, x=false, x==true, and x==false need to be in the environment for S1. Now, the events

x==true and x==false also occur in S1. When checking 〈A〉 S1 〈P〉, for example, we want

the assumption A to only constrain the behavior of the environment of S1, not the behavior

of S1. Thus, we need to relabel the property and the feasibility constraints that have events

in both S1 and S2 so that events common to S1 and S2 can be distinguished based on the

subsystem in which they occur. We prefix common events in S1 with “s1” and events in S2

with “s2”. The events on the nodes of the CFGs for tasks in S1 and S2 need to be similarly

relabeled.

Finally, the environment needs to be able to perform, in any order, zero or more accepts,

entry calls, and events that can affect the property or the feasibility constraints. All of

the information needed to construct the environment can be gathered from an automated

analysis of the CFGs, the properties, and the feasibility constraints. Figure 4.2 shows the

CFG for the environment for S1. Notice that nodes 29 and 30, which correspond to events

common to S1 and S2 are prefixed with “s2”. To build the TFG for S1, the environment for

S1 needs to be combined with the CFGs for every task in S1. Figure 4.3 shows the TFG for

S1 in the elevator example, with MIP edges removed for clarity.5

4Ada also has accept statements with bodies. To support this construct, a rendezvous with a body is
converted into two rendezvous: one that occurs before the body and one that occurs after the body.

5In this TFG, there would be a MIP edge between every node in the car task and the environment for S1,
not counting the initial node, final node, and nodes corresponding to rendezvous.
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35) τ

27) τ

31) 
car.sync

Figure 4.2: CFG for the environment of S1

4.3.2 The Alphabet of the Assumption

The L* algorithm learns an FSA over an alphabet Σ. In order to use the L* algorithm for

assume-guarantee reasoning, it needs to be given Σ. For FLAVERS, the alphabet consists

of the labels on all rendezvous6 that occur between S1 and S2, and the labels on the non-

τ nodes that do not correspond to rendezvous in the environment of S1. For the elevator

example, Σ = {close, s2.x==false, s2.x==true, x=false, move, open, sync}.

4.3.3 Answering Queries

A query posed by the L* algorithm consists of a sequence of events, where each event

is in Σ. The teacher must answer true if this sequence is in the language being learned

and false otherwise. To answer a query in FLAVERS, S1 is represented as a TFG and the

query is represented as a feasibility constraint. We then use FLAVERS to determine if the

property is consistent with the TFG model as constrained by the query. If this results in

a violation of the property P, then the assumption needed to make 〈A〉 S1 〈P〉 true should

6This includes rendezvous that are not mentioned in either the property or the feasibility constraints. This
is why, for example, node 37 in Figure 4.3 is labeled with sync instead of τ .
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Figure 4.3: TFG for S1, without MIP edges

not allow the event sequence in the query and false will be returned to the L* algorithm.

Otherwise, the event sequence is permissible and true will be returned to the L* algorithm.

More specifically, a TFG is first constructed using the CFGs for tasks in S1 and the

CFG for the environment of S1. The property to be checked is P. Of the feasibility con-

straints provided by the analyst, this verification uses the TAs for the tasks in S1 and the

VAs that contain events in S1. The CFGs, VAs, and the property P are relabeled as de-

scribed previously to allow events in S1 and S2 to be distinguished. Additionally, a query
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sync s2.x==false open move

Figure 4.4: Feasibility constraint for the query 〈sync, s2.x==false, open, move〉

constraint is used to restrict FLAVERS to only look at paths through the TFG that cor-

respond to the event sequence specified by the query. For example, if the query were

〈sync, s2.x==false, open, move〉, then the feasibility constraint shown in Figure 4.4 would

be used.7 State-propagation is then applied to check the property; if the property is violated

then false is returned to the L* algorithm, otherwise true is returned.

4.3.4 Answering Conjectures

A conjecture posed by the L* algorithm consists of an FSA that the L* algorithm be-

lieves recognizes the language being learned. To answer a conjecture, the teacher needs

to find an event sequence in the symmetric difference of the conjectured FSA and the lan-

guage being learned, if such an event sequence exists. Since the conjectured FSA is the

candidate assumption to be used to complete an assume-guarantee proof, it is necessary to

determine if the conjectured assumption makes the two premises of the assume-guarantee

proof rule true.

First, the conjectured automaton, A, is checked in Premise 1, 〈A〉 S1 〈P〉. To check

this in FLAVERS, a TFG is constructed using the CFGs for tasks from S1 and the CFG

for the environment of S1. The property to be checked is P and the feasibility constraints

used consist of the TAs for tasks in S1 and VAs that contain events in S1. The CFGs, VAs,

and the property P are relabeled as described previously to allow events in S1 and S2 to

be distinguished. In addition, the assumption is used as a feasibility constraint. If this

verification results in a property violation, then the counterexample returned represents an

7This is the same query that is answered for LTSA in Figure 4.1. The events are different because the
second event is prefixed by “controller” for LTSA and “s2” for FLAVERS.
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event sequence permitted by A but violating P. Thus, the conjecture is incorrect and the

counterexample is returned to the L* algorithm. If the property is not violated, then A is

good enough to satisfy Premise 1 and Premise 2 can be checked.

Premise 2 states that 〈true〉 S2 〈A〉 should be true. To check this in FLAVERS, a TFG

is constructed using the CFGs for tasks from S2 and the CFG for the environment of S2.

Unlike the environment for S1, which consists of events, entries (calls to rendezvous), and

accepts from S2, the environment for S2 only consists of entries and accepts from S1. Rather

than treat A as a feasibility constraint as was done in checking Premise 1, A is treated as

a property. The feasibility constraints used consist of the TAs for tasks in S2 and VAs

that contain events only in S2. Even though the environment does not have any events

from S1 (those prefixed with “s1”), the VAs, CFGs, and property need to be relabeled as

described previously so that the alphabet of this subsystem is consistent with the alphabet

of the assumption. If this verification does not result in a property violation, then both

Premise 1 and Premise 2 are true, so it can be concluded that P holds on S1 ‖ S2. If this

verification results in a property violation, then the returned counterexample is examined

to determine what should be done next. A query is made based on this counterexample,

as described previously, to determine if P does not hold on S1 ‖ S2 or if the L* algorithm

needs to continue learning a new assumption.

4.3.5 Environment Generation

To accurately model a subsystem for FLAVERS, we needed to generate an environment

for each subsystem being analyzed. In our context, this was not too difficult a problem, still,

tools such as BEG (Bandera Environment Generator) [108,109], could be used for this task.

Since BEG is designed to solve the more general problem of environment generation for

Java software, using it would likely be more expensive than the simple analysis we used.

Păsăreanu et al. studied the problem of environment generation for assume-guarantee

reasoning of Ada software [93]. They compared two ways of generating environments
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when checking assume-guarantee triples. The first approach is to generate a universal en-

vironment and have its actions constrained by the assumption A, which is the approach

we took. The second approach is to convert the assumption A into an environment that

only allows the actions permitted by the assumption. Their experiments used SPIN and

SMV and produced inconclusive results since neither approach for environment generation

outperformed the other approach consistently.

We used the first approach in our study, that is we generated a universal environment

and constrained it with an assumption. We chose this approach because it results in better

reuse of artifacts since the TFG does not need to be regenerated for each conjecture. Of

course, our results may have been different had we used the other approach although we do

not expect that they would be significantly different based on the results seen in [93].
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CHAPTER 5

EXPERIMENTAL METHODOLOGY AND RESULTS

As stated previously, the lack of automated assumption generation has made it difficult

to evaluate assume-guarantee reasoning. Using the approach described in Chapter 4, we

undertook a study to gain a sense of whether or not assume-guarantee reasoning provides an

advantage over monolithic verification. For this study, we further restricted our evaluation

to assume-guarantee reasoning using the rule shown in Figure 1.1 and to two finite-state

verifiers, FLAVERS and LTSA. There are several different ways that assume-guarantee

reasoning could provide an advantage over monolithic finite-state verification:

1. Does assume-guarantee reasoning use less time than monolithic verification?

2. Does assume-guarantee reasoning use less memory than monolithic verification?

3. If assume-guarantee reasoning uses less memory than monolithic verification, is

there enough of a memory savings to allow assume-guarantee reasoning to verify

properties on larger systems than monolithic verification?

Since finite-state verification techniques are often limited more by memory than by time,

we focused our study on points 2 and 3 rather than point 1.

To evaluate the usefulness of this automated assume-guarantee reasoning technique, we

tried to verify properties that were known to hold on a small set of scalable systems: the

Chiron user interface system [79] (both the single and the multiple dispatcher versions as

described in [10]), the Gas Station problem [64], Peterson’s mutual exclusion protocol [96],

the Relay problem [104], and the Smokers problem [94]. These systems were specified

in Ada and use rendezvous for intertask communication. Except for Peterson’s mutual
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exclusion protocol, which also uses shared variables for intertask communication, these

systems all have a client-server architecture where the server has an interface made up

of a small number of rendezvous that may be called by the clients. The properties we

checked on these systems are all safety properties that describe a legal (or illegal) sequence

of events in each system. Descriptions of the systems and the properties we verified are

given in Appendix A. Since we used two versions of the Chiron system and proved the

same properties on both versions, we use the term subject to refer to a property-system

pair. Thus, each Chiron property is used in two subjects while all other properties are used

in one subject.

Each of the systems we used was scaled by creating more instances of one particular

task, and the size of the system is measured by counting the number of occurrences of that

task in the system. For the Chiron systems we counted the number of artists, for the Gas

Station system we counted the number of customers, for the Peterson system we counted

the number of tasks trying to gain access to the critical section, for the Relay system we

counted the number of tasks accessing the shared variable, and for the Smokers system we

counted the number of assemblers.

For both FLAVERS and LTSA we considered a task to be an indivisible subsystem.

Thus, a decomposition was an assignment of each task in the system to either S1 or S2.

Note that each scalable system we looked at had more than two subsystems (i.e., tasks),

even at size 2.

Both FLAVERS and LTSA prove that a property holds by exploring all of the reachable

states in an abstracted model of a system. On properties that do not hold, these two tools

stop as soon as a property violation is found. As a result, their performance on properties

that do not hold is more variable. Although using only properties that hold restricts the

scope of our study, including properties that do not hold would have made it more difficult

to meaningfully compare the performance of monolithic verification to assume-guarantee

reasoning.
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For LTSA, INCA [38] was used to translate the Ada systems into FSAs, which are then

easily translated into LTSs. Because INCA was used to generate models for LTSA, we did

not make use of the CRA capabilities of LTSA. Also, there is one fewer Chiron property for

LTSA than for FLAVERS. The events needed to express property 8 of the Chiron system

are removed from the model when INCA generates the FSAs. Since this property states

that those events cannot occur, this property is shown to hold during model construction,

making verification using LTSA unnecessary. This means there are two fewer subjects

for LTSA than for FLAVERS, because this property occurs in two subjects, one for each

version of Chiron.

We did not use the most recent version of LTSA, which is based on plugins [25], be-

cause the plugin interface does not provide direct access to the LTSs. An implementation

of this assumption generation technique exists for the plugin version of LTSA [51], but

verification takes significantly longer because all LTSs must be created by writing appro-

priate FSP, necessitating parsing the entire model for each query and conjecture, even for

the parts of the model that do not change between different queries and conjectures.

We used the version of FLAVERS that directly accepts Ada systems. Since FLAVERS

uses feasibility constraints to control the amount of precision in a verification, we used a

minimal set of feasibility constraints when verifying properties.1

1A minimal set of feasibility constraints is one such that removal of any feasibility constraint causes
FLAVERS to report that the property may not hold. While these sets are minimal for each property, they
may not be the smallest possible set of feasibility constraints with which FLAVERS can prove the property
holds nor the best set with respect to the memory or time cost for FLAVERS. While the worst-case complex-
ity of FLAVERS increases with each feasibility constraint that is added, sometimes adding more feasibility
constraints can improve the actual performance of FLAVERS. Since we did not consider all possible com-
binations of all possible feasibility constraints, we can not be certain that the selected minimal feasibility
constraint set is either the smallest minimal set or the set that uses the least time or memory. On the other
hand, a process that might be applied by analysts, described in [43], was used select the sets of feasibility
constraints used in our study.
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Table 5.1: Number of two-way decompositions examined for systems of size 2 for
FLAVERS

System Properties Decompositions Total
Chiron single 9 62 558
Chiron multiple 9 254 2,286
Gas Station 4 30 120
Peterson 1 6 6
Relay 1 6 6
Smokers 8 14 112
Total 32 3,088

5.1 Does Assume-Guarantee Reasoning Save Memory for Small Sys-

tem Sizes?

To determine the amount of memory used by monolithic verification, we counted the

number of states explored during verification. While the artifacts created by the verifiers

(e.g. TFGs and FSAs in FLAVERS, LTSs in LTSA) use memory, we did not count them

when determining memory usage since the amount of memory needed to store them is usu-

ally small when compared to the amount of memory needed to store the states explored dur-

ing verification. Similarly, to determine the amount of memory used by assume-guarantee

reasoning, we looked at the maximum number of states explored by the teacher when an-

swering a query or a conjecture of the L* algorithm. We say one decomposition is better

than another decomposition if the maximum number of states explored when the teacher

answers a query or conjecture using the first decomposition is smaller than the maximum

number of states explored when the teacher answers a query or conjecture using the second

decomposition.

For each subject in our study, we examined all two-way decompositions to find the

best decomposition for that subject with respect to memory. For systems for size 2 Ta-

bles 5.1 and 5.2 list, for FLAVERS and LTSA respectively, the number of properties for
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Table 5.2: Number of two-way decompositions examined for systems of size 2 for LTSA

System Properties Decompositions Total
Chiron single 8 62 496
Chiron multiple 8 254 2,032
Gas Station 4 30 120
Peterson 1 6 6
Relay 1 6 6
Smokers 8 14 112
Total 30 2,772
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Figure 5.1: Memory used by the best decomposition of size 2 for FLAVERS

each system, the number of two-way decompositions2 examined for each subject, and the

total number of decompositions examined on each system.

Figures 5.1 and 5.2 show, for FLAVERS and LTSA respectively, the amount of mem-

ory used by the best decomposition at size 2 normalized by dividing it by the amount of

memory used by monolithic verification. For reference, a line at 1.0 has been drawn. Points

below this line represent subjects on which the best decomposition is better than monolithic

2Note that the number of two-way decompositions examined for each subject is always two fewer than a
power of two because the two-way decompositions where either S1 or S2 are empty are not checked.
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Figure 5.2: Memory used by the best decomposition of size 2 for LTSA

verification, while points above this line represent subjects on which the best decomposi-

tion is worst than monolithic verification. In Figure 5.1 each subject is given a number from

1 to 32, in increasing order of normalized memory usage. These mapping between these

numbers and subjects is given in Appendix B. In Figure 5.2, each subject is numbered with

the same subject number it was assigned in Figure 5.1. Note that in Figure 5.2 there are

no bars numbered 2 or 19. These subjects are the two that are shown to hold during model

construction.

For FLAVERS, the best decomposition is better than monolithic verification on 17 of

the 32 subjects. For these 17 subjects, on average the best decomposition uses 48.5% of the

memory used by monolithic verification. For the 15 subjects where the best decomposition

is worse than monolithic verification, on average the best decomposition uses 654.1% of

the memory used by monolithic verification.

For LTSA, the best decomposition is better than monolithic verification on 17 of the

30 subjects. For these 17 subjects, on average the best decomposition uses 33.6% of the

memory used by monolithic verification. For the 13 subjects where the best decomposition
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is worse than monolithic verification, on average the best decomposition uses 281.7% of

the memory used by monolithic verification.

While there are 17 subjects on which assume-guarantee reasoning is better than mono-

lithic for both FLAVERS and LTSA, these are not exactly the same 17 subjects. There are

a total of 12 subjects for which the assume-guarantee approach is better than monolithic

verification for both FLAVERS and LTSA. In fact, the subject on which assume-guarantee

reasoning with FLAVERS saves the most memory compared to monolithic verification, is a

subject on which assume-guarantee reasoning with LTSA does not save memory compared

to monolithic verification. Still, if assume-guarantee reasoning saved memory on a given

subject with one verifier, it was likely to save memory on the same subject with the other

verifier.

It is important to note that the vast majority of decompositions are not better than mono-

lithic verification. Even for the subjects where the best decomposition is better than mono-

lithic verification, most of the decompositions we examined for those subjects are not better

than monolithic verification. Thus, randomly selecting decompositions would likely not

yield a decomposition better than monolithic verification. Furthermore, our intuition on

how to select decomposition was not good. On the subjects where it is possible to select

a decomposition that uses less memory than monolithic verification, we did not select a

decomposition that saves memory most of the time. While it might be possible to develop

heuristics to aid in finding such a decomposition, when we examined the decompositions

that saved memory in our experiments, however, we did not see any patterns that could be

used as the basis for such heuristics.

5.2 Does Assume-Guarantee Reasoning Save Memory for Larger Sys-

tem Sizes?

Although assume-guarantee reasoning using learned assumptions saves memory in only

about half of the subjects we looked at when the best decomposition is used and finding
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• For each non-repeatable task, put the task into S1 if the task was put into S1 in the
best decomposition at size 2. Otherwise, put the task into S2.

• For each repeatable task:

◦ If the best decomposition for size 2 had both repeatable tasks in S1, put the
repeatable task in S1. Otherwise, put the repeatable task in S2.

◦ If the best decomposition for size 2 had one of the repeatable tasks in S1 and
the other in S2, look to see if the property treated one of the repeatable tasks in
a different way than all the other repeatable tasks.

+ If one of the repeatable tasks is treated in a different way in the property,
then:

– If this repeatable task is the one that is treated differently, then put this
repeatable task into S1 if its corresponding task in the best decomposi-
tion at size 2 was put into S1. Otherwise, put this task into S2.

– If this repeatable task is not the one that is treated differently, then
put this repeatable task into S1 if the repeatable task that is treated
differently was in S2 on the best decomposition at size 2. Otherwise,
put this task into S1.

+ If none of the repeatable tasks are treated in a different way in the property,
then:

– If this repeatable task is the repeatable task with the smallest ID, put
this repeatable task into S1 if the repeatable task with the smallest ID
was put into S1 in the best decomposition at size 2. Otherwise, put this
repeatable task into S2.

– If this repeatable task is not the repeatable task with the smallest ID,
put this repeatable task into S2 if the repeatable task with the smallest
ID was put into S2 in the best decomposition at size 2. Otherwise, put
this repeatable task into S1.

+ If two of the repeatable tasks are treated in a different way in the property,
then handle the tasks treated in a different way as in the “one” case above
and handle the tasks that are not treated in a different way as in the “none”
case above.

Figure 5.3: Process for generalizing decompositions
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these best decompositions was expensive, the overall approach was not too onerous. On av-

erage at size 2 it required about two minutes to examine one decomposition with FLAVERS

and about half a minute to examine one decomposition with LTSA. For larger size systems,

however, it would be infeasible to evaluate all two-way decompositions because the number

of decompositions to be evaluated increases exponentially and the cost of evaluating each

decomposition increases as well. For example, we have several instances where evaluating

a single decomposition on a system of size 4 takes over 1 month. Thus, if memory is a

concern in verifying a specific system and if it is important to verify it for a larger size, a

reasonable approach might be to examine all decompositions for a small system size and

then to generalize the best decomposition for that small system size to a larger system size.

We used this generalization approach to evaluate the memory usage of assume-guarantee

reasoning for larger system sizes. Our algorithm for generalizing decompositions from

the best decomposition for size 2 is shown in Figure 5.3.3 At a high level, this algorithm

assigns each task into one of two categories, either a task is repeatable (e.g., a customer

task in the gas station system) or non-repeatable (e.g., all non-customer tasks in the gas

station system). A non-repeatable task is put in S1 (S2) if the best decomposition has the

corresponding task in S1 (S2). For repeatable tasks, a similar process is followed, but since

there are more repeatable tasks at larger system sizes, determining the corresponding task

is more complicated but is still based on whether each repeatable task at size 2 was in S1 or

S2.

With FLAVERS, if the best decomposition at size 2 is better than monolithic verifica-

tion, the associated generalized decompositions are usually better than monolithic verifi-

cation, as seen with 16 of the 17 such subjects. In addition there are 2 subjects on which

the best decomposition at size 2 is worse than monolithic verification, but the generalized

decomposition is better than monolithic verification at the largest size such a comparison

3We considered several other ways to generalize the decomposition and discuss them in Section 5.7.
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could be made. Thus, with FLAVERS assume-guarantee reasoning using generalized de-

composition is better than monolithic verification on 18 of the 32 subjects.

With LTSA, of the 17 subjects on which the best decomposition at size 2 is better than

monolithic verification, on only 5 of these is the generalized decomposition better than

monolithic verification at the largest size such a comparison could be made. With LTSA,

there are two subjects worth noting. The first is property 4 of the Gas Station system and on

this subject assume-guarantee reasoning is better than monolithic verification at size 7 and

worst at all other sizes. On this subject, assume-guarantee reasoning ran out of memory

at size 9 but monolithic verification was able to verify the property. The second subject is

property 3 of the Chiron multiple system and on this subject assume-guarantee reasoning

is worst than monolithic verification at size 4 and better at all other sizes. Unfortunately,

we could not generate the model for this system at size 6 and we will discuss this more in

Section 5.3

Figures 5.4, 5.5, and 5.6 show the amount of memory used by assume-guarantee rea-

soning with generalized decompositions normalized by dividing by the amount of memory

used by monolithic verification as the size of the systems is increased. Each solid line rep-

resents a single subject. A dotted line at 1.0 has been provided for reference. Figures 5.4

and 5.5 show data for FLAVERS. The former shows the data for system sizes less than or

equal to 10 while the latter shows the data for only those subjects that could scale above

size 10. Note that each line in Figure 5.5 corresponds to a line that is shown in Figure 5.4.

Figure 5.6 shows all of the data for LTSA. For 8 subjects with FLAVERS and 3 subjects

with LTSA there are single points at size 2. On these subjects, the generalized decomposi-

tions runs out of memory at size 3. Note that each line stops at the largest system on which

both monolithic verification and assume-guarantee reasoning can verify the corresponding

subject. For some subjects either assume-guarantee reasoning or monolithic verification

can verify that subject at even larger sizes.
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Figure 5.4: Memory used by the generalized decompositions for FLAVERS up to dize 10

Although these figures are difficult to read, they illustrate the significant difference in

the performance of the generalized decompositions between FLAVERS and LTSA. With

FLAVERS, on the subjects where the best decomposition at size 2 is worst than mono-

lithic verification, assume-guarantee reasoning tends to use increasingly larger amounts

of memory, when compared to monolithic, as the system size increases. In other words,

the normalized memory usage increases as the system size increases. With FLAVERS, on

the subjects where the best decomposition at size 2 is better than monolithic verification,

assume-guarantee reasoning tends to save more memory, when compared to monolithic

verification, as system size increases. In other words, the normalized memory usage tends

to decrease as the system size increase.
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Figure 5.5: Memory used by the generalized decompositions for FLAVERS for just those
subjects where the largest system size that could be verified is greater than 10

This is not true, however, with LTSA. With LTSA, assume-guarantee reasoning tends to

use more memory, when compared to monolithic verification, as the system size increases.

In other words, the normalized memory tends to increase as the system size increases, re-

gardless of the performance of assume-guarantee reasoning at size 2, although this increase

was more pronounced on subjects where the memory used by the best decomposition at

size 2 was worst than monolithic verification.

We believe that the difference in the performance of assume-guarantee reasoning on

the two verifiers is mostly due to how the models for the two verifiers are built. For LTSA,

each thread is represented by a thread reachability graph. For FLAVERS, each thread is

represented by a control flow graph, which is usually smaller and more abstract than a
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Figure 5.6: Memory used by the generalized decompositions for LTSA

thread reachability graph. FLAVERS adds precision into the model through the use of

feasibility constraints. Since the number of feasibility constraints does not usually increase

as the system size increases [43], this means that the model used by FLAVERS does not

usually increase in size as quickly as the model generated for LTSA. We believe that this

difference resulted in the performance difference between the two verifiers.

In summary, with FLAVERS the best decomposition at size 2 is better than monolithic

verification on 17 of the 32 subjects, or about 53% of the time, and the generalized decom-

position is better than monolithic verification on 18 of the 32 subjects, or about 56% of the

time. With LTSA the best decomposition at size 2 is better than monolithic verification on

17 of the 30 subjects, or about 56% of the time, and the generalized decomposition is better
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than monolithic verification on 3 of the 30 subjects, or 10% of the time. Thus, the auto-

mated assume-guarantee reasoning technique we used was able to save memory on larger

size systems for a bit more than half the subjects with FLAVERS and for one tenth of the

subjects with LTSA.

5.3 Can Assume-Guarantee Reasoning Verify Properties of Larger

Systems than Monolithic Verification

Although using generalized decompositions for assume-guarantee reasoning uses less

memory than monolithic verification in some cases, this memory savings might not be suf-

ficient to overcome the state-explosion problem. Thus, we tried to determine, for each sub-

ject, whether or not assume-guarantee reasoning using generalized decompositions would

allow us to verify larger systems than monolithic verification.

Because the language processing toolkit [107] used by FLAVERS4 for generating its

models and by INCA for generating the models for LTSA cannot handle the Chiron and

Relay systems at larger sizes, we were unable to determine for each subject whether or not

assume-guarantee reasoning using generalized decompositions would allow us to verify

larger systems than monolithic verification. Thus, we assigned each subject to one of five

categories:

1. Assume-guarantee reasoning can verify a larger system than monolithic verification.

2. It is unknown if assume-guarantee reasoning can verify a larger system than mono-

lithic verification. We consider it likely, however, because assume-guarantee reason-

ing is better than monolithic verification for the largest system size such a comparison

can be made.

4This toolkit is very old and not easily modifiable. We are working on building models for FLAVERS
from Java software using Bandera [39] and, thus, expect to remove some of the limitations of this language
processing toolkit.
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3. Assume-guarantee reasoning cannot verify a larger system than monolithic verifica-

tion.

4. It is unknown if assume-guarantee reasoning can verify a larger system than mono-

lithic verification. We consider it unlikely, however, because assume-guarantee rea-

soning is worse than monolithic verification for the largest system size such a com-

parison can be made.

5. Assume-guarantee reasoning is better than monolithic verification at the largest size

such a comparison can be made, but monolithic verification can verify the subject on

systems with size 30 or more. While assume-guarantee reasoning might be able to

verify a larger system, we think verifying these subjects on larger systems will not

be of much use.5

Table 5.3 shows the number of subjects in each category for FLAVERS and LTSA. We

consider using generalized decompositions to be a potential success in verifying a larger

system than monolithic verification if the subject is in category 1 or 2. We consider using

generalized decomposition to be a likely failure in verifying a larger system than monolithic

verification if the subject is in category 3 or 4. We consider assume-guarantee reasoning to

not be needed if the subject is in category 5. As mentioned previously, for LTSA property 3

of the Chiron multiple system is hard to classify since assume-guarantee reasoning is worst

than monolithic verification at size 4 and better at all other sizes. Because of language

processing issues, we could not build a model for this system at size 6. Since assume-

guarantee reasoning is better than monolithic verification at size 5, the largest size such a

comparison can be made, we conservatively assigned this subject to category 2.

5The somewhat arbitrary cutoff of 30 represents a substantial size for the systems under consideration.
All of the subjects we examined that can be verified on systems larger than size 10 can be verified on systems
of size 30.
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Table 5.3: Generalized decompositions compared to monolithic verification with respect to
scaling

FLAVERS LTSA
Number of Number of
Subjects Percentage Subjects Percentage

Potential
Success

(1) Generalized can
scale farther than
monolithic

6 18.8% 0 0.0%

(2) Don’t know, but
generalized appears
better than
monolithic

7 21.9% 2 6.7%

Subtotal 13 40.6% 2 6.7%

Likely
Failure

(3) Generalized
cannot scale farther
than monolithic

13 40.6% 14 46.7%

(4) Don’t know, but
generalized appears
worse than
monolithic

2 6.3% 14 46.7%

Subtotal 15 46.9% 28 93.3%

Both
Scale
Well

(5) Monolithic
scales well, so
generalized unlikely
to be of much use

4 12.5% 0 0.0%

Subtotal 4 12.5% 0 0.0%
Total 32 100.0% 30 100.0%

Table 5.3 shows a potential success rate of about 40% for FLAVERS and about 7% for

LTSA. Note that this rate is the upper bound of the success rate. By looking at just the

subjects where we could demonstrate that assume-guarantee reasoning could scale farther,

meaning those in category 1, we obtain the lower bound of the success rate: about 19% for

FLAVERS and 0% for LTSA.

Although we could demonstrate that assume-guarantee reasoning scales farther than

monolithic verification on six subjects for FLAVERS, it is also important to look at how

much farther assume-guarantee reasoning scales. On five of these six subjects, assume-

guarantee reasoning can verify the subject on a system one size larger, but not two sizes
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larger, than monolithic verification can. On the sixth subject, assume-guarantee reasoning

can verify the subject on a system two sizes larger, but not three sizes larger, than mono-

lithic verification can. In addition, there were two subjects, counted in category 5, where

assume-guarantee reasoning can verify the system at least three sizes larger than mono-

lithic verification can. In one case, this allowed us to increase the size of the subject from

32 to 35 and in the other case this allowed us to increase the size of the subject from 47

to 50. Since monolithic verification can scale to at least size 30, a fairly large system size,

we do not believe verifying the system on larger sizes is particularly useful and do not

count these subjects as successes. While there were eight subjects where we demonstrated

that assume-guarantee reasoning can scale farther than monolithic verification, assume-

guarantee reasoning can verify these subjects on systems only slightly larger than the size

of the system on which these subjects can be verified monolithically.

In summary, if we had not encountered model building issues, we believe that assume-

guarantee reasoning could verify a larger system size than monolithic verification on at

most 41% of the subjects for FLAVERS and 7% of the subjects for LTSA. While a 41%

success rate may look encouraging, assume-guarantee reasoning using generalized decom-

positions did not significantly increase the size of the systems that could be verified. Con-

sidering the amount of time that was spent to find the best decomposition at size 2, it is

questionable if the benefit of verifying a subject on a slightly larger system size is worth

the necessary investment of time.

Although these results are discouraging, we also tried to determine if there was some

way to classify the subjects to predict the subject for which assume-guarantee reasoning

would likely produce a significant memory savings. Unfortunately, we could not find such

a classification, although we do have some observations. One type of feasibility constraint

used by FLAVERS is a Task Automaton (TA). It appears that when the number of TAs

needed to prove a property increases as the system size increases, assume-guarantee rea-

soning based on generalized decompositions tends to use more memory than monolithic
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verification. Of the 14 subjects where the number of TAs needed to prove the property

increases as the system size increases, 10 of them are classified as failures in Table 5.3. Of

the 13 subjects where only one TA is needed to prove the property regardless of system

size, 4 are classified as failures in Table 5.3 and 3 others are in category 5 where assume-

guarantee reasoning based on generalized decompositions does better than monolithic ver-

ification but assume-guarantee reasoning is not likely to be of much use since monolithic

verification scales well. On the remaining 5 subjects, we cannot find a pattern to deter-

mine whether or not assume-guarantee reasoning based on generalized decompositions

will perform better than monolithic verification. For LTSA, the picture is even less clear.

On some of the subjects where assume-guarantee reasoning for FLAVERS works well,

assume-guarantee reasoning for LTSA does not work well. Conversely, there was 1 sub-

ject where assume-guarantee reasoning for FLAVERS works poorly, but assume-guarantee

reasoning for LTSA works well. While our observations may provide some guidance to

help determine whether or not assume-guarantee reasoning is likely to save memory, more

experimentation is needed before any conclusions can be drawn.

5.4 Are the Generalized Decompositions the Best Decompositions?

These discouraging results were obtained using decompositions that were generalized

from the best decomposition on problems of size 2. It is possible that the generalized

decompositions we selected are not the best decompositions to use on the larger systems

sizes. To investigate this issue, we tried to find the best decomposition for some larger

system sizes.
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Table 5.4: System sizes at which the best decomposition is known

FLAVERS LTSA
Size Attempted Best Known Attempted Best Known

2 32 32 30 30
3 32 23 30 30
4 24 18 21 21
5 2 2 1 1

5.4.1 Comparing the Best Known Decompositions to the Generalized Decomposi-

tions

In performing these experiments, we encountered a number of two-way decomposi-

tions where it took more than a month to learn an assumption.6 As a result, we imposed an

upper bound on the amount of time we spent evaluating a single two-way decomposition

to be the maximum of 1 hour and 10 times the amount of time needed to verify that subject

monolithically. On every subject where the upper bound on time was reached, we were

able to find at least one decomposition that is better than the generalized decomposition.

Table 5.4 gives the number of subjects for which we attempted to find the best decomposi-

tion at a given system size. It also gives, in the Best Known column, the number of subjects

for which we were able to find the best decomposition at a given system size.

Figures 5.7 and 5.8 compare, for FLAVERS and LTSA respectively, the memory usage

of the generalized decomposition, the best known decomposition, and monolithic verifica-

tion at the largest size such a comparison could be made. In Figures 5.7 and 5.8 the height

of the bars shows the amount of memory used by the generalized decomposition, normal-

ized by dividing by the amount of memory used by monolithic verification. The height of

the dots shows the amount of memory used by the best known decomposition, normalized

by dividing by the amount of memory used by monolithic verification. A dot that is filled

6The time needed to evaluate the decompositions that took more than a month is counted in the 1.54 years
of CPU time needed for our experiments. Still, more than 99% of the decompositions required less than 1 day
to evaluate. The time used examining just the decompositions that took less than 1 day to evaluate added up
to over 11 months of CPU time.
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Figure 5.7: Memory used by the generalized decomposition compared to the best decom-
position for FLAVERS
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Figure 5.8: Memory used by the generalized decomposition compared to the best decom-
position for LTSA
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in represents a subject for which we know the best decomposition. A dot that is not filled

in represents a subject for which we do not know the best decomposition, meaning there

might be better decompositions than the best one of which we know. A bar with a white

background represents a subject where the generalized decomposition is the same as the

best decomposition, meaning the height of the bar and the dot are the same. A bar with a

gray background represents a subject where the generalized decomposition is not the same

as the best decomposition, meaning the height of the bar is greater than the height of the

dot. Bars that are topped with triangles represent subjects where the generalized decompo-

sitions ran out of memory on systems with size 3. The height of these bars shows the lower

bound on the amount of memory used by the generalized decompositions. Each subject

has been labeled with the same number that was assigned to that subject in Figure 5.1. For

reference, a line at 1.0 has been drawn.

As stated previously, because of the cost involved we did not always obtain data about

the best decomposition at the largest system size on which we were able to use the general-

ized decomposition. This is why, for example, Table 5.3 states that there are only 2 subjects

with LTSA where the generalized decomposition is better than monolithic verification but

Figure 5.8 has 13 subjects where the height of the bar is below the reference line at 1.0.

These figures show that using the generalized decompositions is not always optimal

with respect to memory usage. With FLAVERS, the generalized decomposition is the

best decomposition on 10 of 32 subjects (31%). With LTSA, this is true on 11 of 30

subjects (37%). For some subjects, the difference in memory usage between the generalized

decomposition and the best known decomposition is significant, while in other cases, there

is almost no difference. For very few subjects, though, is the generalized decomposition

worse than monolithic verification while the best decomposition is better than monolithic.

This happened on only one subject with FLAVERS and three subjects with LTSA.
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Figure 5.9: States explored on property 1 of Gas Station with FLAVERS

5.4.2 Generalizing Decompositions from the Best Known Decomposition at Larger

System Sizes

We were interested in determining if, on the subjects where the generalized decompo-

sition is not the best decomposition, generalizing decomposition based on the best known

decomposition from a system size larger than 2 could be used to verify larger systems than

can be verified monolithically. Thus, when we found a decomposition for size n (n > 2)

that was better than the generalized decomposition from size 2, we generalized the best

known decomposition for size n so that is could be used on systems larger than size n. In

all cases, the generalized decomposition from size n is better than the generalized decom-

position from size 2. We also tried taking the best known decompositions for size n and

simplifying them so they could be used on systems of size 2, similar to the process shown

in Figure 5.3, but in reverse. The decompositions for size n, when simplified to size 2, are

worse than monolithic verification in all but one case.
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Figure 5.10: States explored on property 1 of Relay with FLAVERS

In addition we found 3 subjects where there are decompositions that can be used to

verify that subject on a larger system size than either monolithic verification and the gen-

eralized decompositions from size 2. One of these subjects is property 1 of the Gas Station

system with FLAVERS. Figure 5.9 compares the number of states explored using two dif-

ferent generalizations (from size 2 and from size 4) to the number of states explored using

monolithic verification. On this subject, the generalized decomposition from size 2 is the

best decomposition for size 3. When the system size is 4, however, the generalized de-

composition from size 2 is not the best decomposition. We do not know what the best

decomposition for size 4 is because it requires too much time to find. We do know that

if we generalize the best known decomposition for size 4, we can verify this subject on

systems with size 6, one size greater than monolithic verification and the generalized de-

composition from size 2.

On one of the other subjects, property 1 of the Relay system with FLAVERS, the gen-

eralized decompositions from size 2 are worse than monolithic. We were able to find a
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decomposition that could allow us to verify this subject on the system with size 7, one

size larger than monolithic verification. However, this decomposition was not easy to find.

When looking at the best decompositions for size 2, 3, 4, and 5, we noticed that there is a

pattern to the best decompositions that depends on whether or not the size of the system is

odd or even. For this subject, Figure 5.10 compares the number of states using the gener-

alized decomposition from size 2, the decompositions based on the odd/even pattern, and

the monolithic verification.

The third subject, property 2 of the Chiron multiple dispatcher system for FLAVERS.

Monolithic verification and assume-guarantee reasoning using the generalized decomposi-

tion from size 2 can verify this subject on a system of size 5, but not 6. Using the gener-

alized decomposition from size 3 allows assume-guarantee reasoning to verify this subject

on a system of size 6.

To summarize, although finding best decomposition at a small system size and gener-

alizing it so that it is applicable for larger system sizes was not too costly a process, it does

not often produce the best decomposition at those larger sizes. There are subjects where

using decompositions other than the generalized decomposition from size 2 allowed us to

verify larger systems than when we used those generalized decompositions. Because we

were unable to find heuristics that enabled us to find good decompositions, finding decom-

positions that perform better than the generalized decomposition from size 2 necessitated

trying all two-way decompositions for larger system sizes, a process that is probably too

costly to be useful in practice.

5.4.3 Discussion

While we tried to find the best decomposition for all subjects at some larger systems

sizes, because of the costs involved we did not always attempt this at the largest size for

each subject in our study. At the largest size where we could compare the generalized and

the best decomposition, they were the same on 10 of 32 subjects with FLAVERS and on
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11 of 30 subjects with LTSA. With FLAVERS, for 15 of the 32 subjects we were not able

to find the best decomposition at the largest system size we attempted, but, in all of these

cases, we were able to find a decomposition that uses less memory than the generalized

decompositions from size 2.

As stated previously, our use of generalized decompositions from size 2 did not often

allow us to verify a larger system than monolithic verification and, when it did, it only

allowed us to verify a system 1 or 2 sizes larger. Had we been able to find the best decom-

position for every subject at every system size, we do not think that our results would be

significantly different. There might be subjects, like the three discussed in Section 5.4.2,

where decompositions other than ones we examined would have allowed us to verify a

larger system than monolithic verification. Since there are few subjects on which the best

known decomposition is significantly better than the generalized decomposition, as shown

in Figures 5.7 and 5.8, we do not believe that there exist other decompositions that would

have allowed us to verify a significantly larger system than monolithic verification.

5.5 Does Assume-Guarantee Reasoning Save Time?

While assume-guarantee reasoning was not successfully in increasing the size of the

systems that could be verified, if assume-guarantee reasoning could reduce the time needed

for verification, it might still be worth using. When we compared the time used by assume-

guarantee reasoning to the time used by monolithic verification, we found that assume-

guarantee reasoning with FLAVERS uses less time on 11 of the 32 subjects (34.4%) and

that assume-guarantee reasoning with LTSA uses less time on 7 of the 30 subjects (23.3%)

Figures 5.11, 5.12, and 5.13 show the amount of time used by assume-guarantee reason-

ing with generalized decompositions (from size 2) normalized by dividing by the amount

of time used by monolithic verification as the size of the systems is increased. Each solid

line represents a single subject. A dotted line at 1.0 has been provided for reference. Fig-

ures 5.11 and 5.12 show data for FLAVERS. The former shows the data for system sizes
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Figure 5.11: Time used by the generalized decompositions for FLAVERS up to size 10

less than or equal to 10 while the latter shows the data for only those subjects that could

scale above size 10. Note that each line in Figure 5.12 corresponds to a line that is shown

in Figure 5.11. Figure 5.13 shows all of the data for LTSA. As before, for 8 subjects with

FLAVERS and 3 subjects with LTSA there are single points at size 2. On these subjects,

the generalized decompositions runs out of memory at size 3.

Two subjects in particular stands out in these figures. In Figure 5.12 there are two lines

where the normalized time at the largest size where a comparison could be made is sig-

nificantly lower than at the next smallest size and the lines take a sudden turn downward.

These subjects are property 4 of the Gas Station system and property 8 of the Smokers

system. For both of these subjects, monolithic verification runs out of memory at the next
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Figure 5.12: Time used by the generalized decompositions for FLAVERS for just those
subjects where the largest system size that could be verified is greater than 10

larger system size. We believe that these subjects came very close to using the maximum

amount of memory, resulting in the garbage collector being invoked more frequently, caus-

ing monolithic verification to use more time than would otherwise have been expected.

To summarize, on the small number of subjects for which assume-guarantee reasoning

uses less time than monolithic verification, it sometimes uses significantly less time. When

assume-guarantee reasoning uses more time than monolithic verification, it often uses sig-

nificantly more time, particularly for LTSA. A large portion of this time cost is due to the

learning algorithm we used, and this is discussed more in the next section
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Figure 5.13: Time used by the generalized decompositions for LTSA

5.6 What is the Cost of Using the L* Algorithm?

We also tried to investigate whether or not using the L* algorithm to learn assump-

tions increased the cost of assume-guarantee reasoning. To do this, we first determined,

for each subject, the cost of assume-guarantee reasoning when the L* algorithm is used to

learn an assumption. At the end of each verification done with assume-guarantee reason-

ing, we saved the assumption that was used to complete the assume-guarantee proof. These

assumptions were then used to evaluate the cost of assume-guarantee reasoning when as-

sumptions are not learned. For each subject with property P, this cost was determined

by checking 〈A〉 S1 〈P〉 and 〈true〉 S2 〈A〉, letting A be the assumption that was previously

learned when P was verified using assume-guarantee reasoning with the L* algorithm. For
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each subject, we compared the time and memory costs for the largest sized system on

which that subject could be verified using automated assume-guarantee reasoning with the

decompositions generalized from size 2.

5.6.1 What is the Memory Cost of Using the L* Algorithm?

For a subject with property P, we consider the amount of memory used during assume-

guarantee reasoning with the L* algorithm to be the maximum number of states explored

when the teacher answers a query or conjecture of the L* algorithm. We consider the

amount of memory used during assume-guarantee reasoning without the L* algorithm to

be the maximum number of states explored when verifying 〈A〉 S1 〈P〉 and 〈true〉 S2 〈A〉,

where A is the assumption that was previously learned by the L* algorithm.

For FLAVERS, the amount of memory used by the two approaches is the same on 29

of the 32 subjects. On the remaining three subjects, assume-guarantee reasoning without

the L* algorithm uses 78.6%, 86.6%, and 96.7% of the memory used by assume-guarantee

reasoning with the L* algorithm. On two of these three subjects, the amount of memory

used by assume-guarantee reasoning without the L* algorithm uses more memory than

monolithic verification. On the third subject, assume-guarantee reasoning without the L*

algorithm uses 0.54% of the memory of monolithic verification (compared to 0.69%, with

the L* algorithm). Since this difference is so small, on this third subject we do not believe

that learning an assumption affected the results of whether or not assume-guarantee could

verify a larger system than monolithic verification. Thus, we do not believe our use of

learning significantly impacted the results of our experiments with FLAVERS.

For LTSA, the amount of memory used by the two approaches is the same on 29 of

the 30 subjects. On the remaining subject, assume-guarantee reasoning without the L*

algorithm uses 14.5% of the memory used by assume-guarantee reasoning with the L* al-

gorithm. On this subject, assume-guarantee reasoning with learning uses 491.1% of mem-

ory that monolithic verification uses. Assume-guarantee reasoning without learning uses
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Figure 5.14: Percentage of time spent learning for FLAVERS

71.4% of memory that monolithic verification uses. Thus, on this subject, our use of learn-

ing could have affected whether or not assume-guarantee could verify a larger system than

monolithic verification. When we looked at the assumption generated for this system at

size 2 and size 3, we could not see a way to generalize the assumption to make it applicable

on larger system sizes, thus, our use of learning was necessary to apply assume-guarantee

reasoning to verify this subject.

To summarize, in very few subjects does verification with assume-guarantee reasoning

using a learned assumption use more memory than verifying that subject with assume-

guarantee reasoning using a supplied assumption. Even on the small number of subjects

where there is a memory overhead as a result of our use of the L* algorithm to learn an

assumption, we do not believe that this overhead had a significant impact on the results of

whether or not assume-guarantee reasoning could verify a larger system than monolithic

verification.
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Figure 5.15: Percentage of time spent learning for LTSA

5.6.2 What is the Time Cost of Using the L* Algorithm?

For a subject with property P, we consider the amount of time used during assume-

guarantee reasoning with the L* algorithm to be the amount of time needed to verify that

subject, including the time to build the artifacts (i.e, the TFGs, LTSs, etc.) and run the

L* algorithm. We consider the amount of time used during composition analysis without

the L* algorithm to be the amount of time needed to verify 〈A〉 S1 〈P〉 and 〈true〉 S2 〈A〉,

including the time needed to build the artifacts, where A is the assumption that was previous

learned by the L* algorithm.

Figures 5.14 and 5.15 show the percentage of time that is spent learning an assumption

compared to the size of the assumption that was learned. When the size of the learned

assumption is small, fewer than 10 states, less than 50% of the total verification time is

spent learning the assumptions. When the size of the learned assumption is larger than

10 states, however, in most cases over 90% of the verification time is spent learning the
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assumptions, a substantial overhead. Thus, our use of learned assumptions had a significant

impact on the time cost of assume-guarantee reasoning for many subjects.

5.6.3 Reducing the Cost of Using the L* Algorithm

Because of this time overhead, we looked at two ways to reduce the cost of automati-

cally learning an assumption. First, since we were able to use generalized decompositions

to apply assume-guarantee reasoning to larger-sized systems, we tried generalizing the as-

sumptions in a similar fashion. When the learned assumption was large, however, it was

difficult to understand what behavior the assumption is trying to capture. Without such an

understanding, it is not possible to determine what the assumption should be for a larger-

sized system. As a result, we were unable to use generalized assumptions to reduce the

cost of automated assume-guarantee reasoning.

Second, Groce et al. developed a technique for initializing some of the L* algorithm’s

data structures when given an automaton that recognizes a language close to the one be-

ing learned [57]. By doing this, they reduced the amount of time needed to run Angluin’s

version of the L* algorithm. To determine if this technique would reduce the cost of us-

ing learning, for each subject, we used the L* algorithm to learn an assumption capable of

completing an assume-guarantee proof. This assumption was then used to initialize some

of the data structures of Angluin’s version of the L* algorithm. Performing this initial-

ization reduced the number of queries made by the L* algorithm (and consequently the

running time) when compared to not initializing these data structures. In our experiments,

initializing these data structures in Angluin’s version of the L* algorithm did not offer any

performance benefits over using Rivest and Schapire’s version of the L* algorithm, which

has better worst-case bounds. We have been unable to find a similar technique to initial-

ize the data structures of Rivest and Schapire’s version of the L* algorithm because of the

constraints this version places on its data structures.
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To summarize, using the L* algorithm to learn an assumption often increased the time

needed and rarely increased the memory needed to complete an assume-guarantee proof

compared to the cost of completing a proof using a supplied assumption. The overhead for

using an automated assumption generation technique, however, is probably unavoidable

on several of our subjects. Some of the learned assumptions are very large: in fact, one

has over 250 states. For such systems, we suspect that small assumptions do not exist that

can be used to complete the assume-guarantee proof and analysts cannot be expected to

develop these assumptions manually. Thus, some automated support is needed to make

assume-guarantee reasoning practical on these systems.

5.7 Threats to Validity

Although our experiments examined several systems in detail, they are still limited in

scope: we used two finite-state verifiers, one assume-guarantee reasoning technique, and a

small number of systems. Even in this limited context, our experiments were expensive to

perform; we examined over 43,500 two-way decompositions and used over 1.54 years of

CPU time.

Although we used only two verifiers, we expect that using the L* algorithm to learn

assumptions with other verifiers will produce similar results. This conjecture is consistent

with the results of Alur et al. for NuSMV in which they found some subjects where assume-

guarantee reasoning verifies a larger system than monolithic verification and other subjects

where assume-guarantee reasoning uses more memory than monolithic verification [5].

We looked only at one assumption generation technique, which influenced the assump-

tions used in completing the assume-guarantee proofs. While other assumptions could be

used to complete assume-guarantee proofs in our examples, automated support to help find

assumptions is necessary to make assume-guarantee reasoning useful in practice. Addi-

tionally, we expect that other assumption generation techniques based on two-way decom-

positions (e.g., [5, 14, 23, 52]) would produce assumptions similar to the ones generated
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by the algorithm we used. Since discharging the premises of the assume-guarantee rules

tended to be the most expensive part of the analysis with respect to memory, we suspect

that using these other techniques will not produce better results. While automated tech-

niques based on assume-guarantee rules that allow for more than two-way decompositions

(e.g., [65, 73, 98]) might perform better with respect to memory, there has not yet been

enough empirical evaluation of these techniques to draw any conclusions.

Additionally, we looked only at a small number of systems that are mostly based on a

client-server architecture and where scaling is achieved by replicating the number of clients.

This allowed us to easily increase the size of the system to look at the effects of scaling on

assume-guarantee reasoning. Looking at just one kind of scaling, however, might limit the

generality of our results. Alur et al., however, looked at systems with different architectures

and had results that were similar to ours [5].

We also used one generalization approach when looking at larger system sizes, shown

in Figure 5.3, which could have affected our results. In particular, in the case where none

of the repeatable tasks are treated in a different way in the property, we put one task into

S1 and the rest into S2 (or vice versa). For this case, we also looked at splitting the tasks

evenly between S1 and S2, either by putting the first half of the repeatable tasks in S1 and

the rest in S2 or by putting the repeatable tasks with odd IDs in S1 and the rest in S2 (or vice

versa, in both cases). For most of the subjects, these alternative generalization approaches

made little difference in the amount of memory used. For one subject with FLAVERS,

these alternate generalizations used between three and four times the memory as the one

generated using the algorithm shown in Figure 5.3. For another subject with FLAVERS,

the alternative generalizations used between one third and one half the memory as the one

generated using the algorithm shown in Figure 5.3. Because these alternative generalization

approaches did not often produce significantly different results, we do not believe other

generalization approaches will be more successful than the one we used.
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In their work on compositional analysis, Cheng et al. also looked at the Chiron system

and were able to verify properties at larger system size than using their approach than

we were with our approach [27]. Cheng et al., however, changed the Chiron system to

make it have a smaller state space by replacing some arrays by bitsets. This change was

done because without this change the “refactored structure has little hope to scale well

compositionally” [27]. In our study, we used the original implementation based on arrays

in which the state space grows more quickly. While their results are better on the Chiron

system than ours, they did not look at exactly the same system we did.

Despite these threats, our experiments are a careful study of one automated assume-

guarantee reasoning technique and raise doubts about the usefulness of assume-guarantee

reasoning as an effective compositional analysis technique.
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CHAPTER 6

ASSUME-GUARANTEE REASONING OF SOFTWARE USING
DESIGN-LEVEL ASSUMPTIONS

While we have been using assume-guarantee reasoning to verify properties of software

systems, our analysis of these systems has only looked at the software and not at any

other artifacts that may have been written during earlier phases in the development of the

software. If a software system has been implemented based on a previously developed

design, then the design can be leveraged to aid in finding assumptions for the software, as

shown in Figure 6.1.

Consider a system with two subsystems with designs M1 and M2 with corresponding

software implementations S1 and S2. Suppose that the system should obey a property P and

it can be shown for some assumption A that both 〈A〉 M1 〈P〉 and 〈true〉 M2 〈A〉. Then, if the

system closely matches its design, it should be possible to reuse the assumption A to show

that both 〈A〉 S1 〈P〉 and 〈true〉 S2 〈A〉 are true, potenially reducing the cost of verification.

Alternatively, the verification of the software can be performed by showing that

the design obeys the property P (either monolithically or compositionally) and that

each component at the software level refines its corresponding design model, meaning

L (Si)⊆L (Mi). We would expect that if |A| < |Mi| then the cost of using assume-

guarantee reasoning of the software would be less expensive than checking refinement.

Our experience, as described previously, is that small assumptions do not necessarily result

in assume-guarantee reasoning that is inexpensive. Still, future work in assumption gener-

ation might find algorithms that produce better assumptions than the learning algorithm we

used. As a result, reducing the cost of assume-guarantee reasoning by using artifacts from

different phases of software developing is an approach that should be considered.

93



P

P

M1 A M2

S1 A S2

Design Models

Software Implementation

Figure 6.1: Verification at the design level and software level

In [53], we described how assume-guarantee reasoning could be used to verify the ex-

ecutive subsystem of the K9 Mars Rover that was developed at the NASA Ames Research

Center. For this example, the design was verified using LTSA and the software was ver-

ified using JPF. In Chapter 4, we described how the L* algorithm can be used to learn

assumptions for LTSA. In this chapter, we will describe how assume-guarantee triples can

be checked using JPF and then describe the case study that uses assume-guarantee reason-

ing to verify the executive subsystem of the K9 Mars Rover.

6.1 Checking Assume-Guarantee Triples Using JPF

6.1.1 Background

JPF is a reachability-based finite-state verification tool that checks properties of Java

software. By default, JPF can check for assertion violations, deadlocks, and uncaught

exceptions. While recent versions of JPF allow the user to write extensions that allow JPF

to verify a wider range of properties, the version available when these experiments were

performed could not be extended in this way. As a result, properties to be verified had

to be written so that a violation of the property resulted in an assertion violation in the

software. In addition to supporting most of the standard language features of Java, JPF

provides a special class called Verify that allows analysts to annotate their software to

supply directives to JPF. The methods provided by the Verify class:
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1. allow non-deterministic choices to be made using the methods random(n),

which returns a random integer greater than or equal to 0 and less than n, and

randomBool(), which returns a random Boolean,

2. allow a search to be truncated using the method ignoreIf(condition), which

causes JPF to backtrack in its search if and only if the given condition is true, and

3. allow regions of code to be marked as atomic using the methods beginAtomic()

and endAtomic().

6.1.2 Instrumenting the Java Software

In our framework, the assumptions and properties come from LTSA and, as a result, are

specified as LTSs. JPF, however, does not provide support for checking properties specified

as LTSs or support for restricting the search space based on assumptions specified as LTSs.

Before either the assumptions and properties can be adapted for use in JPF, a mapping must

be made by the analyst between the events on the transitions of the LTSs and the locations in

the software that correspond to the occurrences of those events. This is necessary to allow

JPF to notice when events occur that would require updating the state of the assumptions or

the properties. For simplicity, we will assume that events in the properties and assumptions

correspond to either method calls or to the locking and unlocking of objects in the Java

software.

After a mapping has been developed, the Java software then needs to be instrumented so

that the state of the assumptions and properties can be tracked as JPF explores the reachable

system states. Currently, this instrumentation is done by hand, but tools such as JPax [62]

could help in this process. At each point in the software that corresponds to an event in

the assumptions or properties, a call to the method AG Monitor.event() is added.

This method traps each event and updates the state of the properties and the assumptions

appropriately. This method, shown in Figure 6.2, uses Java reflection to determine the name

of the thread making the method call (line 2), the method being called (lines 3 to 5), and the
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public static void event() {
1) Verify.beginAtomic()
2) String threadName = Thread.currentThread().getName();
3) Throwable throwable = new Throwable();
4) StackTraceElement st = (throwable.getStackTrace())[1];
5) String methodName = st.getMethodName();
6) String className = st.getClassName();
7) int eventID = getEvent(className, methodName, threadName);
8) AG Assumption.event(eventID);
9) AG Property.event(eventID);
10) Verify.endAtomic();

}

Figure 6.2: Method event of class AG Monitor

class that contains the method (line 6). These three pieces of information are used as a key

to look up the corresponding event from the design (line 7). Then, this event is passed on to

the assumption (line 8) and to the property (line 9). It is important that the event is passed

to the assumption first. If the same event causes both the assumption and the property to

be violated, then this should not result in a property violation. Thus, the assumption must

be passed the event first so it can violate before the property has a chance to violate. The

entire block is enclosed by JPF directives (lines 1 and 10) which instruct JPF to treat the

method body as an atomic step and to interleave no other threads with the execution of this

method.

If more information is needed to determine the mapping between the Java software and

the events from the design-level model, then the event method can be modified to take

parameters that encode this extra information. This was necessary in our case study to

obtain information about the parameters being passed into method calls, the parameters

being returned from method calls, and to trap locks and unlocks of objects.

Assumptions and properties are implemented by the classes AG Assumption and

AG Property, respectively. An except of the AG Assumption class is shown in Fig-

ure 6.3. This class has a static integer field that records the current state of the assumption

(line 1) and an array that encodes the transition function for the assumption (line 2). A
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public class AG Assumption {
1) private static int state = 0;
2) private static int[][] trans = ...;

public static void event(int e) {
3) state = trans[state][e];
4) Verify.ignoreIf(state < 0);

}
}

Figure 6.3: Class AG Assumption (excerpt)

transition that causes the assumption to be violated is represented by having the assump-

tion transition into a state with ID less than zero. The method event, which is invoked on

line 8 of Figure 6.2, advances the assumption by looking up the next state in the transition

table (line 3). If the state is less than zero, this represents that the current event has caused

the assumption to be violated. Since we are only interested in finding property violations

that occur when the supplied assumption holds, the current path should not be explored any

more. The ignoreIf statement provided by JPF is used to cause JPF to backtrack in its

search when the assumption is violated (line 4).

The AG Property class is similar, except a state with an ID that is less than zero rep-

resents a property violation. As a result, line 4 is replaced by Verify.assert(state

>= 0) allowing JPF to detect property violations.

In this way, we can cause JPF to restrict its search to executions that satisfy assumptions

specified as an LTSs and to detect violations of properties specified as an LTSs.

6.1.3 Modeling Environments

JPF analyzes executable Java software and, as a result, expects complete systems as

input. To analyze a subsystem using assume-guarantee reasoning with JPF, an environment

must be provided for that subsystem, similar to the environment required by FLAVERS as

discussed in Section 4.3.1. For FLAVERS, the environment of a subsystem has to provide
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Figure 6.4: The executive of the K9 Mars Rover

call rendezvous and accept rendezvous. For JPF, the environment of a sybsystem has to

invoke methods in that subsystem’s interface and provide stubs for methods invoked by

that subsystem. The environment has to be able to invoke zero or more of the interface

methods in any order. Currently, environments are built by hand, although tools such as

those described in [108, 109] may help automate this process.

6.2 Case Study

In this section, we describe our case study which verified the executive subsystem of

the K9 Mars Rover developed at the NASA Ames Research Center.

6.2.1 Description of the K9 Mars Rover

The executive subsystem of the K9 Mars Rover is designed to execute plans that control

the Rover as it explores the surface of Mars. A plan is a hierarchical structure that defines

the actions that the Rover must perform. The Rover needs to be autonomous, so plans

contain support for branching based on state or temporal conditions as well as flexibility in

delaying the starting time of an action.

The executive subsystem needs to monitor the state of the Rover and the state of its en-

vironment (e.g., conditions on Mars) to correctly execute its supplied plan. The executive
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subsystem has been implemented as a multithreaded system, shown in Figure 6.4. This

subsystem is made up of a main coordinating component named Executive, a component

that monitors state conditions named ExecCondChecker, a component that monitors tem-

poral conditions named ExecTimerChecker, and a component that is responsible for issuing

commands to the Rover named ActionExecution.

The executive is implemented in C++ and contains about 25,000 lines of code, 10,000 of

which is the main control code. The remainder defines the data structures that are need for

the communication with the actual Rover. The software uses the POSIX thread library and

synchronization between threads is accomplished using mutexes and condition variables.

6.2.2 Analysis of the Design of the Rover

The Rover was designed using an ad-hoc flowchart-style notation that describes the

synchronization between its components. These are, in essence, extended control-flow

graphs and focus on such things as method calls, the locking and unlocking of mutexes,

and the signaling of and waiting on of condition variables. Since these resembled LTSs,

they were translated manually into about 700 lines of FSP. In this case study, we focused

on one property formulated by the developer of the Rover which states:

For the variable savedWakeUpStruct of the ExecCondChecker thread that is

shared with the Executive thread (see Figure 6.4), the property states that: “if

the Executive thread reads the value of the variable, then the ExecCondChecker

thread should not read this value until the Executive thread clears it first.”

Since the savedWakeUpStruct variable is only accessed by two threads, Executive and

ExecCondChecker, our analysis was performed on these threads together with the mu-

texes they use for synchronization. We applied assume-guarantee reasoning using as-

sumptions learned by the L* algorithm with LTSA where M1 = ExecCondChecker and

M2 = Executive.
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The assumption learned has 6 states and expresses the fact that “whenever the Executive

thread reads the savedWakeUpStruct variable after acquiring mutex exec, it should not

release the mutex until after it clears the savedWakeUpStruct variable.” This assumption

could not, however, be discharged on the Executive thread. This was because the design of

the Executive thread had a bug that then was fixed, allowing the property to be verified.

6.2.3 Analysis of the Implementation of the Rover

The Rover was originally written in C++, but was translated into Java for another case-

study [17]. This was a selective translation and focused on the core functionality of the

executive subsystem, about 10,000 lines of C++ code. The translated Java version is ap-

proximately 7,200 lines of code.

As with the LTSA version, we focused our analysis of the software on the Executive

and ExecCondChecker components. We did not start any other threads in the system and

supplied the executive subsystem with a simple plan that consisted of one node and no time

conditions (the latter are not relevant for the analysis of these components). JPF was able

to analyze this configuration without running out of memory. Any other configuration,

meaning one where more threads were started or where a more complex plan was used,

caused JPF to run out of memory.

6.2.3.1 Environment Modeling

Following our methodology, we set S1 = ExecCondChecker and S2 = Executive and

attempted to verify 〈A〉 S1 〈P〉 and 〈true〉 S2 〈A〉, where A was the assumption learned dur-

ing the verification of the design. As stated previously, to check 〈A〉 S1 〈P〉, an environ-

ment needed to be written to invoke any sequence of method calls for the class ExecCond-

Checker. This environment, shown in Figure 6.5, loops forever generating method calls

(line 1). It begins by making a non-deterministic choice of whether or not to acquire the

lock on the Executive object (line 2). If it acquires the lock (line 3), we then use a spe-

cialized call to the AG Monitor.event method to trap the lock event (line 4). It then
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class Executive { ...
public void run() { ...

1) while(true) {
2) if(Verify.randomBool()) {
3) synchronized(exec) {
4) AG Monitor.event("Executive", "lock");
5) while(Verify.randomBool()) {
6) switch(Verify.random(4)) {
7) case 0: condChecker.deleteSavedWakeup(); break;
8) case 1: condChecker.getSavedWakeup(); break;
9) case 2: condChecker.addConditionCheck(id,...); break;
10) case 3: condChecker.removeConditionCheck(id,...); break;

} // end switch
} // end while

11) AG Monitor.event("Executive", "unlock");
} // end synchronized

} else {
12) switch(Verify.random(4)) {
13) case 0: condChecker.deleteSavedWakeup(); break;
14) case 1: condChecker.getSavedWakeup(); break;
15) case 2: condChecker.addConditionCheck(id,...); break;
16) case 3: condChecker.removeConditionCheck(id,...); break;

} // end switch
} // end if-then-else

} // end while
} // end run

} // end Executive

Figure 6.5: Environment for the ExecCondChecker

non-deterministically decides whether or not to make a method call (line 5). Depending

on this choice, zero or more method calls are made (lines 6 to 10). Once the environ-

ment stops making method calls, it releases the lock and generates an event saying the lock

was released (line 11). If the choice was made to not acquire the lock on line 2, then the

environment invokes a single method (lines 12 to 16).

To maintain a finite list of elements in the list of conditions, we added an annotation

forcing JPF to backtrack if more than one call to addConditionCheck is made (on

either line 9 or 15). This is a reasonable restriction since the configuration uses an input

plan with only one node and only one condition can ever be added to it.

To check 〈true〉 S2 〈A〉, we built stubs that implemented methods that are invoked in the

ExecCondChecker thread by the Executive. Some care needed to be taken when doing this
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since, for example, the getSavedWakeup method can either return null or an object. To

simulate this, the method nondeterministically chooses which to return.

6.2.3.2 Results

Our experiments were run on an Intel Xeon 2.2 GHz machine with 4 Gb of memory

(although a single process could only access 2 Gb of memory). This system was running

RedHat Linux version 8.0 with Sun’s JDK version 1.4.2-01. We used JPF version 2.4 using

the -no-verify-print, -no-deadlocks, and -verbose flags.

We used JPF to monolithically verify the property described earlier. We also used the

assumption A that was learned during the analysis of the design to verify the property using

assume-guarantee reasoning. In both cases, we discovered the same error in the Executive

that was discovered during the analysis of the design.

After we corrected the error, we reran the verification and discovered that the property

could be verified using monolithic analysis but not using assume-guarantee reasoning be-

cause Premise 1 did not hold. We reexamined the design and noticed that there was an

assumption that was encoded into the model for M1 but not for S1. This assumption stated

that all accesses to savedWakeupStruct by the Executive would be protected by the lock

exec. This assumption was encoded explicitly based on instructions from the developer

who gave us the original models and was subsequently discharged on M2. Using this new

assumption, A′, we checked that the property holds by showing that 〈A∧A′〉 S1 〈P〉 is true

and then discharging both assumptions on S2.

Table 6.1 gives the results of the experiment. The System column describes the sys-

tem being analyzed. The States and Transitions columns report the number of states and

transitions explored by JPF. The Memory and Time columns report the amount of memory

needed and the time taken to perform the analysis.
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Table 6.1: Results of verifying the Mars K9 Rover

System States Transitions Memory (Mb) Time
Whole System 183,132 425,641 952.85 12m, 24s
Whole System (bug) 255 338 23.07 10s
Premise 1, A′ as automaton 60,830 134,177 315.98 6m, 55s
Premise 1, A′ encoded 53,215 117,756 255.96 4m, 49s
Premise 2, Assumption A 13,884 20,601 118.97 1m, 16s
Premise 2, Assumption A (bug) 145 144 44.49 20s
Premise 2, Assumption A′ 13,884 20,601 109.58 1m, 7s
Premise 2, Assumption A′ (bug) 13,884 20,601 121.37 49s

The Whole System rows give the results for checking the property monolithically. The

version marked bug corresponds to the original system in which the property does not hold

while the other version has had the bug fixed so that the property does hold.

The Premise 1 lines report the results of verifying Premise 1. As was mentioned pre-

viously, while performing the verification, we discovered that an additional assumption,

A′ was needed to complete the verification. We looked at two ways of incorporating this

assumption into the analysis. The first uses the universal environment shown in Figure 6.5

and uses an automaton representation of A′, using the method shown in Figure 6.3. The

second uses a modified universal environment that directly encodes A′. This is done by

replacing lines 12 to 16 of the universal environment with code that makes a choice only

between the two events on lines 15 and 16. The bug that caused a violation of the property

in the monolithic analysis was in the Executive, not the ExecCondChecker, so these anal-

yses were not affected by the presence or absence of the bug since they only analyzed S1,

the ExecCondChecker.

The Premise 2 lines report the results for checking Premise 2, in which the assumptions

used in checking Premise 1 need to be discharged. We discharged the assumptions A and

A′ separately, on the system containing the bug and on the system in which the bug is fixed.

From Table 6.1, we can see that using assume-guarantee reasoning does reduce the

number of states that JPF needs to explore and the amount of memory necessary for the
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analysis in the version of the Rover that does not contain the bug. In the version that does

contain the bug, monolithic verification uses less memory because JPF can stop immedi-

ately when it discovers the property violation. Since Premise 1 holds whether or not the

bug is present, JPF cannot stop early and must run to completion, using more memory than

the quickly terminating monolithic verification.

6.3 Discussion

In this chapter, we presented an approach that uses assume-guarantee reasoning at dif-

ferent phases of system development. By learning an assumption to complete an assume-

guarantee reasoning proof on the design of a software system, we were able to reuse that

assumption to compositionally verify the actual software system resulting in a reduction in

memory usage. Still, there are some obstacles to the use of this approach.

First, a suitable assumption has to be found. As our results in Chapter 5 show, finding

assumptions that allow assume-guarantee reasoning to use less memory than monolithic

verification is difficult and we do not expect this problem to any easier in this context.

Still, other assumption generation algorithms might work better and we would expect this

approach to benefit from future work in this area.

Second, this approach requires that a design suitable for finite-state verification be de-

veloped for the software system being analyzed, which is not often done in practice. In

addition, there must be a high degree of correlation between the design and the software,

otherwise it will be difficult to effectively use assumptions based on the design for assume-

guarantee reasoning of the software.

Finally, many of the steps in our approach have not yet been automated. Currently, the

analyst must manually define the mapping between events in the design and locations in the

software, annotate the software to trap events when they occur, and write the environments

needed for assume-guarantee reasoning of the software. Although there has been some
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research that could help in these areas, more automation would be needed to make this

approach truly useful.
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CHAPTER 7

CONCLUSIONS

Assume-guarantee reasoning is one approach to finite-state verification that has been

proposed to address the state-explosion problem. There are several difficulties that are

encountered when trying to apply assume-guarantee reasoning to a system. First, if the

assume-guarantee rule cannot handle an arbitrary number of subsystems, then a decompo-

sition of the system must be selected in which its subsystems are divided into a suitable

number of pieces based on the assume-guarantee rule being used. Second, once a de-

composition is selected, it may be difficult to manually find assumptions to complete the

assume-guarantee proof.

Recent work in assume-guarantee reasoning has allowed assumptions to be generated

automatically, thus removing one of the obstacles to its use. In our initial experiments, we

could not find good heuristics on how to decompose the systems, so in the study described

here we examined all two-way decompositions to find the best one with respect to memory

use and then generalized those best decompositions to make them applicable on larger

system sizes.

Unfortunately, the results of our experiments are not very encouraging. The vast major-

ity of decompositions explores more states than monolithic verification. While this is not

surprising, it is worth noting. The process of examining all two-way decompositions is too

costly to be useful in practice, and we do not know a good way to predict whether or not

a given decomposition will save memory over monolithic verification. Thus, even in those

cases where assume-guarantee reasoning can save memory over monolithic verification, it

is unclear how analysts will be able to find those decompositions without some guidance
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on how to decompose the system being analyzed. If we restrict our attention to just the best

decomposition at the smallest size for each property, then in only about half of the cases

we examined does the assume-guarantee reasoning technique we used explore fewer states

than monolithic verification.

We were interested in determining if this memory savings would be substantial enough

to allow us to verify properties on larger systems than can be verified monolithically. Since

it is impractical to examine all two-way decompositions for larger system sizes, we used a

generalization approach. For each property, we found the best decomposition for a small

system size and then generalized that best decomposition so it could be used on larger

system sizes. Using this approach, we found that even when assume-guarantee reasoning

can save memory over monolithic verification, there were only eight subjects for which this

savings is large enough to allow verification of a larger system. Furthermore, for the cases

where assume-guarantee reasoning can verify a larger system than monolithic verification,

it cannot significantly increase the size of the systems that can be verified.

Of course, there are decompositions other than the generalized ones that we could have

tried on larger systems. Furthermore, we have examples where decompositions other than

the generalized decompositions can be used to verify larger systems than can be verified

using the generalized decompositions. Unfortunately, we were unable to find such decom-

positions intuitively and we did not observe any pattern that could be used to select a good

decomposition for a given system.

When we initiated this study, we did not expect that assume-guarantee reasoning would

save memory in all cases. We were surprised, however, to discover that in about half of

our subjects, assume-guarantee used more memory than monolithic verification, no matter

what decomposition was selected. In many cases, this additional cost was due to the as-

sumption learned. While the assumptions were almost always smaller than the subsystems

they replaced (i.e., |A|< |S2|), they often allowed more behavior than the subsystems do.

Thus, checking 〈A〉 S1 〈P〉 was more expensive than checking 〈true〉 S1 ‖ S2 〈P〉. Further-
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more, the assumptions were often larger than the property (i.e., |A|> |P|), making the cost

of checking 〈true〉 S2 〈A〉 greater than we expected.

Although these results are preliminary, they raise doubts about the usefulness of

assume-guarantee reasoning as an effective compositional analysis technique. In our exper-

iments, we found that assume-guarantee reasoning only rarely allowed us to verify larger

systems than can be verified monolithically. While automated assume-guarantee reasoning

techniques can make compositional analysis easier to use, determining how to apply these

techniques most effectively is still difficult, sometimes expensive, and not guaranteed to

significantly increase the sizes of the systems that can be verified.

These results, although discouraging, indicate several directions for future work. First,

the learning algorithm we used converges on the weakest possible assumption [52], that

is, the assumption that allows the most behavior. As stated previously, the high cost for

assume-guarantee reasoning was largely due to the fact that the learned assumptions were

often more permissive than the subsystems they replaced. Thus, approaches that try to learn

more specific assumptions should be developed to determine whether or not they perform

better than the approach we used. Second, the assume-guarantee rule we used requires that

a system under analysis be divided into two subsystems. Rules that allow decomposition

into an arbitrary number of subsystems might perform better. Although there is some ev-

idence of this [21], such rules need to be better studied and evaluated. Finally, heuristics

need to be developed to help analysts determine when assume-guarantee reasoning will

likely save memory over monolithic verification. In the study reported here, all the sys-

tems that we analyzed use a client-server architecture. Systems with other architectures,

however, might be more amenable to assume-guarantee reasoning. For instance, a research

group at NASA successfully demonstrated how assume-guarantee reasoning could be ap-

plied to a system in which a visiting vehicle does autonomous rendezvous and docks with a

space station [16]. This system was built from two large subsystems which communicated

with each other via a small interface. In this case study, assume-guarantee reasoning was
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able to verify properties that could not be verified monolithically. More experimentation

with different architectural models is needed to determine if assume-guarantee reasoning

is more effective when applied to certain architectures.

Although assume-guarantee reasoning has been advocated for over twenty years as a

way to lessen the effects of the state-explosion problem and recent work in automated

assumption generation has made assume-guarantee reasoning easier to apply, our work

shows that effectively applying assume-guarantee reasoning still remains a difficult task.

These results provide insight into research directions that should be pursued and highlight

the importance of further experimental evaluation of compositional analysis techniques.
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APPENDIX A

DESCRIPTION OF EXAMPLES

In this appendix, we describe the systems and properties we verified in the experiments

that were described in Chapter 5.

A.1 Chiron

Chiron is a user-interface framework developed at the University of California at

Irvine [79]. In Chiron, there are one or more artist tasks that draw on the screen. There

are also one or more events, for example mouse clicks, that artists may be interested in. To

listen for events, artists register with a dispatcher. The dispatcher maintains a list of artists

registered for each event, and when the dispatcher receives an event, it passes it on to all

of the artists that are registered for it. An alternative to a centralized dispatcher is to have

dedicated dispatchers for each event [10]. This alternative “multiple dispatcher” version of

Chiron was created and also considered in our evaluation.

Because the number of states explored by FLAVERS grows more quickly when the

number of artists increases than when the number of events increases, we scaled the number

of artists in the system and fixed the number of events at two. We checked nine properties

of Chiron, given below:

1. artist1 never registers for event1 if it is already registered for this event.

2. If artist1 is registered for event1 and the dispatcher receives event1, then the dis-

patcher will not accept another event before passing event1 to artist1.

3. The dispatcher does not notify any artists of event1 until it receives event1.
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4. Having received event1, the dispatcher never notifies artists of event2.

5. If no artists are registered for event1, the dispatcher does not notify any artist of

event1.

6. The dispatcher never gives event1 to artist1 if artist1 is not registered for event1.

7. If artist1 registers for event1 before artist2 does, then when the dispatcher receives

event1 it will first notify artist1 and then artist2 of this event.

8. The size of the list used to store the IDs of artists registered for event1 never exceeds

the number of artists.

9. Chiron does not terminate while there is an artist that is registered for an event.

A.2 Gas Station

The Gas Station system is a simulation of a self-serve gas station [64]. The Gas Station

consists of a set of pumps, an operator, and a set of customers. In the Gas Station, the

operator receives prepayment from a customer to use a pump, then the operator activates

the pump for that customer. Next, the customer starts pumping gas and then stops pumping

gas. Once the customer stops pumping gas, the pump lets the operator know how much gas

was pumped. Finally, the operator gives the customer change. Instead of an explicit queue

to represent the clients that are waiting to pump gas, the customers block on a rendezvous

until the pump is available.

While the number of states explored by FLAVERS grows more quickly when the num-

ber of pumps increases than when the number of customers increases, we scaled the num-

ber of customers in the system and fixed the number of pumps at two. This was necessary

because the language processing toolset was unable to build models for the Gas Station

system with five or more pumps. We checked four properties of the Gas Station, given

below:
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1. customer1 and customer2 cannot use pump1 at the same time.

2. customer1 loops, first starting pumping and then stopping pumping.

3. pump1 loops, first letting a customer start pumping, then letting a customer stop

pumping.

4. If customer1 prepays on pump1, then customer1 receives the change for pump1.

A.3 Peterson

Peterson’s mutual exclusion protocol [96] is an algorithm that provides exclusive access

to a critical region to a set of tasks. Unlike other solutions to the mutual exclusion problem,

Peterson’s protocol does not rely on any higher-level synchronization constructs such as

locks. Instead, it achieves mutual exclusion by having the tasks read from and write to

arrays stored in shared memory. We scaled the Peterson system by increasing the number

of tasks attempting to access the critical region. We checked one property of Peterson’s

mutual exclusion protocol, given below:

1. Two tasks cannot both be in the critical region at the same time.

A.4 Relay

In the Relay system, a set of tasks get and set the value of a variable that is shared

among all the tasks [104]. Unlike Peterson’s mutual exclusion protocol, the shared variable

is protected by rendezvous, so only one task can get or set the variable at a time. In the

Relay system where n tasks are accessing the variable, each of these task is assigned a

unique id i such that 0 ≤ i < n. The task with id i repeatedly gets the value of the shared

variable and when the value is i, it sets the value to ((i+1) mod n). We scaled the Relay

system by increasing the number of tasks attempting to access the shared variable. We

checked one property of the Relay system, given below:
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1. The shared variable is always set to 1 in between sets to 0.

A.5 Smokers

The Smokers system consists of a supplier task, a table task, and a set of assembler

tasks. In the Smokers system with n assemblers, each assembler is trying to assemble an

item which is made up of one of each of n different pieces. The supplier has an infinite

supply of all pieces and assembler i has an infinite supply of piece i. The supplier beings

by putting n−1 different pieces on the table. Next, the assembler that has the missing piece

picks up all n−1 pieces from the table and then puts all n pieces together to form an item.

We scaled the Smokers system by increasing the number of assemblers. We checked eight

properties of the Smokers system, given below:

1. The correct assembler makes an item after the supplier finishes putting out pieces.

2. assembler1 assembles an item after the supplier puts out the pieces he or she needs.

3. Only one assembler can be making an item at a time.

4. assembler1 and assembler2 cannot be making an item at the same time.

5. The supplier never put all of the pieces for an item on the table at the same time.

6. After the supplier put out pieces, one item will be assembled.

7. The following actions alternate, in order: piece1 is put on the table (by the supplier),

piece1 is picked up from the table (by an assembler).

8. The locking protocol for the table is obeyed.
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APPENDIX B

SUBJECT NUMBERS

Table B.1 gives the mapping from subject number to subject and Table B.2 gives the

mapping from subject to subject number.
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Table B.1: Mapping from subject number to subject

Subject Number System Property
1 Gas Station 3
2 Chiron multiple 8
3 Chiron multiple 1
4 Chiron multiple 6
5 Gas Station 1
6 Chiron multiple 9
7 Chiron multiple 5
8 Gas Station 4
9 Chiron single 1
10 Chiron single 6
11 Chiron multiple 4
12 Chiron multiple 3
13 Relay 1
14 Chiron multiple 7
15 Chiron multiple 2
16 Chiron single 9
17 Gas Station 2
18 Chiron single 2
19 Chiron single 8
20 Chiron single 7
21 Smokers 8
22 Chiron single 4
23 Chiron single 3
24 Chiron single 5
25 Smokers 6
26 Smokers 2
27 Smokers 1
28 Smokers 7
29 Smokers 3
30 Smokers 4
31 Smokers 5
32 Peterson 1
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Table B.2: Mapping from subject to subject number

System Property Subject Number
Chiron multiple 1 3
Chiron multiple 2 15
Chiron multiple 3 12
Chiron multiple 4 11
Chiron multiple 5 7
Chiron multiple 6 4
Chiron multiple 7 14
Chiron multiple 8 2
Chiron multiple 9 6
Chiron single 1 9
Chiron single 2 18
Chiron single 3 23
Chiron single 4 22
Chiron single 5 24
Chiron single 6 10
Chiron single 7 20
Chiron single 8 19
Chiron single 9 16
Gas Station 1 5
Gas Station 2 17
Gas Station 3 1
Gas Station 4 8

Peterson 1 32
Relay 1 13

Smokers 1 27
Smokers 2 26
Smokers 3 29
Smokers 4 30
Smokers 5 31
Smokers 6 25
Smokers 7 28
Smokers 8 21
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APPENDIX C

DETAILED DATA

This appendix provides detailed data for the experiments described in Chapter 5. Each

table in this appendix gives information about the performance of monolithic verification,

assume-guarantee reasoning using the generalized decompositions based on the best de-

composition from size 2, and the assume-guarantee reasoning using best decomposition of

which we know. The State columns give the number of states explored during verification.

For the generalized decomposition and the best decomposition, this number is the maxi-

mum number of states explored by a verifier when answering a query or a conjecture of

the L* algorithm. If the number of the states used by the best decomposition is preceded

by a star, this means that the number of states is for the best decomposition of which we

know and there may be a better decomposition that explores fewer states. Recall that we

imposed a time bound when exploring some decompositions, as described in Section 5.4.1.

In Table C.23 the number of states explored by the best decomposition at size 3 is preceded

by a greater than sign. This denotes the fact that while none of the decompositions at size 3

completed within the time bound we used, we know that the best decomposition for this

property explores at least 100,000 states. Entries where the number of states is “OOM”

denote the fact that the verifier ran out of memory and do not have a corresponding entry in

the Time column. Entries in the Best States columns that are blank denote a size for which

we did not attempt to find the best decomposition. All times are given in seconds.

The majority of these experiments were run on an Intel Xeon 2.2GHz machine with

4Gb of memory (although a single process could only access 2Gb of memory). This system

was running RedHat Linux version 8.0 with Sun’s JDK version 1.5.0 04-b05. The data in

117



Appendices C.2.2, C.2.3, C.2.5, and C.2.6 were run on an Intel Pentium 4 3.2GHz machine

with 2Gb of memory. This system was running Fedora Core 2 with Sun’s JDK version

1.5.0 06-b05. The difference in machines has no effect on the memory number of states

explored, but could effect the timing data. Since we never compare timing data between

different subjects and the timing data for each subject was collected on the same machine,

this difference does not affect our data analysis.

C.1 FLAVERS Data

C.1.1 Chiron Single

Table C.1: Chiron Single property 1 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 724 0.91 325 1.32 325
3 2,294 1.36 325 1.77 325
4 5,922 2.90 401 2.93 401
5 13,774 6.83 654 6.97
6 28,568 21.50 995 22.17

Table C.2: Chiron Single property 2 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 2,756 1.18 3,351 1.76 3,351
3 22,938 3.12 35,513 5.50 35,513
4 202,259 26.34 320,239 29.93 320,239
5 2,014,415 501.10 3,498,885 381.14
6 21,681,290 12,109.85 37,530,117 6,180.33
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Table C.3: Chiron Single property 3 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 877 0.93 1,316 1.38 1,316
3 2,751 1.38 4,976 2.95 4,976
4 6,751 3.04 12,028 5.32 12,028
5 14,543 7.28 27,558 13.43
6 27,613 23.68 51,156 37.19

Table C.4: Chiron Single property 4 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 688 0.93 1,009 1.30 1,009
3 2,048 1.40 3,709 2.37 3,709
4 4,818 2.96 8,613 5.46 8,613
5 10,190 6.68 19,429 13.30
6 19,056 23.08 35,481 36.41

Table C.5: Chiron Single property 5 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 3,557 0.96 5,472 1.60 5,472
3 220,779 6.04 135,706 6.08 39,340
4 23,863,255 1,423.87 2,081,070 60.04 133,815
5 OOM 45,357,966 1,574.86

Table C.6: Chiron Single property 6 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 724 0.95 325 1.30 325
3 2,294 1.39 325 1.78 325
4 5,922 2.37 401 3.05 401
5 13,774 6.79 654 6.90
6 28,568 21.91 995 21.98
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Table C.7: Chiron Single property 7 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 4,326 1.25 5,299 2.34 5,299
3 51,056 3.79 79,672 6.84 78,791
4 718,341 62.48 1,142,369 72.90 1,134,987
5 12,866,528 2,885.87 22,391,566 1,983.30

Table C.8: Chiron Single property 8 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 2,756 1.12 3,351 2.19 3,351
3 22,938 3.09 35,513 5.42 35,513
4 202,259 24.09 320,239 29.97 320,239
5 2,014,415 501.00 3,498,885 383.37
6 21,681,290 11,846.11 37,530,117 6,108.04

Table C.9: Chiron Single property 9 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 4,910 1.00 4,016 3.26 4,016
3 336,026 9.74 44,941 218.09 44,941
4 37,526,650 3,232.49 310,553 1,433.29 ∗214,247
5 OOM 8,260,254 12,881.27
6 OOM 144,145,585 51,854.39
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C.1.2 Chiron Multiple

Table C.10: Chiron Multiple property 1 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 1,521 1.04 325 1.44 325
3 3,933 1.38 325 1.99 325
4 8,663 2.79 489 2.81 488
5 18,389 5.35 762 5.56
6 35,461 13.73 1,121 13.81

Table C.11: Chiron Multiple property 2 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 14,797 1.76 12,050 3.06 12,050
3 151,923 7.38 132,857 17.64 46,581
4 1,531,962 90.41 1,288,246 204.04 ∗100,949
5 18,460,786 1,584.48 16,532,689 4,027.31

Table C.12: Chiron Multiple property 3 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 7,586 1.09 4,371 22.09 4,371
3 29,372 2.17 11,790 80.92 11,459
4 80,344 4.19 25,387 217.23 25,051
5 207,926 10.07 51,452 490.46
6 438,252 25.73 91,091 1,081.56
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Table C.13: Chiron Multiple property 4 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 8,560 1.08 4,727 90.43 4,727
3 32,434 2.22 12,802 261.48 12,362
4 90,816 3.93 27,754 723.20 26,363
5 230,464 10.13 56,271 1,702.69
6 494,250 26.93 100,001 3,708.52

Table C.14: Chiron Multiple property 5 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 13,991 1.19 5,472 1.62 5,472
3 944,001 15.35 135,706 6.20 ∗89,773
4 98,848,737 3,830.06 2,081,070 57.60 ∗191,092
5 OOM 45,357,966 1,373.83

Table C.15: Chiron Multiple property 6 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 1,521 1.06 325 1.48 325
3 3,933 1.40 325 1.93 325
4 8,663 2.78 489 2.92 488
5 18,389 5.37 762 5.48
6 35,461 13.66 1,121 13.90

Table C.16: Chiron Multiple property 7 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 25,099 1.91 20,435 3.39 20,435
3 382,207 12.50 337,455 32.74 71,780
4 6,466,376 311.40 5,499,921 750.16 ∗3,165,393
5 146,347,904 11,440.27 132,254,739 28,516.35
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Table C.17: Chiron Multiple property 8 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 7,123 1.31 957 1.67 957
3 54,268 3.37 5,941 2.76 5,941
4 431,337 20.88 40,235 6.41 40,235
5 4,049,151 254.35 304,439 27.09
6 41,046,169 4,157.57 2,572,615 200.24

Table C.18: Chiron Multiple property 9 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 18,981 1.49 6,731 1.65 6,731
3 1,399,453 26.26 201,162 7.60 ∗111,099
4 152,928,193 7,492.12 3,646,122 97.56 ∗341,412
5 OOM 95,201,173 3,356.53

C.1.3 Gas Station

Table C.19: Gas Station property 1 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 13,674 1.22 4,306 7.05 4,306
3 346,330 6.08 44,602 14.72 44,602
4 6,814,798 129.20 740,840 38.31 ∗114,824
5 117,309,034 3,581.18 11,244,914 310.76

123



Table C.20: Gas Station property 2 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 92 0.83 84 1.25 81
3 130 0.87 110 1.49 110
4 168 0.91 146 1.75 146
5 206 1.06 182 1.98 180
6 244 1.42 218 2.31
7 282 1.16 254 3.34
8 320 1.30 290 3.78
9 358 1.38 326 4.07
10 396 1.49 362 5.26
20 776 2.97 722 23.26
30 1,156 5.54 1,082 67.55
40 1,536 9.73 1,442 146.51
50 1,916 16.57 1,802 263.18
60 2,296 24.73 2,162 444.04
70 2,676 35.87 2,522 705.55
80 3,056 51.37 2,882 1,007.73
90 3,436 72.20 3,242 1,490.61
100 3,816 87.58 3,602 1,942.02
110 4,196 112.89 3,962 2,545.47
120 4,576 166.29 4,322 3,384.70
130 4,956 178.96 4,682 4,357.70
140 5,336 218.16 5,042 5,437.74
150 5,716 265.35 5,402 6,878.62
160 6,096 318.24 5,762 8,413.88
170 6,476 378.71 6,122 9,950.98
180 6,856 434.76 6,482 11,092.81
190 7,236 512.63 6,842 13,037.20
200 7,616 592.50 7,202 15,326.82
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Table C.21: Gas Station property 3 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 970 0.82 105 1.11 105
3 1,991 0.87 175 1.21 175
4 3,376 1.07 263 1.45 263
5 5,125 1.15 369 1.57
6 7,238 1.66 493 1.69
7 9,715 1.88 635 1.86
8 12,556 2.12 795 2.07
9 15,761 2.39 973 2.26
10 19,330 2.69 1,169 2.44
20 75,040 9.73 4,119 6.52
30 167,150 25.59 8,869 14.58
40 295,660 55.33 15,419 27.74
50 460,570 103.95 23,769 49.96
60 661,880 178.81 33,919 75.82
70 899,590 295.96 45,869 118.80
80 1,173,700 466.45 59,619 165.87
90 1,484,210 692.35 75,169 228.75
100 1,831,120 1,013.25 92,519 312.71
110 2,214,430 1,445.31 111,669 398.00
120 2,634,140 1,949.96 132,619 514.45
130 3,090,250 2,560.25 155,369 637.53
140 3,582,760 3,433.82 179,919 794.48
150 4,111,670 4,053.01 206,269 947.55
160 4,676,980 5,165.89 234,419 1,161.40
170 5,278,690 6,347.57 264,369 1,371.60
180 5,916,800 7,654.96 296,119 1,644.28
190 6,591,310 9,145.25 329,669 1,921.71
200 7,302,220 10,788.36 365,019 2,189.26
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Table C.22: Gas Station property 4 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 7,075 0.98 2,847 11.74 2,847
3 41,163 2.07 6,674 26.73 6,674
4 108,448 4.74 11,649 55.22 11,649
5 224,575 10.36 17,964 112.86
6 402,720 23.30 25,631 204.12
7 656,059 42.17 34,711 345.53
8 997,768 71.64 45,208 541.39
9 1,441,023 132.60 57,089 788.78
10 1,999,000 182.07 70,354 1,223.93
20 16,787,200 3,240.06 279,124 15,442.27
30 57,541,200 17,204.01 626,294 75,064.47
40 137,437,000 59,555.44 1,111,864 224,231.86
47 223,709,179 450,262.72 1,534,111 444,746.59
48 OOM 1,599,968 480,113.89
50 OOM 1,735,834 539,672.30

C.1.4 Peterson

Table C.23: Peterson property 1 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 201 0.81 3,621 28.55 3,621
3 25,557 4.97 OOM > 100,000
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C.1.5 Relay

Table C.24: Relay property 1 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 237 0.80 174 2.10 174
3 5,271 1.24 6,462 81.96 2,699
4 56,022 3.67 646,453 13,880.79 14,897
5 618,069 41.66 OOM 143,978
6 7,209,228 1,322.30 OOM

C.1.6 Smokers

Table C.25: Smokers property 1 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 515 0.85 4,571 284.49 4,424
3 12,395 1.74 OOM ∗1,007,640

Table C.26: Smokers property 2 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 515 0.84 4,292 347.39 4,292
3 12,395 1.70 OOM ∗1,007,640
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Table C.27: Smokers property 3 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 555 0.87 4,861 193.57 4,861
3 13,087 1.83 OOM 334,463

Table C.28: Smokers property 4 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 555 0.86 5,983 318.07 5,983
3 12,639 1.74 OOM ∗1,039,727

Table C.29: Smokers property 5 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 511 0.78 8,308 35.34 7,593
3 13,256 1.61 OOM ∗2,178,726

Table C.30: Smokers property 6 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 563 0.82 4,560 210.18 4,560
3 13,865 1.79 OOM ∗288,447

Table C.31: Smokers property 7 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 479 0.81 4,535 336.70 4,124
3 11,747 1.52 OOM ∗812,111
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Table C.32: Smokers property 8 with FLAVERS

Monolithic Generalized Best
Size States Time States Time States

2 127 0.78 173 1.01 173
3 425 0.89 281 1.12 281
4 937 0.97 419 1.35 419
5 1,757 1.36 587 1.83
6 2,957 2.02 785 2.20
7 4,609 2.46 1,013 3.11
8 6,785 4.03 1,271 4.37
9 9,557 5.83 1,559 7.00
10 12,997 9.99 1,877 10.47
20 99,977 321.78 6,707 201.86
30 332,957 2,750.24 14,537 1,420.56
32 403,410 27,833.92 16,463 1,942.04
33 OOM 17,471 2,380.88
35 OOM 19,577 3,122.41

C.2 LTSA Data

C.2.1 Chiron Single

Table C.33: Chiron Single property 1 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 137 2.18 54 2.37 54
3 638 3.55 422 3.14 422
4 2,535 4.85 2,021 5.12 2,021
5 40,127 31.42 42,071 31.47
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Table C.34: Chiron Single property 2 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 137 2.23 54 2.35 54
3 638 2.99 423 3.17 423
4 2,535 5.02 2,022 5.05 2,022
5 40,127 31.59 42,072 32.82

Table C.35: Chiron Single property 3 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 202 2.29 64 2.36 64
3 908 2.96 679 3.14 679
4 3,448 4.85 3,062 5.11 3,062
5 54,667 31.41 63,262 33.57

Table C.36: Chiron Single property 4 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 195 2.27 59 2.42 59
3 820 2.95 583 3.14 583
4 3,117 4.77 2,672 4.99 2,672
5 47,523 31.62 52,504 33.27

Table C.37: Chiron Single property 5 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 137 2.30 54 2.42 54
3 638 3.07 422 3.20 422
4 2,535 4.86 2,021 4.94 2,021
5 40,127 31.14 42,071 31.52
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Table C.38: Chiron Single property 6 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 137 2.24 54 2.29 54
3 638 2.96 423 3.09 422
4 2,535 5.03 2,022 5.30 2,021
5 40,127 31.53 42,072 32.74

Table C.39: Chiron Single property 7 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 150 2.33 62 2.42 62
3 662 3.08 654 3.02 654
4 2,579 4.80 3,089 5.24 3,089
5 40,238 31.75 63,893 33.29

Table C.40: Chiron Single property 9 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 137 2.32 54 2.30 54
3 638 2.90 422 3.14 422
4 2,535 4.97 2,021 5.11 2,021
5 40,127 32.16 42,071 31.56
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C.2.2 Chiron Multiple

Table C.41: Chiron Multiple property 1 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 794 1.00 176 1.16 176
3 2,974 1.13 1,122 1.23 802
4 10,920 1.44 5,559 1.49 1,513
5 126,067 3.25 129,228 3.10

Table C.42: Chiron Multiple property 2 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 794 1.02 200 2.91 200
3 2,974 1.13 2,770 11.54 1,241
4 10,920 1.44 18,638 40.57 3,629
5 126,067 3.41 OOM

Table C.43: Chiron Multiple property 3 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 1,150 1.10 265 2.86 265
3 3,984 1.13 2,736 12.57 1,096
4 13,798 1.50 18,370 46.02 1,862
5 156,746 3.55 138,537 218.60
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Table C.44: Chiron Multiple property 4 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 1,072 1.02 238 1.12 238
3 3,693 1.13 1,122 1.23 1,003
4 12,919 1.47 5,559 1.50 1,752
5 144,052 3.39 129,228 3.08

Table C.45: Chiron Multiple property 5 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 794 1.16 176 1.12 176
3 2,974 1.12 1,122 1.23 802
4 10,920 1.51 5,559 1.52 1,513
5 126,067 3.31 129,228 3.01

Table C.46: Chiron Multiple property 6 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 794 1.01 176 1.13 176
3 2,974 1.14 1,122 1.24 802
4 10,920 1.46 5,559 1.53 1,513
5 126,067 3.24 129,228 3.07

Table C.47: Chiron Multiple property 7 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 874 1.02 395 1.07 395
3 3,189 1.13 1,990 1.27 1,325
4 11,359 1.43 5,625 1.57 4,131
5 127,790 3.29 63,985 3.17
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Table C.48: Chiron Multiple property 9 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 794 1.01 176 1.13 176
3 2,974 1.12 1,122 1.24 802
4 10,920 1.50 5,559 1.57 1,513
5 126,067 3.35 129,228 3.08

C.2.3 Gas Station

Table C.49: Gas Station property 1 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 117 1.06 272 1.19 272
3 825 1.19 2,752 1.34 1,932
4 4,905 1.40 26,624 1.71 11,882
5 25,893 1.86 249,856 4.25
6 125,469 3.47 2,293,760 41.74
7 570,321 8.51 20,709,376 1,749.56
8 2,467,665 37.46 OOM
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Table C.50: Gas Station property 2 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 117 1.06 272 1.22 272
3 825 1.17 2,752 1.32 1,932
4 4,905 1.40 26,624 1.63 11,882
5 25,893 1.91 249,856 4.22
6 125,469 3.42 2,293,760 42.78
7 570,321 8.72 20,709,376 1,759.91
8 2,467,665 36.03 OOM

Table C.51: Gas Station property 3 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 117 1.05 272 1.18 272
3 825 1.17 2,752 1.45 1,932
4 4,905 1.63 26,624 1.99 11,882
5 25,893 1.95 249,856 4.26
6 125,469 3.49 2,293,760 42.92
7 570,321 8.92 20,709,376 1,751.77
8 2,467,665 36.90 OOM

Table C.52: Gas Station property 4 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 117 1.07 899 1.19 899
3 825 1.19 7,082 1.34 7,082
4 4,905 1.41 30,935 1.70 30,935
5 25,893 2.05 97,004 2.50
6 125,469 3.46 246,347 4.59
7 570,321 8.49 540,854 13.41
8 2,467,665 36.13 4,782,969 122.26
9 10,267,965 294.72 OOM
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C.2.4 Peterson

Table C.53: Peterson property 1 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 52 4.42 130 7.03 130
3 2,857 3.68 924,345 359.20 924,345

C.2.5 Relay

Table C.54: Relay property 1 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 18 1.51 12 1.07 12
3 55 0.90 125 1.17 42
4 144 1.05 412 1.83 112
5 349 1.04 1,159 2.73 244
6 810 1.04 3,020 3.45
7 1,831 1.08 7,652 4.50
8 4,068 1.09 18,608 7.12
9 8,929 1.20 43,856 14.16

C.2.6 Smokers

Table C.55: Smokers property 1 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 41 0.99 115 20.39 115
3 97 1.08 1,681 83.44 1,681
4 181 1.22 55,453 557.38
5 296 1.33 OOM
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Table C.56: Smokers property 2 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 41 1.02 80 41.14 80
3 97 1.12 OOM 1,681
4 181 1.19 OOM

Table C.57: Smokers property 3 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 41 1.01 96 12.79 96
3 97 1.06 1,681 46.94 958
4 181 1.22 55,453 153.54
5 296 1.32 OOM

Table C.58: Smokers property 4 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 41 1.02 96 12.67 96
3 97 1.09 1,681 43.44 958
4 181 1.18 55,453 119.17
5 296 1.32 2,458,887 386.87
6 445 1.55 OOM

Table C.59: Smokers property 5 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 41 1.10 95 6.54 95
3 97 1.10 1,087 108.23 958
4 181 1.22 OOM
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Table C.60: Smokers property 6 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 41 1.01 132 13.67 132
3 97 2.12 1,681 71.65 958
4 181 1.22 55,453 221.80
5 296 1.35 OOM

Table C.61: Smokers property 7 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 41 1.03 96 1.13 96
3 97 1.07 900 1.27 900
4 181 1.22 22,464 1.64
5 296 1.33 691,488 8.78
6 445 1.55 25,165,824 1,387.08

Table C.62: Smokers property 8 with LTSA

Monolithic Generalized Best
Size States Time States Time States

2 41 1.01 88 1.13 88
3 97 1.10 1,000 1.26 900
4 181 1.22 20,736 1.58
5 296 1.31 537,824 9.33
6 445 1.57 16,777,216 634.20
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for automated compositional verification through learning. In Proceedings of the
Second Workshop on Specification and Verification of Component-Based Systems,
pages 14–21. September 2003.

[15] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical Com-
puter Science, 96(1):217–248, 1992.

[16] Guillaume Brat, Ewen Denney, Dimitra Giannakopoulou, Jeremy Frank, and Ari
Jónsson. Verification of autonomous systems for space applications. In Proceedings
of the IEEE Aerospace Conference. March 2006.

[17] Guillaume Brat, Dimitra Giannakopoulou, Allen Goldberg, Klaus Havelund, Mike
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Păsăreanu, Robby, and Hongjun Zheng. Bandera: Extracting finite-state models
from Java source code. In Proceedings of the 22nd International Conference on
Software Engineering, pages 439–448. June 2000.

[40] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth ACM Symposium on Principles of Programming
Languages, pages 238–252. January 1977.

[41] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-sensitive program verifica-
tion in polynomial time. In Proceedings of the 2002 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 57–68. June 2002.

[42] Matthew B. Dwyer. Modular flow analysis for concurrent software. In Proceedings
of the Twelfth IEEE International Conference on Automated Software Engineering,
pages 264–273. November 1997.

142



[43] Matthew B. Dwyer, Lori A. Clarke, Jamieson M. Cobleigh, and Gleb Naumovich.
Flow analysis for verifying properties of concurrent software systems. ACM Trans-
actions on Software Engineering and Methodology, 13(4):359–430, October 2004.

[44] Matthew B. Dwyer, John Hatcliff, Robby Joehanes, Shawn Laubach, Corina S.
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