
Flow Analysis for Verifying Speci�cations of Concurrent and

Distributed Software �

Matthew B. Dwyer Lori A. Clarke

Dept. of Computing and Info. Sciences Dept. of Computer Science

Kansas State University University of Massachusetts

Manhattan, KS 66506 Amherst, MA 01003

dwyer@cis.ksu.edu clarke@cs.umass.edu

August 23, 1999

Classi�cation

D.2.4 Software/Program Veri�cation, D.1.3 Concurrent Programming, D.3.4 Processors

Abstract

This paper presents FLAVERS, a �nite state veri�cation approach that analyzes whether concurrent or
sequential programs satisfy user-de�ned correctness properties. In contrast to other �nite-state veri�ca-
tion techniques, FLAVERS is based on algorithms with low-order polynomial bounds on the running time.
FLAVERS achieves this e�ciency at the cost of precision. Users, however, can improve the precision of
the results by selectively and judiciously incorporating additional semantic information into the analysis
problem.

The FLAVERS analysis approach has been implemented for programs written in Ada. We report on an
empirical study of the performance of applying the FLAVERS/Ada tool set to a collection of multi-tasking
Ada programs. This study indicates that su�cient precision for proving program properties can be achieved
and that the cost for such analysis grows as a low-order polynomial in the size of the program.

1 Introduction

The application of distributed and concurrent programming technology has moved from special purpose
database and operating systems into the programming mainstream. This movement is motivated by increas-
ingly demanding system performance requirements. Incorporating concurrency in software, however, greatly
complicates the problem of reasoning about the correctness of an application. To combat this, cost-e�ective
analysis techniques should be developed to help developers gain con�dence in the quality of their concur-
rent software. In this paper, we present such an analysis approach, called FLAVERS (FLow Analysis for
VERifying Speci�cations), that uses cost-e�ective program
ow analysis techniques to analyze user-speci�ed

�This work was supported by the Advanced Research Projects Agency under Grant MDA972-91-J-1009, the O�ce of Naval
Research under Grant N00014-90-J-1791, and the National Science Foundation under Grants CCR-9633388, CCR-9703094, and
CCR-9708184.

1

correctness properties of concurrent programs. Although FLAVERS is applicable to a wide range of distribu-
tion and concurrency models, as well as sequential systems, in this paper we discuss analysis of programs with
explicit tasking and rendezvous communication and illustrate our approach using Ada tasking programs.

With FLAVERS, developers de�ne a set of program events that they want to reason about and specify
properties of concurrent programs as patterns of those program events. They then choose whether the
analysis should attempt to verify that all or no program executions satisfy the given property. At the core of
FLAVERS is a polynomial-time, conservative
ow analysis algorithm whose results can be used to address
such questions. This algorithm operates on a graph model of concurrent program behavior that explicitly
represents inter-task communication, synchronization, and statement ordering.

As we demonstrate, it is possible to perform very e�cient
ow analyses with FLAVERS. The utility of
such analyses should be judged not by e�ciency alone, however, but also by the precision of the results
they produce. To overcome the traditional imprecision of static analysis, we have developed an approach
for improving the precision of the results. The underlying principle of this approach is to conduct a series
of analyses, where each individual analysis incorporates increasing amounts of information about executable
program behavior as it is revealed to be needed. We use constraints to represent this semantic information,
where such constraints typically provide information about the feasibility of particularly relevant paths in
the program model. The series of analyses progresses from inexpensive analyses of, perhaps, limited precision
to, perhaps, increasingly expensive analyses capable of providing higher levels of precision, until terminating
after su�ciently precise results have been obtained.

Another approach used to improve performance and precision of FLAVERS' analyses is to re�ne the
program model on which the analysis is based by eliding unnecessary information while retaining all the
information necessary for verifying a speci�c property. A strength of FLAVERS is its ability to combine a
collection of re�nements and constraints so as to increase precision without making analysis time impractical.
Other static analysis techniques might also pro�t by adopting a similar approach for specializing the program
model and analysis algorithms.

A tool set that supports the analysis of �nite-state speci�cations of Ada tasking programs has been
constructed. The tool set, called FLAVERS/Ada, has been used to analyze a variety of distributed and
concurrent Ada applications [Cha96], as well as individual components of concurrent applications [Dwy97],
communication protocols [NCO96], and architectural speci�cations [NACO97]. It has also been applied in
industrial settings for analyzing properties of advanced distributed simulation systems [BMD96] and for
demonstrating the adherence of such systems to high-level architectural requirements [SAIC97].

FLAVERS makes a number of contributions to
ow analysis and concurrency analysis research:

� it provides a polynomial-time concurrency analysis technique for proving user-speci�ed properties,

� it introduces an incremental process though which analyses of increasing precision can be constructed,
and

� it demonstrates, through empirical evaluation, that low-cost, high-precision
ow analysis is practical
for verifying concurrent systems.

To establish the context for our presentation, the next section describes related work and discusses simi-
larities and di�erences between prior research and our approach. Section 3 follows with a high-level overview
of the FLAVERS approach and introduces each of the major components of a FLAVERS analysis. We
then focus on each of these components in turn. Section 4 presents the model of program behavior that
serves as the basis for our
ow analysis. Section 5 describes the formalism for specifying properties to be
analyzed. Section 6 presents the
ow analysis algorithm that lies at the core of FLAVERS' approach for
checking the speci�cation against the program model. In Section 7, we describe the constraint mechanism
for improving performance and the precision of the analysis results. After having described the FLAVERS
analysis approach, in Section 8 we present data gathered from applying the FLAVERS/Ada tool set to the
analysis of a collection of concurrent Ada applications. Section 9 summarizes the major contributions and
discusses future directions.

2

(1, -, -)

(2,17,-)

(3,17,1)

(4,18,1)

(5,18,1)

(4,19,2)

(2,1,-)

(3,1,1)

(5,2,1)

(6,2,-)

(2,0,-)

(3,0,-)

(6,0,-) (4,2,1)

(3,18,2)(3,2,1)

6) ...

2) read(x);
3) for i in 1 .. x loop
4) x := x + 1;
5) end loop;

1) begin

(1, ...)

(2, ...)

(3, ...)

(4, ...)

(5, ...)

(6, ...)

Program Fragment Control Flow GraphComputation Tree

Figure 1: Program Models

2 Background and Related Work

FLAVERS applies
ow analysis to reason about properties of sequential or concurrent software. It can be
considered a �nite state veri�cation technique in that it attempts to prove properties without using the full
power of theorem proving and instead reasons over a �nite model of a program's behavior. Consequently,
FLAVERS builds on and is related to work in
ow analysis and �nite state veri�cation. We discuss the
principles of static program analysis, in general, and then describe related work in these two areas in order
to establish the context for our research.

2.1 Terminology

Static program analysis techniques attempt to determine truths about a program's behavior without exe-
cuting the program. Such techniques can be considered compile time analyses and are independent of the
execution of any particular test data. Finite state veri�cation techniques are static analysis techniques that
attempt to prove that the executable behavior of a program is consistent with a speci�cation of its intended
behavior. Finite state veri�cation techniques are usually not as powerful as theorem proving techniques but
can prove a wide range of interesting properties and are usually more tractable.

There are two primary components of any (�nite state) veri�cation analysis: a model of the executable
program behavior and a speci�cation of the intended program behavior or program property. Finite state
veri�cation techniques compare a �nite model program model of the program's relevant executable behavior
to a property speci�cation to verify if the program's executions are consistent with this property.

Program models must accurately re
ect the semantics of the implemented system. Most program models,
however, are designed to approximate the system's semantics in order to educe their complexity and thereby
enable e�cient analysis. There are two kinds of information that a model captures: control and data states.
A control state indicates the program operations which can be executed next, e.g., they can be thought of as
program location counters. A data state indicates the current values of program variables. Approximations
can be formed by projecting or abstracting the program's control and data states. One common class of
models that we rely on in our work are control
ow graphs (CFGs), which represent control states explicitly
and, usually, do not store information about data states. To clarify the nature of the approximation in this

3

kind of model, consider Figure 1 which illustrates a program fragment, a part of its computation tree [Mil79],
and a CFG for the fragment. Each node of the computation tree is a triple (ctl; x; i), where ctl is the statement
number, x is the value of variable x, which for this example is assumed to be greater than or equal to zero,
and i is the value of variable i. This example illustrates several important issues related to program models.
For each path in the computation tree there exists a path in the CFG. Note, however, that many paths in
the computation tree may map to the same path in the CFG and that there may exist paths in the CFG that
do not correspond to computation tree paths. To illustrate this latter point consider a Boolean predicate
that, because of previous computation, always evaluates to the constant true. The computation tree would
have no paths where this predicate evaluates to false, but the CFG may represent both possible conditional
edges emanating from the node representing the conditional predicate. Thus, the CFG approximates the
computation tree by representing additional behaviors, which do not correspond to any program execution.
Such spurious executions are called infeasible paths. We say that the CFG overestimates program behavior.
There are other possible approximations. For example, a model could represent only some of the computation
tree paths while containing no information not in the computation tree, thereby underestimating program
behavior. Most �nite state veri�cation techniques, including FLAVERS, use models that overestimate the
program behavior related to the property of interest. We say that such models are conservative or safe with
respect to the set of all program behaviors related to a speci�ed property.

The example CFG in Figure 1 eliminates all data components and preserves all control state components.
Depending on the analysis, we may wish to encode partial data state information in the CFG. Alternatively
we may only require partial control state information to perform an analysis. For example, for reaching
de�nitions analysis we are interested only in read and write operations on data and do not need to represent
the semantics of other program operations. This type of property-speci�c model can signi�cantly reduce the
size of the program model and thus reduce the cost of analysis while preserving information that is necessary
for safe analysis.

Speci�cations are also often classi�ed according to the kinds of properties they address. For example, a
reachability property speci�cation can be described as paths leading from the root of the computation tree
to nodes whose state satis�es the required conditions. The best studied property of concurrent software,
freedom from deadlock, is an example of a reachability property. Often, instead of specifying conditions for
individual reachable states, a property speci�cation is de�ned in terms of sequences of states or events that
transition between states.

Speci�cations are often classi�ed as describing safety or liveness properties. A safety property asserts that
no pre�x of a program execution enters a particular state (or contains a particular pattern of states or events).
A liveness property asserts that a program execution should be able to continually enter a particular state (or
repeat a particular pattern of states or events). Liveness properties apply to in�nite program executions. A
related, but �nite, notion is that of a bounded liveness property. Such properties refer to regions of execution
that are bounded by a pair of designated program states (or events), within which it must be possible to
continually enter a particular program state (or repeat a particular pattern of states or events). To date,
we have focused on using FLAVERS to verify properties of �nite executions, such as safety and bounded
liveness properties.

A wide variety of speci�cation formalisms for describing the intended behavior of concurrent systems
have been developed, such as temporal logics [Pnu85, CES86], automata-based formalisms [ABC+91, Kur85,
OO90], Petri nets [Mur89], and program algebras and calculi [BK84, Mil79]. Unfortunately, reasoning using
the most general of these formalisms can be ine�cient. Since a large, practical class of properties, including
safety and bounded liveness, are captured by the much simpler theory of regular expressions and �nite
automata [DAC99], we will analyze speci�cations in this less general but more practical setting. In fact, if
we are interested in arbitrarily long but �nite program executions, such as executions that terminate, regular
languages are as expressive as temporal logics [Wol83].

Limiting properties to this restricted (albeit useful) class, one can determine a conservative program model
and formulate a conservative analysis over that model. For such analyses a positive analysis result implies
that the speci�ed property holds for the program; we call such a result conclusive. Conservative analyses do
not provide for conclusive negative results. If an analysis says that a speci�ed property fails to hold then

4

either the property fails to hold for the program or for some infeasible behavior in the program model. These
negative results are termed inconclusive. While such results might be undesirable, there is no alternative to
reasoning about approximate program models since the computation tree is much too large to construct in
general.

2.2 Flow Analysis of Sequential Software

Program
ow analysis was originally developed to enable optimizing compilers to generate e�cient code
[ASU85]. In
ow analysis, speci�c patterns of behavior are analyzed by computing the �x-point of a relation
de�ned over CFG nodes. While a CFG typically encodes only simple control information, the relations can
encode additional data and control information. Examples of patterns of behavior include classic compiler
optimization analyses such as reaching de�nitions, live variables, available expressions, and constant prop-
agation [ASU85], and analyses that support validation and veri�cation [FO76, How86, OO92]. Data
ow
frameworks [Hec77, MR90] are one means of formulating a speci�c
ow analysis. For the broad class of
problems with monotone bounded frameworks, convergence of the �x-point computation is guaranteed by
use of general iterative solution algorithms [Hec77]. We use a bounded monotone framework in the analysis
at the core of FLAVERS and describe this algorithm in Section 6.

FLAVERS uses an approach that combines multiple
ow analyses into a single analysis [CC95, HR81,
WZ91]. Combining multiple dependent
ow analyses into a single
ow analysis o�ers the potential to
improve the precision of analysis results, for example, by eliminating some infeasible paths. In some cases
the combined problem is actually less costly to execute than the constituent problems. Our combined
analysis, based on �nite-state automata, provide a simple approach to constructing quali�ed
ow analyses
[HR81] that has been e�ective in practice.

Flow analysis techniques for validation were originally applied to detect potential anomalies in sequential
code in the Dave system [FO76]. This approach used a �xed set of
ow analyses formulated to detect a
�xed set of anomalies. The Cecil/Cesar system [OO90, OO92] generalized this approach by providing a
single parameterized
ow analysis, called state propagation analysis, that could be instantiated to detect a
broad range of anomalies, including user de�ned anomalies. FLAVERS builds on this work by extending the
analysis to concurrent programs and by incorporating a variety of mechanisms to increase the precision of
the analysis results.

2.3 Concurrency Analysis

Most conservative concurrency analysis approaches assume an interleaving model of execution, where all
possible orderings of a program's actions are taken into account. The computation tree is an interleaving
model, but as noted, it is too large to be used as the basis for analysis. Reachability graphs, which can be
derived by explicitly modeling all the syntactically correct interleaved traces through a collection of CFGs
[Tay83b], are one of the most commonly used program models [Hol88, SMBT90, YTL+95]. Unfortunatley,
the size of the reachability graph and consequently the cost of searching the graph increases exponentially
with program size[Tay83a]. As with a CFG, we can choose to model components of the program data state
explicitly in the reachability graph, but this will further increase the size of the reachability graph.

To increase the applicability of reachability analysis, researchers have investigated a variety of techniques
including: reducing the state space based on the property being analyzed [DBDS93, GW91, Val90], building
and analyzing the state space compositionally [CPS93, YY91], and using a symbolic representation of the
state space [McM93]. Although none of these techniques have been able to reduce the worst-case complexity
of analysis to be sub-exponential, each technique has been successfully applied to selected programs.

An alternative line of research has focused not on reasoning explicitly about the program state space,
but on reasoning about necessary conditions for sequences of program actions to be contained in a program
execution. Using such conditions, this analysis formulates a proof-by-contradiction by attempting, and
failing, to prove the negation of a property. INCA [ABC+91] uses this approach by encoding the negated
property and necessary conditions as linear inequalities whose solutions determine satisfaction of the property.

5

While this technique has exponential bounds on its running time, it has been successfully applied to a number
of programs and allows for practical analysis of very large versions of those programs [Cor96].

Model-checking approaches [CES86, Hol97] view program executions as sequences of states that corre-
spond to interpretations of a �nite set of propositions. A program property is speci�ed as a temporal logic
formula. The model-checking algorithm systematically computes the set of sub-formula of the speci�ca-
tion that are valid for the program, thereby arriving at a determination of the validity of the speci�cation.
The performance of early model-checking approaches su�ered because the set of state sequences grows ex-
ponentially with program size. More recently the basic approach of model-checking has been adapted to
symbolic program models, which often yield smaller state space representations but are still exponential in
the worst-case [McM93].

While the bulk of
ow analysis research has been aimed at sequential software, interesting recent work has
applied
ow analysis to the evaluation of concurrent software [CKS90, DS91, GS93, Mas93, RS90]. Most of
this work has been directed at the analysis of a restricted class of behaviors, such as deadlock, and does not
require representations of interleavings among the actions in separate tasks. These analyses use
ow graph
models that are, essentially, a collection of task CFGs with additional edges, or labels, to represent inter-task
synchronization and communication. These include analyses to detect the potential for statements to execute
concurrently [CKS90, DS91, MR93, Mer92, NA98, NAC99b], data races [TO80, NM90], reaching-de�nitions
[GS93], and dead-code [RS90, CK93]. Knoop et. al. [KSV96] have shown that for a class of rapid bit-vector
problems, a
ow graph without explicit interleavings is conservative.

For more general analysis, however, interleavings need to either be modeled in the graph or incorporated
into the analysis algorithm. Interleavings occur, implicitly, when program tasks asynchronously execute local
actions. In representing a sequence of actions executed across a collection of tasks, we must account for the
fact that tasks may execute at di�erent speeds or that scheduler decisions may cause di�erent orderings
of actions among the tasks. For a
ow graph to model the set of all executions of a concurrent program
conservatively, it must explicitly represent all possible such interleavings, or the analysis algorithm must be
modi�ed to derive and use this information. The
ow graph model used in FLAVERS, and described in
Section 4, explicitly but compactly represents these interleavings through the use of additional edges.

In their approach for checking deadlock freedom in Ada tasking programs, Masticola and Ryder [Mas93]
incorporate an approach for re�ning the program model that is similar in spirit to the re�nements described
in Section 4. In their approach, they use
ow analyses [MR93] to re�ne the program model prior to the
�nal analysis, thereby increasing the precision of the analysis results. Our approach di�ers from that of
Masticola and Ryder in that we advocate selective application of a more comprehensive set of re�nements,
apply re�nements only a single time, further improve precision through the use of feasibility constraints, and
support analysis of a wide class of properties as opposed to just deadlock.

The relationship between model-checking and
ow analysis is very strong; both involve a �x-point com-
putation of a relation that encodes a speci�ed property. At an abstract level, Ste�en [Ste93] and Schmidt
[Sch98] have shown that
ow analyses can be formulated as model-checking problems and vice versa. Practi-
cally speaking, model checking techniques depend on the analyst coming up with an accurate and relatively
concise model of the program. Traditionally,
ow analyses have relied on a systematic mechanism for ab-
stracting program information. If it is determined that this abstraction does not lead to analysis results
that are su�ciently precise for the property being evaluated, then FLAVERS provides a mechanism for
incorporating additional information into the representation that is intended to increase the accuracy of the
results. Similar approaches have also been investigated for model-checking techniques [DS97, DP98].

FLAVERS is an application of
ow analysis research to the veri�cation of properties of concurrent (and
sequential) systems. At its core is an extension to the state propagation analysis proposed by Olender and
Osterweil [OO90], over a novel program model that explicitly and compactly represents interleaving. The
FLAVERS tool set is designed to provide the ability to combine di�erent
ow analyses. These combined
analyses can be incorporated into state propagation analysis to improve the overall precision of the analysis
results. This
exible, incremental approach to analysis allows FLAVERS to use an e�cient polynomial-
time
ow analysis to address concurrency analysis questions that, to date, have required exponential-time
techniques.

6

Constraints

Specification
 Translator

RefinementsProgram Program
 Translator

Refined
 TFG

ResultsState Propagation

Specification

PA

TFG

Figure 2: Architecture of FLAVERS

3 Overview

Figure 2 illustrates the major components in the FLAVERS architecture. Analysis with FLAVERS consists
of the following steps:

� Extracting a model of executable behavior from a given program. This model is called a Trace Flow
Graph (TFG).

� Re�ning the model to decrease its size and to more accurately re
ect executable program behavior.

� Constructing a representation of the speci�cation to be checked. This representation is called a Property
Automaton (PA).

� Executing the state propagation
ow analysis algorithm with the model and behavior representation
as inputs.

� Presenting the results of that algorithm to the user.

� If necessary incorporating constraints into the analysis and re-executing.

The analysis results may demonstrate conclusively that the speci�cation is consistent with the program.
Alternately, the results may fail to provide such conclusive information; this can happen either because a
fault in the program causes some executable behavior to be inconsistent with the speci�cation or because the
analysis is imprecise. In the former case, if a program fault is apparent it can be �xed and the analysis can
be rerun. In cases where the program fault is not obvious or where imprecision is the cause of an inconclusive
analysis result, incorporating constraints can be helpful. This last step of incorporating additional constraints
can be performed multiple times, thereby providing an incremental approach for increasing precision and
analysis cost. In the remainder of this section we brie
y describe each of the components of the FLAVERS
architecture.

Modeling Program Executions

Analysts may wish to reason about the execution of an application from a variety of perspectives. For
example, they may be interested in determining whether some statement in a program uses a variable whose
value is uninitialized; in this case they are interested in the de�nitions and uses of program variables. They
may be interested in determining that whenever a read or write operation on a �le abstraction is called, the
�le has been opened and will subsequently be closed; in this case users are interested in events that correspond
to calls on the operations of the �le abstraction. To address this variation in user focus, FLAVERS allows
users to de�ne events. Events are observable, indivisible program actions, such as the de�nition or use of a

7

variable, that are of interest to the analysis at hand1. Indivisible is de�ned with respect to the events. Thus,
a complex expression could be de�ned as a single event if no other events of interest can be interleaved with
this expression. The events are used to construct the model of program behavior as well as to formulate the
properties.

To reason about the set of possible program executions we need a semantically well-founded model of
those executions. This model need not represent all the details of the program executions, but it must
represent su�cient information to support the desired conservative analyses. For FLAVERS this implies
that the TFG program model must represent all sequences of program events that correspond to feasible
program executions. Thus, a node in the TFG either represents important
ow of control information or
represents some program action that corresponds to an event of interest, or both. Hence, a statement in a
program need not be modeled or it may be modeled by multiple nodes depending on the events of interest.

There are a variety of mechanisms for de�ning the mapping between program actions and events. For
example, FLAVERS automatically de�nes some events, such as inter-task communication, and lets analysts
de�ne others through the use of stylized comments embedded in the program text.

To assure conservativeness, the TFG may overestimate the executable sequences of program events, and
in doing so may include some infeasible sequences. The re�nements in Figure 2 can be used to eliminate
some of these sequences as well as to reduce the size of the TFG and thereby reduce the cost of the analysis.
Re�nements are similar in spirit to the analyses and transformations of the internal representations used in
optimizing compilers. FLAVERS, however, is not constrained by a desire to produce results in a matter of
seconds. Thus, FLAVERS can apply more sophisticated re�nements than might be considered in a compiler
in order to increase the precision of the model and the results of subsequent analyses.

Property Speci�cations

Properties are speci�ed as sequences over the set of observable events. In the current implementation of
FLAVERS, such sequences are speci�ed as regular expressions. These regular expressions are translated into
the PA, a deterministic �nite state automaton (DFSA). In practice, any formalisms that can be converted to
a DFSA, for example graphical interval logic [DKM+94], could be used to describe properties in FLAVERS.
Although fundamentally limited to expressing arbitrarily long, but �nite, sequences of events, we have found
that a wide range of interesting properties of concurrent programs can be e�ciently represented as DFSAs.
In addition to specifying sequences of events, the user must indicate to FLAVERS whether to check that
the property characterizes all program executions or, alternatively, whether it characterizes no program
execution.

State Propagation Analysis

FLAVERS castes the question of whether program behavior is consistent with a property as a state prop-
agation
ow analysis problem [OO90]. We have adapted this algorithm to apply it to concurrent programs
and have extended it to incorporate constraints. This algorithm avoids enumerating all feasible sequences
of program events by collapsing them into equivalence classes based on the structure of the property being
analyzed. The result is an analysis whose complexity grows as a polynomial in the number of TFG nodes
and that computes a conservative answer to the analysis question. Conclusive analysis results provide as
high-assurance as any other formal veri�cation method. Inconclusive analysis results provide information
about the source of the program faults or about imprecision in the program model that should be eliminated
in order to improve the precision of the results.

1For the purpose of this paper, we assume that all subprogram invocations are expanded inline and that program tasks are
de�ned statically. Thus, procedure invocations and returns may be marked by distinguishing events.

8

Increasing Precision

The state propagation algorithm trades a reduction in precision for a reduction in the cost of analysis. A
distinguishing feature of FLAVERS, and one of its major strengths, is the ability to modify this cost-precision
tradeo�. To gain e�ciency the program model and state propagation algorithm over-approximate the event
sequences of the system under analysis. Constraints that encode semantic information about program data
and control states can be added to sharpen this approximation. This allows the state propagation algorithm
to avoid considering some infeasible event sequences. It is important to note that FLAVERS is capable of
producing conclusive analysis results even when some infeasible sequences remain in the model. Constraints
are only necessary when there is an infeasible sequence that is inconsistent with the property being analyzed;
elimination of those sequences will enable conclusive results to be produced.

4 A Model of Distributed Program Execution

In principle, a program may manipulate data that can range over an in�nite set of values. Thus, in general,
the precise execution behavior of a software system cannot be captured by a �nite-state model. To enable
e�cient analysis of complex software we use an abstract �nite-state model of program execution behavior
constructed in such a way that information that is relevant to a desired analysis is preserved in the model.
In this section we describe the TFG model, demonstrate that the model is small and easy to construct, and
show that it supports conservative state propagation analysis. Since the TFG over-approximates the set of
possible sequences of program events that could occur in a program execution, we also discuss re�nements
that can improve the precision of this over-approximation.

4.1 Denoting Program Behavior

In order for FLAVERS to check a speci�cation against modeled program behavior, both must be de�ned
using a common semantic foundation. We do this by de�ning a common set of symbols to which program
actions can be mapped and with which speci�cations will be formulated.

De�nition 1 An event alphabet, � = f�; a; b; c; : : :g, is a �nite set of symbols, where each symbol, a; : : :,
in � models a unique program action. The symbol � is an element of all event alphabets; it stands for the
occurrence of some program actions that are not explicitly modeled for a given analysis.

The alphabet de�nes the scope and granularity for both the program model and the property speci�cation.
Users identify the actions of the program that they are interested in reasoning about and specify an event
name for each that is then bound to each node in the TFG that represents such an action. For simplicity in
the state propagation algorithm, we require that each node has only one event associated with it; thus the
granularity of the nodes is determined by the granularity of the actions associated with an event. In this
setting, the TFG de�nes a language of strings over � where each string corresponds to a possible program
execution. We refer to such strings as program traces and the alphabet over which the strings are de�ned
is either stated explicitly or can be inferred from the context. Similarly, speci�cations de�ne a language of
strings over �.

4.2 Trace Flow Graph

TFGs are de�ned in terms of CFGs for each task in the program We assume that a CFG for a task is a
conservative (or safe) approximation of the possible sequences of actions that a task could execute [MR90].
A CFG is assumed to be de�ned such that the action associated with a node immediately precedes the action
associated with another node if there exists a control
ow edge from the �rst to the second. More generally
an action may precede another if there is some path from the �rst to the second. To verify a property about
events, state propagation analysis must consider all possible orderings of those events as allowed by the
program. A CFG, where each node is annotated with the associated event, provides a program model that

9

is adequate for analyzing sequential programs. For concurrent and distributed programs this is not the case,
since nodes may be ordered both within a single task, as in a CFG, and across task boundaries. A TFG is
formed from the collection of CFGs for all the tasks in the program, with the addition of nodes to represent
inter-task synchronization actions and edges to represent the inter-task orderings between nodes in di�erent
tasks. We do this in such a way that the annotated TFG for a program represents each possible sequence of
events that could occur in the program as a path in the graph. Conceptually, the TFG is de�ned as:

� a forest of CFGs, one for each task in the program

� additional nodes to represent inter-task synchronization and communication actions

� additional edges to represent inter-task event orderings

We consider each of these in turn and build up the de�nition of a TFG in three steps.

Task CFGs

For simplicity we assume that distributed systems are made up of tasks, executing as separate threads of
control. A task, Ti, has a CFG, (Ni; Si; Fi; Ei; Li) where each node Ni represents an action2, Si and Fi
are elements of Ni that represent the unique nodes associated with the �rst and last actions in the task,
respectively, Ei � Ni �Ni are edges describing that on some potential execution the action associated with
the �rst node immediately precedes the action associated with the second, and Li relates a node Ni to
the symbol denoting a program action. The TFG is formed from the collection of CFGs so that the local
nodes and local control edges of a TFG are the union of all the CFG nodes and the union of all of the CFG
edges, respectively. The label associated with a TFG node is the same as the label associated with the
corresponding CFG node if the action is an element of the event alphabet, and � otherwise.

Inter-task Nodes

For concurrent and distributed software it is often necessary to model the synchronization of multiple pro-
gram tasks. For example, with the Ada rendezvous, a pair of tasks may execute matching communication
statements in the form of a call and an accept of a speci�c task entry. In TFGs we model all potential syn-
chronization actions by adding a communication node between two matching synchronous interactions and
labeling it with an interaction event. For each pair of matching synchronous interactions, x 2 Nj and y 2 Ni

where i 6= j and Lj(x) and Li(y) are symbols for matching interactions, for example callA and acceptA, we
add cfx;yg to N , the set of TFG nodes, with L(cfx;yg) de�ned as a symbol for the synchronization event, for
example A. We refer to the collection of all cfx;yg nodes as Cnodes and the union of the label relations for
those nodes as LCnodes

. In addition to the Cnodes we de�ne nodes S = ninitial and F = nfinal to represent
the initial and �nal events in the execution of a distributed program built from the individual tasks. We
de�ne L(ninitial) = L(nfinal) = � for these new nodes, i.e., (ninitial; �) and (nfinal; �) are in the TFG label
relation.

Inter-task Edges

The communication nodes are connected to interacting tasks by introducing additional edges into the TFG.
For each node cfx;yg 2 Cnodes, replace edge (x; x0) 2 E with (x; cfx;yg) and (cfx;yg; x

0) and replace edge
(y; y0) 2 E with (y; cfx;yg) and (cfx;yg; y

0); we denote the replaced edges with R and the added edges with
Cedges. These edges introduce
ow graph paths that express the ordering of events that either immediately
precede or follow synchronization activities in tasks.

2We assume that the granularity of the nodes in a task CFG depends on the actions associated with the event alphabet. For
example, if evaluation order of arguments for a procedure call are relevant for the analysis, then the CFG must represent the
legal evaluation orders explicitly.

10

For each task CFG, i, we add edges, (ninitial; Si) and (Fi; nfinal), to E to connect the global initial and
�nal nodes to those for the individual tasks.

Up to this point the edges in the TFG have not explicitly represented the possible ordering of events in
di�erent tasks that may execute concurrently. To address this need, TFGs include may immediately precede
(MIP) edges.

Initially, we assume that all pairs of nodes in di�erent tasks require a MIP edge between them. Commu-
nication nodes are considered to belong to both the tasks that they are synchronizing, and thus MIP edges
would not be created between a communication node and any of the nodes in either of the two associated
tasks. Similarly, the initial and �nal program nodes are considered to belong to all tasks and therefore are
not associated with any MIP edges. Thus, for every pair of nodes in di�erent tasks, x 2 Ni and y 2 Nj where
i 6= j, a MIP edge (x; y) is added to the TFG. For each communication node cfx;yg with x 2 Ni and y 2 Nj a
MIP edge is added between this communication node and all TFG nodes not in Ni or Nj . We denote the set
of all MIP edges by M . MIP edges capture the pairwise interleaving of events executing in di�erent tasks.
Explicitly encoding interleavings of pairs of events, rather than of sequences of events, enables construction
of a model that is polynomial in the number of modeled events, rather than exponential. This savings in
model size comes at the expense of precision, since the pairwise interleavings may result in the introduction
of infeasible inter-task event orderings.

Summary of TFG De�nition

We have de�ned the TFG as a
ow graph whose nodes are the nodes of each individual task CFG with addi-
tional synchronous interaction, initial and �nal nodes. The edges of the TFG preserve the local control
ow
edges of the individual CFGs but also include edges to explicitly represent synchronization and interleaving.

De�nition 2 Assume that a program is composed of tasks, where each task, Ti, has a CFG, (Ni; Si; Fi; Ei; Li)
where each node Ni represents an action, Si and Fi represent the unique nodes associated with the �rst and
last action in the task,respectively, Ei � Ni�Ni are edges, and Li relates a node in Ni to a symbol denoting
a program action. Also assume that the set of events � is a subset of the actions labeled in the set of CFGs.
A trace
ow graph is a labelled directed graph (N;S; F;E; L) where:

N = Cnodes [fninitialg [fnfinalg [
[
i

Ni

S = ninitial

F = nfinal

E =
[
i

f(ninitial; Si)g [
[
i

f(Fi; nfinal)g [
[
i

Ei [M [Cedges �R

L = LCnodes
[f(ninitial; �); (nfinal; �)g [

[
i

Li

Concatenating the symbols labelling the nodes visited along the path yields a trace of program events.
The collection of event traces for all such TFG paths approximates, by overestimation, the set of possible
sequences of events that can occur during program execution.

4.3 An Example and its TFG

Figure 3 illustrates a task that operates as a binary semaphore; it presents two communication entries P and
V. The state of the semaphore is maintained by the control state of the task, rather than by a local Boolean
variable. There are two clients that signal the semaphore by way of entry calls onto P and V. Having acquired
the semaphore the clients proceed with some local work, modeled here as the program events work1 and
work2.

11

task body Semaphore is
begin
loop
exit when done;
accept P;
accept V;

end loop;
end Semaphore;

task body Client1 is
begin
loop
exit when done;
Semaphore.P;
null; { Events[work1]
Semaphore.V;

end loop;
end Client1;

task body Client2 is
begin
loop
exit when done;
Semaphore.P;
null; { Events[work2]
Semaphore.V;

end loop;
end Client2;

Figure 3: Ada Tasks for Semaphore Example

" "τ

" "τ

" "τ

" "τ

" "τ

" "τ

" "τ

" "τ

" "τ " "τ

" "τ

" "τ

"semaphore_p"
Node:13

"semaphore_v"
Node:14

Client2:11
"work2""work1"

Client1:5

Client1:6

Client1:7

Semaphore:1

Semaphore:2

Semaphore:3

Initial:17

Client2:9

Client2:10

Node:16
"semaphore_v"

Node:15
"semaphore_p"

Semaphore:4 Client2:12

Final:18

Client1:8

Figure 4: Trace Flow Graph for Semaphore Example

Assuming we are interested in properties that are concerned with the order in which the semaphore's en-
tries can be called and work can occur, there are four program events of interest: Semaphore.P, Semaphore.V,
work1, and work2. The TFG for the example is illustrated in Figure 4 with MIP edges elided to make the
�gure more readable. Communication nodes are depicted as diamonds and labelled with "node", node num-
ber and the communication event3. Local nodes are depicted as rounded rectangles, and each is labeled with
the name of the task it is associated with, its node number, and its associated event. Ovals represent the
initial and �nal nodes, labeled as such along with their assigned node number and � event.

In the semaphore example, the inter-task nodes are the initial and �nal nodes, numbered 17 and 18,
and the communication nodes, numbered 13 thru 15. The other nodes are local nodes, and thus, each is
associated with one task.

Naive construction of MIP edges between all pairs of nodes in di�erent tasks would require 128 such edges
for this example. Figure 5 illustrates the 10 (dashed) MIP edges that occur emanating from node 11. As
we discuss later in this section, we can eliminate MIP edges in cases where we can prove that the pairwise
orderings are either infeasible or are captured by some other path through the TFG.

3The FLAVERS/Ada toolset converts identi�ers to lower-case and replaces "." with " ", to eliminate con
icts with the "."
operator in the regular expression syntax de�ned in Figure~ref�g:qre-syntax.

12

" "τ

" "τ

" "τ

" "τ

" "τ

" "τ

" "τ

" "τ

" "τ " "τ

" "τ

" "τ

"semaphore_p"
Node:13

"semaphore_v"
Node:14

Client2:11
"work2""work1"

Client1:5

Client1:6

Client1:7

Semaphore:1

Semaphore:2

Semaphore:3

Initial:17

Client2:9

Client2:10

Node:16
"semaphore_v"

Node:15
"semaphore_p"

Semaphore:4 Client2:12

Final:18

Client1:8

Figure 5: Semaphore TFG with Node 11's MIP Edges

4.4 Constructing A TFG

Construction of a TFG from the collection of task CFGs for a system proceeds in three phases. The �rst
phase takes a forest of task CFGs as input and creates an isomorphic graph where the CFG actions are
mapped into the corresponding event alphabet �. The nodes at this point are the local nodes in the TFG.
In the second phase, pairs of local nodes that correspond to entry calls and accepts on the same task entry
are identi�ed. For each such pair, a communication node is created with incident edges connecting it to the
appropriate local nodes. These local nodes are re-labeled with � , since their joint execution is now captured
by the label on the communication node. The third, and �nal, phase creates MIP edges between all TFG
nodes in di�erent tasks. The full details of this construction algorithm are given in [Dwy95].

4.5 Conservativeness of the TFG Model

Conservative state propagation analysis requires that the TFG be conservative with respect to all executable
sequences of program events. To satisfy this requirement, we could produce a program model that includes a
path for each interleaving of the individual task CFG paths. While conservative, such a model would contain
many paths that are infeasible with respect to inter-task communications, since according to the semantics
of the rendezvous communication mechanism, a task blocks at communication action until the corresponding
communication action occurs in another task. Consequently, a simple interleaving of CFG paths may be
inconsistent with these communication semantics, e.g., by allowing a task's path to pass through an entry
call without a a corresponding accept occuring in the called task. Thus, we de�ne a communication
consistent path to be a path that adheres to the synchronization semantics of the language being modeled.

De�nition 3 A communication consistent path for Ada is an interleaving of a set of CFG paths, one
for each CFG in the system, such that for each task Ti each occurrence of a node associated with an entry
call (accept) in Ti has at most one corresponding accept (entry call) occurrence in some task Tj, j/= i, and,
assuming that this entry call (accept) node occurs on the path before the corresponding accept (entry call)
node, no nodes in Ti occur on the interleaved path following this entry call (accept) node until after the
corresponding accept (entry call) node occurs on the path.

13

This allows the possibility of inde�nite blocking at a communication statement, thereby modeling deadlocking
executions, while disallowing a single occurrence of a call (accept) to match multiple accepts (calls), which
is semantically impossible.

We prove that for all communication consistent paths, for a given set of CFGs, that the TFG built from
those CFGs is a conservative model of the possible sequences of those program actions associated with
events. Note that for a communication consistent path, we can determine the path associated with each
CFG participating in that path. Also note that a CFG has actions associated with its nodes but the TFG
is only interested in a subset of those actions, namely those that map to events. (Remember that a TFG
node associated with a CFG node labeled with an action not associated with an event is labeled with � .)
Thus, for simplicity we refer to the event sequences associated with a communication consistent path, with
a CFG path derived from a communication consistent path, or with a path in the TFG. Since all CFG nodes
have a corresponding node in the TFG with a corresponding label (i.e., an event or �), the question of path
correspondence can be reduced to a question of the existence of edges that allow appropriate sequencing of
nodes.

For the proof, we need to record information about the unmatched communication statements encountered
so far as we traverse a communication consistent path. We de�ne Unmatched(Ti) to be the unmatched
communications in the communication consistent path for task Tiif one exists, and null otherwise4.

Theorem 1 (TFG Safety)
For each communication consistent path in a given set of CFGs, there exists a path through the TFG where,
the order of non-� labelled nodes on the TFG path and communication consistent path is the same.

Proof:

We have, by TFG construction, that there exists a MIP edge between TFG nodes in di�erent
tasks. Let, Tnodej

S
iNi ! N map each CFG node to the TFG node that was constructed to

model it.

The proof is by induction on the length of the communication consistent path. We prove not
only that the theorem holds, but also that the last node added to the communication consistent
path corresponds to the node that extends the TFG path.

Base Step: Path of length 1

There are as many possible paths of length 1 as there are tasks in the program, one for
the start node of each task CFG. The communication consistent path ninitial; Tnode(Si)
is a path of length 1 that includes the initial and start node of task Ti; this path is also
present in the TFG. Si and Tnode(Si) correspond by de�nition.

Inductive Step: Path of length k

Given a communication consistent path of length k, by hypothesis there exists a TFG
path, call it pkTFG, that contains the same sequence of non-� events as the given path..
Let, Tn denote the identity of the task which contains the last node, nlast, on the
communication consistent path.

While there are many possible extensions of the communication consistent CFG path,
these extensions can be grouped into three cases.

Next node is local to Tn This case includes all control
ow successors of nlast that
are not entry calls or accept statements. For any such successor, s, the desired
TFG path is pkTFG extended with an edge from Tnode(nlast) to Tnode(s). Such
an edge is guaranteed to exist because each task CFG is logically embedded in the
TFG.

4For clarity we consider the possibility of a single unmatched communication statement per task. This de�nition, however,
can be extended to account for the possibility of multiple unmatched statements arising from Ada select statements

14

Next node is local to task other than Tn This case accounts for extension of the
communication consistent path to a task other than Tn. Let s be the CFG node
that forms this extension. The desired TFG path is pkTFG extended with a MIP
edge from Tnode(nlast) to Tnode(s). Since there is a MIP edge between all nodes
in di�erent tasks in the TFG, such a MIP edge is guaranteed to exist.

Next node is a communication action This case includes all control
ow and MIP
successors of nlast that are entry calls or accept statements. Let s be the CFG
node for the call or accept and the task containing that node be Ts. Note that for
a communication statement Tnode(s) is a local � -labelled TFG node rather than
a node added to model a joint synchronous communication.
For an entry call, Ti:Ej , there are two possibilities:

Unmatched(Ti) is an accept statement for Ej In this case, there exists a TFG
communication node cfs;Unmatched(Ti)g whose unique predecessor in Ts is Tnode(s).

The new TFG path is pkTFG extended with two edges: a control
ow edge (if
Ts = Tn) or MIP edge (if Ts 6= Tn) from nlast to Tnode(s) and control
ow
edge from Tnode(s) to cfs;Unmatched(Ti)g. We set Unmatched(Ti) to null.

otherwise In this case, the new TFG path is pkTFG extended with one edge: a
control
ow edge (if Ts = Tn) or MIP edge (if Ts 6= Tn) from nlast to Tnode(s).
We set Unmatched(Ts) to s.

For an accept statement on entry Ej , there are also two possibilities:

There exists a task, Ti, where Unmatched(Ti) is an entry call on Ts:Ej In
this case, there exists a TFG communication node cfUnmatched(Ti);sg whose

unique predecessor in Ts is Tnode(s). The new TFG path is pkTFG extended
with two edges: a control
ow edge (if Ts = Tn) or MIP edge (if Ts 6= Tn) from
nlast to Tnode(s) and control
ow edge from Tnode(s) to cfUnmatched(Ti);sg.
We set Unmatched(Ti) to null. Note that this case handles the situation where
there are calls in several tasks blocked on entry Ts:Ej .

otherwise Same as the otherwise case for entry calls.

All of the TFG edges used to extend the TFG path are guaranteed to exist by
the de�nition of the TFG. Furthermore, the �nal nodes in the pkTFG are the corre-
sponding nodes in the extended communication consistent path. For the matched
communication statements, they are labelled TFG communication nodes, and for
unmatched communication statements they are � -labelled local TFG nodes.

2

This theorem implies that each possible communication consistent interleaving of CFG paths is represented
in the TFG; in general, the reverse is not true. There exist paths in the TFG that do not correspond to
executable interleavings of CFG paths.

4.6 Complexity of the TFG Model

In this sub-section, we describe the worst-case time complexity of the TFG construction algorithm and the
worst-case space complexity of the TFG itself. Ideally we would like to choose a measure for expressing
these complexities that is closely related to natural measures of the program, for example, number of tasks,
number of statements, number of entry call and accept statements. The TFG, however, is dependent on
�. The number of events we are interested in for a given program may vary widely depending on the
speci�cation we are attempting to reason about. For this reason, we express complexity in terms of numbers
of program statements with the reasonable assumption that the number of program events per statement
can be bounded by some constant.

15

Theorem 2 (Size of TFG)
The number of nodes in a TFG, N , is O(S2) where S is the number of statements in the modeled program.
The number of edges in a TFG is O(S4).

Proof:

Let c be the maximum number of events per program statement, S the number of statements, C
the number of entry call and R the number of accept statements. The number of nodes in the
TFG is O(2 + c(S � (C + R)) + c(C � R)). This is the sum of the initial/�nal nodes, the nodes
from modeled CFG nodes and the communication nodes. In the worst case, if C = R = S=2 the
bound on N becomes O(S2).

A TFG has at most a single (uni or bi-directional) edge between any pair of nodes. Therefore,
the number of TFG edges is in the worst case O(N2) = O(S4).

2

We note that the product of entry calls and accepts is more accurately computed on a per entry basis and
then summed over the set of entries; this value can be signi�cantly less than the product of all entry call and
accept statements. In addition, communication statements are typically a small percentage of the statements
in a given program. Our experience has been that the number of TFG nodes is usually linear in the number
of program statements in practice.

Theorem 3 (Complexity of Construction Algorithm)
The time required to construct a TFG from a collection of CFGs is O(S4), where S is the number of program
statements.

Proof:

Phases 1 and 2, described in Section 4.4, are O(S2) since there are at most (S=2)2 communication
nodes. For each pair of TFG nodes we potentially create a MIP edge. From Theorem 2 the
number of TFG nodes is O(S2). Thus, phase 3 requires O(S4) operations and its cost dominates
the other phases.

2

We note that it is often the case that N is much less than S since many of the statements in a program are
irrelevant for the purposes of reasoning about a particular speci�cation. Furthermore, as mentioned above,
in practice communication statements are a small minority of program statements. Together these factors
typically make the cost of constructing a TFG linear in the number of program statements.

4.7 TFG Re�nements

The proof of Theorem 1 shows that TFG paths include the event orderings that can occur in all potential
program executions. These paths may also include orderings that are not executable. There are three major
sources of inaccuracy in the TFG: unexecutable control
ow paths, unexecutable intra-task communication,
and unexecutable orderings of asynchronous program events. Imprecision related to asynchronous event
orderings occurs because of the presence of MIP edges, which introduce infeasible paths in the TFG. Figure
6 illustrates a TFG fragment with some (solid) control
ow edges and two (dashed) MIP edge. These MIP
edges represent potentially executable sequences of events of the form : : : ab : : : and : : : ba : : :. If we assume
that neither node 3 in Task1 nor node 7 in Task2 are nested in a control
ow loop, then at most a single
instance of the a event at node 3 and the b event at node 7 may occur in an executable sequence of program
events. The MIP edge, however, forms a cycle; this introduces arbitrarily long TFG paths containing nodes
3 and 7.

There are two goals in re�ning the TFG: reducing its size and eliminating behaviors that are not executed.
Reducing the size of the TFG can reduce the cost of performing state propagation analysis. Eliminating

16

τ

" "τ

" "
Task1:4

Task1:3 Task2:5

Task2:7
" "b

" "a

Figure 6: MIP Paths

unexecutable behaviors can improve the precision of state propagation analysis results as well as reduce its
cost.

One type of re�nement collapses sequences of � events. Since � events represent actions that we are not
interested in, we can reduce a sequence a; �; : : : ; �; b to the sequence a,b. Thus, we are really interested in
maintaining the ordering of all non-� events. In the remainder of this subsection we describe two re�nements,
simple MIP edge re�nements and � labeled node re�nements. Both re�nements reduce the size of the TFG
but preserve its conservativeness with respect to all sequences of non-� labeled events.

Simple MIP Edge Re�nement

Naive construction of MIP edges between all pairs of nodes in di�erent tasks requires 128 such edges for the
Semaphore example. We can eliminate many of those edges in cases where we can prove that the pairwise
orderings are either infeasible or are captured by some other path through the TFG. In particular, we can
eliminate all MIP edges between nodes where at least one has a � label. To see why, we need to consider
the impact on the sequence of non-� events when a path includes a MIP edge with a � label at the source
or at the destination of that traversed MIP edge.

Assume that a MIP edge between a � labelled node, t, and some other node, d, is traversed on a TFG
path. For each non-� labelled node, say a, that is in the same task as t and for which there is path from a
to t on which only � nodes occur, we could traverse the MIP edge (a; d) rather than (t; d). Since the path
a : : : t has only � symbols the resultant sequence of symbols is identical. We could make a similar argument
when traversing the MIP edge in the other direction, when the � label is on the destination node. In this
case, we are interested in �nding � only paths to non-� successor nodes of the destination node.

Thus, the TFG after this re�nement is guaranteed to include all possible non-� event orderings. In
practice, these MIP edge re�nements are built into the implementation of the TFG construction algorithm
rather than as post-construction TFG transformations. For the Semaphore example, MIP edge re�nements
reduce the number of MIP edges from 128 to 10.

It is worth noting, that even with this re�nement, the set of MIP edges that remains is overly conservative.
For many programs, signi�cant numbers of additional MIP edges can be eliminated by further analysis and
transformations while retaining TFG conservativeness. We have de�ned communication interval re�nement
(CI) and implemented it in the FLAVERS/Ada toolset. CI re�nement identi�es and eliminates MIP edges
from the TFG that connect nodes in communicating tasks that, because of the pattern of task synchronization
used, cannot immediately precede one another. In Section 8, we present data on how CI re�nement increases
the precision of analysis results, but we refer the reader to [Dwy95] for the details. We note that recent work
[NA98] that exploits may happen in parallel analysis subsumes CI re�nement.

Alphabet Re�nement

The resulting TFG can be further transformed to eliminate edges and nodes that do not add to the set of
non-� event sequences. These transformations include: collapsing local edges leading to � labeled nodes,

17

" "τ " "τ

" "τ

" "τ

" "τ " "τ

" "τ

" "τ

" "τ

"semaphore_p"
Node:13

"semaphore_v"
Node:14

Client2:11
"work2""work1"

Client1:6

Client1:7

Semaphore:2

Semaphore:3

Client2:10

Node:16
"semaphore_v"

Node:15
"semaphore_p"

Semaphore:4 Client2:12

Final:18

Client1:8

Initial:17

Figure 7: Re�ned Semaphore TFG with All MIP Edges Included

eliminating those nodes, and collapsing parallel edges. The resulting TFG will have no consecutive local �
labeled nodes.

Alphabet re�nement is implemented in the FLAVERS/Ada toolset as a partition-re�nement algorithm
[AHU74, ASU85]. This algorithm incrementally reduces the size of the graph by merging pairs of nodes where
the sequences of symbols labeling paths leading to (from) one of the nodes are the same as the sequences of
symbols labeling paths leading to (from) the other. This process stops when no more nodes can be merged.
Given the �xed size of the label alphabet, this algorithm is bounded at O(jN jlog(jN j)) time, where N is the
set of TFG nodes [AHU74].

4.8 A Re�ned TFG for the Semaphore Example

Figure 7 illustrates the alphabet re�ned TFG that preserves symbol sequences over the alphabet fwork1,
work2, semaphore p, semaphore vg; to make the �gure more readable bi-directional edges are used to
represent pairs of MIP edges. Two nodes have been eliminated by the partition re�nement algorithm and
the basic MIP re�nements have eliminated 118 MIP edges.

5 Describing Executable Behavior

Finite-state veri�cation techniques require a speci�cation of intended behavior to which the executable
behavior of a program is compared. In some analysis approaches the intended behavior of interest is implicit,
as in the many analyses that attempt to demonstrate freedom from deadlock. In other approaches, including
FLAVERS, the intended behavior is speci�ed explicitly by an analyst. While it may be possible to completely
specify the intended behavior of a program, large monolithic speci�cations may be as di�cult to construct
and reason about as the implementation itself. Thus, in practice, it is often more desirable to write small
speci�cations of important properties of the program. With an analysis approach like FLAVERS, breaking
a large speci�cation into smaller partial speci�cations allows the analysis to be tailored for each part in turn.
We discuss the details of this tailoring in Section 7 and present examples in Section 8. FLAVERS supports
speci�cation of and reasoning about partial speci�cations that can be translated into or expressed directly
as �nite-state automata.

Olender and Osterweil [OO90] introduced quanti�ed regular expressions (QRE)s to specify regular expres-

18

id : [a-zA-Z][a-zA-Z0-9 :=<>]*
pos : [1-9][0-9]*

idlist : id
j id "," idlist

qre : alphabet quanti�er expression

alphabet : "f" idlist "g"

quanti�er : "all"
j "none"

expression : .
j id
j "[" "-" idlist "]"
j "[" idlist "]"
j expression;expression
j expression "j" expression
j "(" expression ")"
j expression "^" pos
j expression "*"
j expression "+"
j expression "?"

Figure 8: QRE Syntax

sions over control
ow graph representations of a program. Standard algorithms convert a user provided
QRE speci�cation into a DFSA; users may supply the DFSA directly if they choose. This property automa-
ton, or PA, is used as input to the state propagation algorithm. In this section, we �rst de�ne the syntax and
semantics of QREs, we then describe a syntactic style for writing QREs that makes writing speci�cations
easier, and we then de�ne the PA and its construction.

5.1 Syntax of QREs

Figure 8 gives the syntax for QREs. For convenience we have de�ned a few higher-level operators in the
syntax. In particular, the "[- . . .]" expression is used for describing sub-strings that exclude speci�ed events;
this operator is used extensively in the QRE style described below.

5.2 Semantics of QREs

A QRE consists of an alphabet, a quanti�er and a regular expression. The alphabet of a property speci-
�cation, which we denote as �property, de�nes a set of event symbols that may be used in the expression.
The meaning of each event symbol is established by a mapping to the appropriate program action, where an
occurrence of the symbol represents the execution of the associated action. QREs contain a standard regular
expression de�ned over the speci�ed alphabet. Figure 9 de�nes the semantics of the expression operators in
terms of the languages of their operands. Quanti�ers indicate the kind of comparison that is to be made
between the language of the regular expression and the sequences of event symbols that represent potential
program executions. The all quanti�er indicates that all event sequences described by a TFG, G, should lie
in the language of the speci�ed regular expression, E, i.e., L(G) � L(E); this is referred to as the language
containment test. The none quanti�er indicates that no event sequence described by a TFG, G, should lie
in the language of the speci�ed regular expression, E, i.e., L(G) \L(E) = ;; this is referred to as the empty
language intersection test.

5.3 An Example Speci�cation

We can use QREs, or DFSAs, to specify a precedence property of the semaphore example given in Figure
3. The property states that prior to any work being performed the semaphore task must have its P entry
called. The QRE for the speci�cation of this property is

{work1, work2, semaphore_p, semaphore_v}

all

[- work1,work2]* | ([- semaphore_p,work1,work2]*; semaphore_p; .*)

19

L(tau) = fg
L(x) = fxg
L(.) = fxjx 2 �propertyg
L([-idlist]) = fxjx 2 f�property � fidlistggg
L([idlist]) = fxjx 2 fidlistgg
L(e1;e2) = fxyjx 2 L(e1) ^ y 2 L(e2)g
L(e1|e2) = fxjx 2 L(e1) _ x 2 L(e2)g
L((e)) = L(e)
L(e^k) = L(e1;(e2;(...; ek)...))

L(e*) = fg [
S1
i = 1 L(e^i)

L(e+) =
S1
i = 1 L(e^i)

L(e?) = L(e) [fg

Figure 9: QRE Semantics

5.4 A QRE Style

QREs allow for patterns of events to be described as arbitrary regular expressions. Users, however, often
prefer to have some guidance in how to express a particular ordering relationship as a formal QRE speci�ca-
tion. To address this, we have developed a style for writing QREs that we �nd makes it easier to both read
and write speci�cations. The style consists of expressions constructed out of two types of sub-expressions:
intervals that exclude a set of events, of the form [- a], and required events, of the form a. The idea of
intervals that require and exclude events is derived from Corbett's !-starless expressions [Cor92].

QREs in this style often begin with an outer excluding interval that is iterated; this allows program
executions that are unrelated to the speci�cation to be trivially accepted. The initial interval is followed
by an iterated sequence of alternating required and excluding intervals; intuitively, this alternating sequence
captures the pattern of events that is required of a satisfying execution.

[- start]*(start;[- excluded,next]*;next; ...;[- start]*)*

While this style may lead to slightly longer regular expressions, we �nd that the structure of these expressions
is useful. Our experience has been that this style allows speci�cation of interval-like QREs that can be used
to express temporal relationships between system events. Sequences of these intervals provide building blocks
that are similar to the operators typically provided in temporal logics. Data races, mutual exclusion, general
forms of invariance, response and precedence properties can all be speci�ed using this QRE style. Recent
work has expanded and generalized this notion of speci�cation style into a pattern system for property
speci�cation [DAC99]. The response QRE shown earlier in this section is an instance of a global response
pattern in this system.

5.5 Property Automata

Using standard techniques we can construct a �nite state automaton from the regular expression of a QRE.
This property automaton accepts all event sequences over the event alphabet that correspond to the property
of interest. Formally,

De�nition 4 A property automaton is a deterministic �nite-state automaton (S; �; A; s;�property), where:
S = fs1; s2; :::; skg is the set of PA states that represent equivalence classes of pre�xes of strings over
�property,
� j S � �property ! S is the state transition function,
A � S are the accepting states that are reached only by strings that satisfy the property speci�cation,

20

2

work1
work2

semaphore_v

1
semaphore_p

v

Figure 10: Property Automaton for Precedence Property

s 2 S is the unique start state,
�property � � is the alphabet of the property.

The property automaton constructed for the semaphore precedence property has three states and is
illustrated in Figure 10. Many PAs contain non-accepting states with no exiting, non self-loop transitions.
Such states represent the fact that a string leading to that state has violated the property speci�cation in
such a way that no extension of the string can possibly satisfy the property; we call these violation states.
In Figure 10 the violation state is represented by state v.

Constructing a PA

The PA is a deterministic �nite-state automaton. Prior to constructing the PA we convert a given QRE
expression to a canonical expression that uses only the operators "j",";", and "*". In the worst case, the
number of symbols in the new expression will be no larger than the number of symbols in the original
expression times the number of symbols in the property. For any program, we can bound the size of the
alphabet of any property speci�cation, denoted j�propertyj, to be no larger than the size of the program event
alphabet, i.e., j�propertyj � j�j. In this case the increase in the number of symbols from QREs to canonical
expressions is bounded by j�j, which is a constant for a given program.

In FLAVERS, we currently construct the PA directly from the regular expression of the QRE using
algorithm 3.5 from Aho, Sethi and Ullman [ASU85]. This avoids the construction of an intermediate non-
deterministic �nite-state automaton. We note that there exist expressions for which this algorithm requires
exponential time. In our experience, we have encountered very few realistic speci�cations of concurrent
programs that exhibit this problem. We discuss one such property speci�cation in Section 8 and an alternate
means of formulating the speci�cation that avoids the problem.

6 State Propagation Analysis

The aim of FLAVERS is to compare the executable behavior of a program with a speci�cation of intended
behavior; state propagation analysis is the mechanism used for performing this comparison. In this section,
we describe a practical algorithm for checking the execution behavior represented by the TFG against the
intended behavior represented by the PA. State propagation analysis is not new. Howden [How86] and later
Olender and Osterweil [OO92] developed state propagation algorithms for checking a regular property of
a sequential program modeled as a �nite-state automaton; our work builds on the results of Olender and
Osterweil. In this section, we explain how state propagation works, we then extend state propagation analysis
to apply to a concurrent program modeled as a TFG. Throughout this section we use the terminology of
data
ow frameworks [Hec77].

A State Propagation Flow Analysis

Let P be a property automaton that accepts a sequence of program events, and let G be a trace
ow
graph, whose paths include all executable sequences of program events leading to a node. As describe in

21

Task1:1
"b"

Task1:2
"a"

Task1:3
"a"

Task1:4

PAFlow Graph

a b

Figure 11: P-equivalent Paths

Section 5, we check consistency between the property and program by checking either language containment,
L(G) � L(P), or empty language intersection, L(G) \ L(P) = ;.

To simplify the discussion consider just the language containment test. Ultimately, we are not interested
in whether each individual executable event sequence is accepted by P ; rather, we are only interested in
whether all such event sequences are accepted. If we can devise a means of collapsing
ow graph paths that
are equivalent with respect to being accepted by P then we may be able to reduce the work required. The data

ow formulation of state propagation analysis developed by Olender and Osterweil does exactly that. Let
�� be the extension of �, P 's state transition function, from symbols in � to sequences of symbols in �. Two
paths, p1 = ninitial ! : : :! n1 and p2 = ninitial ! : : :! n2, are P-equivalent if they cause P to transition
to the same state, ��(s; String(p1)) = ��(s; String(p2)), where s is the start state of P . Figure 11 illustrates
a simple
ow graph where all paths leading from node 1 to node 3 are P-equivalent with respect to the given
PA that accepts the regular language (ba)�. Equivalent paths include; ��(1; String(1! 4)) = ��(1; ba) = 1
and ��(1; String(1 ! 2 ! 1 ! 2)) = ��(1; baba) = 1. The strength of this collapsing lies in the fact that
it is based on the structure of the property automaton. The collapsing can dramatically reduce the time
required for performing the language containment computation.

Formally, state propagation analysis computes for each node the set of P 's states that can be reached by
any path to that node from the start node of the graph, States(n) = f��(s; p) : 8p : p = ninitial ! : : :! ng.
We de�ne a meet semi-lattice over the power-set of P 's states with union for meet and super-set as the
ordering relation, Lsp = (P(S);�;[), where S is the set P 's states, and lattice values ? = S and > = ;.
The function space is de�ned by extending all total functions over P 's states to the power-set of P 's states,
Fsp = fF : F (X) = [x2Xf(x)g, where X 2 P(S). We also add a function F;jP(S)! ; to Fsp.

Theorem 4
Fsp is a monotone function space de�ned over Lsp.

Proof: Monotonicity requires that four properties hold of the functions [Hec77]:

1) (identities) If we extend the identity function over S to P(S) we get the identity function
for P(S). This function is clearly in Fsp, which contains all extensions of total functions
de�ned over S.

2) (closure) Since the set of total unary functions de�ned over S is closed under composition so
is their extension to P(S). The addition of F; preserves closure since: 8f 2 Fsp : F; � f =
f � F; = F;

3) (constants) For each element of P(S) there must be a function that produces that element
when given? = S. We construct these functions out of the composition of �ltering functions.
These �ltering functions are de�ned as:

fi!j(x) =

�
x if x 6= i
j if x = i

22

This is a total function de�ned over S so its extension will be in Fsp. For any element
X 2 P(S) we can de�ne its complement Y = S �X . For any element x 2 X , we can de�ne
the composition of �lter functions for Y as:

fY =
y2Y fy!x

Thus, fY applied to S will remove all elements in Y leaving only the elements in X . Clearly,
the function fY is an element of Fsp since it is built up from the composition of �lter
functions that are themselves in Fsp.

4) (monotonicity) In Lsp we have u = [and v=�. We need to show that

8f 2 F : 8x; y 2 V : f(x [y) � f(x) [f(y)

If f = F; then this holds since F; always produces ;. For all other functions:

f(X [Y) = ff(z) : z 2 (X [Y)g

= ff(z) : z 2 Xg [ff(z) : z 2 Y g

= f(X) [f(Y)

since = implies �5.

2

We can now de�ne the state propagation data
ow framework.

Theorem 5
Dsp = (Lsp; Fsp) is a monotone data
ow analysis framework.

Proof:

From Theorem 4 and the de�nition of Lsp.
2

The framework is instantiated by de�ning the function map. The function map Msp is de�ned such that
for each node, n, to each value
owing into that node, P 's state transition function is applied to produce
the value at the node, fn(X) = f�P (L(n); X)g, where �P is the element-wise extension of � to the set of P 's
states. To satisfy the frameworks initial conditions, namely that the value of initial node is ?, we map the
constant function that returns P's start state to the initial TFG node, fninitial(X) = fsg.

As long as we have a
ow graph that represents all executable sequences of program events, we can
instantiate Dsp for it and be sure that its solution contains conservative values for States at each
ow
graph node. From Theorem 1 we know that the TFG represents, for each node, all executable sequences
of events that end with the symbol of that node. Using the function map from above, we construct Isp =
(TFG;Msp) as an instance of Dsp . The solution at the �nal TFG node, States(nfinal), can be compared
to the set of accepting states of P , A, to produce a conservative version of either a language containment,
States(nfinal) � A, or empty intersection test, States(nfinal) \ A = ;.

In addition to providing the complexity and conservativeness results described below, formulation of our
analysis as a monotone data
ow framework provides an algorithm for its solution. We present the state
propagation algorithm as an instance of Hecht's iterative worklist algorithm [Hec77].

Algorithm 1 (State Propagation Solver)
Input:

A trace
ow graph, G, and a property automaton, P .

5This is actually a slightly stronger property of function spaces called distributivity.

23

Output:

A set of states of P for the �nal nodes of G

We use three auxiliary data structures in this algorithm: V als which is an array of length jN j that holds
sets of states for each node, Wlist which is a queue of nodes with at most jN j elements, and v which holds
a subset of the states of P .

Initialization:

8n 2 N V als[n] =

�
fsg if n = ninitial
; otherwise

Wlist = fninitialg

Main Loop:

We evaluate the following statements repeatedly until Wlist = ;: 6

at this point Wlist = n; n1; n2 : : : nk
(1) Wlist = n1; n2; : : : nk
(2) v = V als[n]
(3) V als[n] = �P (

S
p2Preds(n) V als[p]; L(n))

(4) if v 6= V als[n] then
(5) Wlist = n1; n2; : : : ; nk; ns1 ; ns2 ; : : :

where nsi 2 Succs(n) and for 1 � l � k nsi 6= nl
end if

In general, a TFG is irreducible when it contains MIP edges. Thus, a large class of specialized solution
methods for analyses formulated over reducible
ow graphs are inapplicable when using TFGs. This is one
of the main reasons we chose a general iterative worklist algorithm, which does not have this limitation.
In addition, simple variants of this algorithm provide the opportunity for further improving the accuracy
of
ow analysis of concurrent programs that engage in synchronous communication. These variants exploit
complete-lattice frameworks formulations of the analysis [Dwy95], which are equivalent to a node-based
formulation of meet-of-join frameworks [MMR95].

The node ordering enforced by this algorithm causes computation of the value at a node only when it
has the potential to change. If multiple predecessors of a node change their value before that node can be
recomputed, the algorithm will only schedule a single recomputation for the node. Together, these ordering
improvements avoid some unnecessary computation at nodes which have no chance of changing their values.
Careful consideration of Algorithm 1 reveals a number of additional opportunities for eliminating unnecessary
computation. As described, for each node the algorithm stores a value that re
ects the e�ects of �P at that
node; this is called the out value for the node. We can easily modify Algorithm 1 to store an additional
value that contains the cumulative values at that nodes predecessor; this is called the in value for the node.
In deciding whether a successor, s, should be put on the worklist, we can then perform the comparison
out(n) 6� in(s), to determine whether the value computed at n can possibly a�ect the value at s. If it
cannot, then there is no need to put s on the worklist. We can also keep track of the set of predecessors of
a node n that have changed value, call it Changed, and only compute in(n) = in(n) [(

S
p2Changed out(p))

rather than considering all predecessors. These optimizations will not improve the worst-case time bound
for Algorithm 1, but for dense graphs and graphs whose nodes have high fan-in or fan-out they can yield
signi�cant practical speedup. The FLAVERS/Ada toolset implements these improvements.

We can express a bound on the running time of this algorithm in terms of the number of automaton states
and the number of TFG nodes.

6We describe the worklist as initially containing k+1 elements; this is a notational convenience where if k = 0 then W = n.

24

Theorem 6 (State Propagation Complexity)

Given a TFG, with nodes N , and a PA, with states S, if we apply Algorithm 1 it will terminate in O(jSjjN j2)
time.

Sketch of Proof:

The body of the main loop is O(jN j), since the containment test and append operations in line
5 are O(1), and, in the worst-case, where a node has all other nodes as successors, O(jN j) such
operations are performed.

The number of iterations of the body, or visits to a node, can be bounded by considering the
number of possible values, V als, that a node can achieve. A node's value is initialized to, at
most, fsg and can increase in size at most jSj � 1 times before it equals S, the set of all states of
the automaton. Since there are jN j nodes in the graph there are at most jSjjN j such increasing
iterations. Thus, there are O(jSjjN j) iterations of the main loop and the theorem holds.
2

Theorem 7 (Conservativeness of State Propagation)
The maximum �xed point solution of an instance of Dsp is a conservative estimate of States(n) for each
node in the TFG.

Proof:

From Theorem 3 of [KU77] we have that the solution, X , of an instance of Dsp is given as:

X [ninitial] = S

8n 2 N � fninitialg : X [n] = �P (
[

p2Preds(n)

; L(n))X [p])

By induction on the lengths of paths leading to a node, n, it follows that all paths leading from
ninitial to predecessors of n have correct States values. These paths are extended by a single
step to reach n by the second equation given above. Thus, the solution X satis�es the de�nition
of States and the theorem holds.
2

Example State Propagation

To illustrate the state propagation algorithm. We apply the algorithm to check the precedence property of
the semaphore example given in Section 5.3. We illustrate the �nal sets of PA states associated with the
nodes of the alphabet re�ned TFG in Figure 12. Note that we are primarily interested in the set of states
that has propagated to the final node, i.e., f1; 2g. Since that set is contained in the set of accepting nodes
for the PA the property is said to hold conclusively for the semaphore program.

7 Feasibility Constraints

FLAVERS, like all practical
ow analyses, is based on abstractions of program control and data information
that are encoded into the
ow graph. It is these abstractions that reduce the size of the graph, thereby
enabling e�cient analysis of software systems. Along with this e�ciency, however, comes imprecision.
When used for compiler optimization this imprecision might lead to some missed opportunities for code
improvement. Since FLAVERS is intended for veri�cation of system behavior, imprecision that leads to an
inconclusive analysis result is more noticeable and damaging to the utility of the analysis.

FLAVERS incorporates an approach for inserting into the analysis additional semantic information that
is not explicitly represented in the TFG. This e�ectively increases the semantic content, thereby potentially

25

" "τ8:
{1,2}

" "τInitial:
{1}

7: "work1"
{2}

" "τ6:
{1,2}

" "τ2:
{1,2}

" "τ3:
{2}

" "τ4:
{1,2}

" "τFinal:
{1,2}

" "τ10:
{1,2}

11:"work2"
{2}

" "τ12:
{1,2}

Node:13
"semaphore_p"

Node:14
"semaphore_v"

Node:15
"semaphore_p"

Node:16
"semaphore_v"

{2}

{2}

{2}

{2}

Figure 12: Re�ned Trace Flow Graph with Propagated PA States

eliminating some inconclusive results that occurred due to the approximate TFG model. Since the TFG
overestimates executable program behavior, strengthening the semantic content can be viewed as reducing
this overestimate.

We advocate a process where constraints are selectively introduced by the analyst when it is determined
that the analysis results are imprecise without this additional information. A constraint basically encodes
a necessary condition for improving the precision of the program model during analysis. If a constraint is
determined to be false along some TFG path, then that path is not executable. We can think of a constraint
as �ltering out some targeted infeasible executions that a�ect the analysis. A conjunction of necessary
conditions is itself a necessary condition that is at least as strong as any of the conjuncts in isolation.
Thus, multiple constraints pass through only those executions that are consistent with all of the necessary
conditions.

In FLAVERS, constraints can themselves be thought of as
ow analyses, where each constraint provides
a unique violation value. The interpretation of this value is that the necessary condition encoded in the
constraint has been violated. Constraint
ow analyses are combined with the state propagation analysis to
form a quali�ed
ow analysis [HR81]. The space of possible constraint analyses is broad, but, in this paper we
focus on the sub-class of constraints that can be encoded as a DFSAs. There are di�erent approaches that can
be employed to combine such constraints with the property speci�cation during state propagation analysis.
The approach we describe in this section, and the one implemented in the FLAVERS/Ada toolset used to
gather the data in Section 8, is to form the smash product [Gun92] of the constraint and property automata,
and then propagate states of this product automaton. An alternate approach, which forms reachable smash
product states on-the-
y, has been also been implemented in the FLAVERS/Ada toolset and a performance
comparison between the two is reported in [NCO98].

The TFG, as with most
ow graphs, abstracts data values. This can lead to the representation of infeasible
control
ow paths. Constraints that encode variable values and transitions between those values can be used
to recover some data related information. We have found this to be such a common and useful constraint that
the FLAVERS/Ada toolset provides automated support for creation of certain kinds of variable automaton
constraints. The presence of MIP edges in the TFG can introduce infeasible interleavings of events in
separate tasks. While re�nements can remove some of these infeasibilities, constraints that enforce local
task control
ow can be used to eliminate still more. This too is a very useful type of constraint, and
so the FLAVERS/Ada toolset provide automated support for such task automaton constraints. Although
variable and task automaton constraints are the only kinds of constraints where FLAVERS currently provides

26

Ti:1
"a"

Ti:2
"b"

Final

Initial

a:1,b:2

a:1,b:2

a:1

a:1

b:2

b:2
1

2

3

viol

TFG TA

Figure 13: Example TFG and TA

automated support, the concept is very general. The behavior of missing components of partially de�ned
software systems can be captured in FLAVERS analysis through interface constraints [Dwy97]. The hardware
context [NCO96] and user interaction pro�les [BMD96] for a software system can also be incorporated into
analysis through environment constraints.

In the remainder of this section we describe task automaton (TA) constraints and variable automaton
(VA) constraints in more detail. We then discuss one technique for combining multiple constraints into a
single analysis.

7.1 Task Automaton Constraints

As illustrated in Figure 6 the presence of MIP edges in the TFG introduces paths that may violate event
orderings that are encoded as control
ow edges in the TFG. One approach to eliminating consideration
of some infeasible MIP edges during state propagation is to enforce the control
ow orderings for at least
one of the associated tasks. We do this by encoding the feasible state transitions of an individual task as a
feasibility constraint. During state propagation, this TA constrains the analysis to consider only TFG paths
that correspond to the set of event sequences modeled for that task.

To construct a TA we build the node-edge dual of a control
ow graph by converting nodes to transitions
and edges to states, by adding a violation state and by de�ning all the corresponding transitions to that
state. We could derive the TA directly from the CFG, mapping nodes to their appropriate event symbols,
or, as we have chosen to do here, we derive the TA from the task's corresponding CFG that is embedded in
the TFG. This way any re�nements that may have been applied to the TFG will be re
ected in the task's
sub-
ow-graph as well.

A TA is constructed for task Ti from the sub-
ow-graph of the TFG with fn : n 2 N ^Task(n) = Tig and
the set of local edges in this sub-
ow-graph that are incident upon these nodes. The initial and �nal nodes of
the sub-
ow-graph determine the start and accept states of the automaton, respectively. Each local node in
the task sub-
ow-graph of the TFG has a corresponding symbol in the TA. This symbol is a concatenation
of the event label for the node with the node's unique id. Thus, the symbol a : 1 represents the instance of
event a at node 1 in the TFG. We do this since we now need to know, not only what event occurred, but
the node where it occurred.

Figure 13 illustrates a fragment of a TFG and the TA for task Ti. For this example, there are four
states: violation, v, and one for each of Ti's local edges. The start state, which for this example is state
1, is associated with the edge from the initial node to the start node of the task, i.e., the local successor of
ninitial. State 3 is the accepting state.

Formally, let Id(n) map each TFG node to a unique positive integer and let concat be string concatenation.

De�nition 5 A task automaton constraint is a deterministic �nite-state automaton (STA; �TA; ATA; sTA;�TA)

27

where :
STA = Ni [fvg is the set of states (one for each local node in the task sub-
ow-graph and a violation state,
v, to represent paths in the TFG that violate task control
ow orderings);

�TA = fni
a
! nj j (ni; nj) 2 Ei^a = concat(L(ni); Id(ni))g[fni

a
! v j a 2 �TA�fconcat(L(ni); Id(ni))gg[

fv
a
! v j a 2 �TAg de�nes a transition for each local node in the task sub-
ow-graph and where all other

transitions lead to the violation state;
ATA = Fi is the accepting state corresponding to the exit edge of the task sub-
ow-graph;
sTA = Si is the start state corresponding to the start edge of the task sub-
ow-graph;
�TA = f�g [fsj8n 2 Ni : s = concat(L(n); Id(n))g is the TA alphabet consisting of symbols formed by the
concatenation of the node label with the unique node id, one for each local node in the task sub-
ow-graph.

The structure of this automata is such that it not only records the occurrence of program events, but also
the points in the task where the events occur. This enables the TA to enter its violation state if a sequence
of occurrences of program events that violate the control
ow structure of the task is encountered.

A task automaton is constructed by traversing the sub-
ow-graph of the TFG corresponding to a particular
task. We note that to enforce the conditions encoded in a TA during state propagation, the TFG alphabet
must use the appropriate symbols of the TA alphabet for each node in the modeled task. This involves
converting the TFG to use the label/edge id symbols as node labels; we also introduce parallel PA transitions
at each PA state, s, such that for each symbol, a 2 �, we de�ne �(s; a : id) = �(s; a) for each symbol
a : id 2 �TA. The TFG relabeling process requires O(jNij) steps.

Theorem 8 (Correctness of TA)
If a sequence of program events leads to a TA violation state then it correspond to an infeasible program
execution.

Proof:

Call the modeled task Ti. Consider any sequence, s, of program events over the symbols �[�TA
7. This sequence is of the form, ! = a1; a2; a3; : : : ; ak. Due to the structure of TAs, labels that
are not in �TA will trigger self-loop transitions thereby preserving all TA state information stored
at a TFG node. Call !TA the projection of ! onto �TA.

From the de�nition of a TFG, all executable sequences of program events that occur in Ti are
represented as control
ow paths in the sub-
ow-graph for Ti. Assume that �

�
TA(!TA; sTA) = v.

In this case, 9a2�TA
such that !TA = �1a�2 and �

�
TA(�1; sTA) 6= v and �TA(a; �

�
TA(�1; sTA)) = v.

By construction of the TA this can only happen if a TFG node corresponding to ��TA(�1; sTA),
i.e., a node n where, States(n) = ��TA(�1; sTA), does not have a successor whose label is the �rst
component of a. If there is no such edge in the TFG then the sequence cannot be executable
since the TFG is conservative. Thus, the theorem holds.

2

Construction of a TA requires O(jNij2) steps where Ni 2 N is the set of nodes in Ti. In the worst-case the
sub-
ow-graph for the task in question is fully-connected, thus we need to construct Ni transitions for each
of the Ni states of the TA. Thus the entire algorithm is O(jNij2). In Section 8, we will see that constructing
TAs is very fast in practice.

7.2 Variable Automaton Constraints

Flow graphs do not typically model program variables. For many programs, however, accurate analysis
depends on modeling some of the critical program variables. We are often interested in modeling variables
that are used in conditional statements or in guards that control communication statements. Many of these
variables are de�ned over small �nite domains and modi�ed in a disciplined way. Examples include Boolean

7Such a sequence corresponds to a path from a TFG that has had the labels of nodes in Ti transformed as described above.

28

u

t f
x := F

x := T x := F

v

x := T

x=T?, x=F?

x=T?, x=F?
x := T, x := F

x=F? x=T?
x := u

x := ux := u

 x=T?,
 x := T

 x=F?,
 x := F

 x := u

Figure 14: VA for Boolean Variable

variables to which only constant values are assigned and bounded counter variables to which only increment
and decrement operations are applied. We have developed a technique for encoding the state and state
transitions of such program variables as VA constraints.

VA transitions represent modi�cations to the value of the variable and the results of conditional tests of
the values of those variables used in branch decisions. The violation state, v, represents that a path in the
TFG violates the semantics of a program branch decision with respect to the current variable state.

The VA constraints for a Boolean variable is shown in Figure 14. In this example, assignments to the
variable are modeled as x:=T and x:=F; we include x:=u to represent situations where an unknown value
is assigned to the variable. Results of tests in conditionals are represented by their success, x=T?, and
failure, x=F?. There are transitions to the violation state, from the true state when the x=F? test result is
encountered and from the false state when the x=T? test result is encountered, i.e., when the result of a test
is inconsistent with the value of the variable described by a VA state. All Boolean variables have VAs that
are identical in structure.

More formally,

De�nition 6 A Boolean variable automaton for a Boolean variable, x, is a deterministic �nite-state
automaton (SV A; �V A; AV A; sV A;�V A), where:
SV A = fu; t; f; vg is the set of states that de�ne the abstract values that are modeled for the variable, u for
unknown value, t for true, f for false, and v for violation;
�V A j SV A ��V A ! SV A de�nes the transitions as in Figure 14;
the accepting states AV A = fu; t; fg;
the start state sV A = u models an unknown value;
�V A = f"x := u"; "x := T"; "x = T ?"; "x := F"; "x = F ?"g is an alphabet that de�nes the program events
that can e�ect the value of the modeled variable.

Theorem 9 (Correctness of Boolean VA)
If a sequence of program events leads to the VA violation state then it corresponds to an infeasible program
execution.

Proof:

By the structure of a Boolean VA, there are only two ways to reach the VA violation state: being
in state true and encountering an "x = F ?" test result or being in state false and encountering
an "x = T ?" test result.

If a Boolean variable has the value true upon reaching a conditional that tests if that variable
has the value true the program will take the true branch. The false branch of such a conditional

29

is labeled "x = F ?", thus propagation of the true value across the false branch will lead to the
violation state. Taking the false branch at this point is clearly in violation of program semantics
and is consequently infeasible in any real program execution.

Analagous arguments follows for false variable values and tests for false values in conditionals.

2

To enforce the conditions encoded in a VA during state propagation, the TFG alphabet must include the
symbols in the VA alphabet. The increase in precision that results from incorporating a VA into an analysis
depends on the ability to identify program statements that cause variable state transitions. In many cases
this can be done statically, as is usually the case with Boolean variables. We have developed de�nitions
of variable automata for additional classes of variables including bounded counter variables and variables
de�ned over enumerated types.

Boolean variable automata are constructed in O(1) steps since they involve a simple renaming of the
transitions in Figure 14. Bounded counter variable automata are constructed in a similar manner in O(k)
steps where k is the maximum value of the counter. Enumerated variable automata are constructed in a
similar manner in O(k) steps where k is the number of enumerated values. The FLAVERS/Ada toolset
allow users to select a VA de�nition, then automatically specializes that de�nition for a speci�c variable
by instantiating a generic VA template and replacing the variable names in the template with the program
variable name.

We note that, in principle, a wide range of �nite-state abstractions of program variables could be encoded
as variable automata and thereby incorporated into FLAVERS using state propagation analysis. Further-
more, for abstractions that do not admit a simple encoding we can still accommodate them in FLAVERS as
long as they have a unique violation state.

7.3 Combining Constraint and Property Analyses

To incorporate constraints into FLAVERS analyses, the state propagation analysis is solved in conjunction
with analyses for each constraint. Two approaches to achieve this as discussed in [NCO98]. One approach
is to use an instance of the state propagation analysis for each constraint automata and to solve those
simultaneously with the state propagation analysis for the property automaton. In this section, we describe
an alternate approach that is possible for constraints encoded as DFSAs and report on experiments that use
this approach in Section 8.

As described previously, constraint automata are structured such that a
ow graph path that drives
a constraint to its violation value is known to be infeasible. Given a PA and a collection of feasibility
constraints, FC1; : : : ; FCn, encoded as �nite automata one can construct a product automaton, which we
call a constrained property automaton (CPA).

De�nition 7 A constrained property automaton is a deterministic �nite-state automaton
(SCPA; �CPA; ACPA; sCPA;�CPA), where:
SCPA = f(sp; s1; : : : ; sk) : sp 2 SPA ^ 81<=i<=ksi 2 SFCi

g, the set of states consists of tuples of states of
the constituent automata;
�CPA, the transition function is the component-wise application of the constituent automata transition func-
tions to a CPA state;
ACPA = f(ap; a2; : : : ; ak) : a[2 APA ^ 81<=i<=kai 2 AFCi

g, the accepting state corresponds to the tuple of
accepting states in all the constituent automata;
sCPA = (sPA; sFC1

; : : : ; sFCk
), the start state is the tuple of constituent start states;

�CPA = �property [
S
i21;:::;k �FCi

the alphabet is the union of the constituent alphabets.

The CPA enforces the conjunction of the necessary conditions encoded in the FCs. If any of the individual
conditions of the FCs is violated then the conjunction is violated. In practice, all CPA states that represent
a violation state in any of the FC automata can be collapsed into a single violation state without losing

30

precision in detecting infeasible sub-paths in the TFG. This collapsing is the primary di�erence between the
smash-product [Gun92] and a standard automaton product.

Interpreting the results of state propagation of a CPA, as opposed to a PA, has one slight di�erence from
the description in Section 3. When comparing the terminal TFG States values to the CPA accept states, we
ignore the CPA violation state. This removes any contribution to state propagation results of TFG paths
that violate any of the conditions enforced by the FCs encoded in the CPA.

One signi�cant CPA optimization is the use of the union, rather than product, of the constituent alphabets
to reduce the size of the alphabet. This is correct since all FC automata alphabets and the PA alphabet
are subsets of �. This optimization can dramatically reduce the storage required to represent �CPA. Other
optimizations can be applied to CPA construction as described in [Dwy95]. Despite such optimizations the
exponential nature of the CPA is unavoidable. The intent is that FLAVERS's ability to use a small number
of judiciously selected necessary constraints will allow control over the potentially rapid growth in the cost
of CPA-based analysis.

8 Evaluation of FLAVERS

The polynomial bounds on the running time for FLAVERS suggests that this approach may scale better than
exponentially bounded approaches. Such bounds, however, are worst-case and say nothing about what one
might expect for the cost of analysis on typical applications. To develop an understanding of the feasibility
and practicality of FLAVERS, we applied it to the analysis of a variety of programs and correctness properties
of those programs.

In the rest of this section, we describe our methodology for applying FLAVERS to a given analysis
problem, we then describe in detail the results of our empirical evaluation, and follow up with a number of
observations about these results.

8.1 Methodology

Our empirical evaluation was performed using an implementation of FLAVERS that is targeted for Ada
tasking programs. The toolset is built on top of Arcadia [TBC+88] infrastructure components and is referred
to as the FLAVERS/Ada toolset version 1.0.

The programs we selected to be analyzed in this evaluation were all Ada tasking programs that had been
used as examples in the concurrency analysis literature. Some of these programs have been well studied and
a variety of �nite state veri�cation techniques have been applied to them. We chose a mixture of programs
including scalable programs with replicated tasks, scalable programs with dissimilar tasks, and non-scalable
programs with dissimilar tasks. For some of these programs there are well-known properties to be checked;
for others we developed our own properties and speci�cations by reverse engineering the application. The
goal was to come up with properties that might be checked by a developer of the application. Although we
learned a great deal from this evaluation, since the sample size is small and not known to be representative,
we do not claim that the results can be generalized to all Ada tasking programs.

There are two important concerns in this evaluation: cost and precision. For evaluating the former, we
consider the cost of constructing all of the analysis artifacts as well as the cost of performing the analysis.
To isolate concerns about cost from concerns about precision, we chose properties that are known to be valid
for the selected programs and measured only the performance of the analyses that yielded conclusive results.

For evaluating precision, we report on the re�nements and feasibility constraints that were included in
order to achieve a conclusive result. We considered alphabet re�nement, communication re�nement, task
automaton constraints for each task, and variable automaton constraints for each variable. We followed a
process where we �rst considered the basic analysis without any re�nements or constraints, and then added
re�nements and constraints as they seemed appropriate for the problem. A more rigorous approach would
be needed in order to determine the optimal con�guration, where optimal would mean that it took the least
resources to produce conclusive results. Note that sometimes adding a constraint reduces the execution
time, so even after a conclusive con�guration is found, additional constraints would need to be considered to

31

determine an optimal con�guration. Our goal was not to �nd the best execution time but to determine if there
was a reasonable process that a developer might follow to easily �nd a conclusive result. As discussed later,
the results of this evaluation has in
uenced the order in which we now select re�nements and constraints.
For example, we now always do alphabet re�nement before adding any additional constraints, as described
in Section 4.

We also gathered information about the rate of growth of analysis cost by varying the size of those programs
that are scalable. In some cases there is a concomitant increase in the size of the property that needs to be
checked as well. Before scaling a program, we �rst considered a small, yet reasonable, instantiation of that
program and then found a con�guration of re�nements and constraints that led to conclusive results. Since
we ran our experiments in batches, we sometimes had more than one candidate con�guration. In such cases,
we selected the one that required the least execution time. We then used this con�guration as we scaled the
program. Of course, there is no guarantee that this con�guration will continue to produce conclusive results
for a property (or the correspondingly scaled version of a property) when a problem is scaled to a larger size.
This is often the case, however, and was indeed the case for all the scalable programs and properties that
we considered in our experiment.

In the sections that follow we present data on the re�nements and constraints that were used and on
the run-time costs. Our primary measure of analysis time is the sum of user and system time for a conclu-
sive analysis result as measured by /bin/time on on a normally loaded multi-user SPARC 10/30 with 32
megabytes of physical memory. The FLAVERS/Ada tools are compiled using the SunAda 1.1(j) compi-
lation system with optimizations disabled (to work around known compiler bugs). To simulate the use of
FLAVERS/Ada in practice, we ran the series of tools needed to go from TFG construction through state
propagation analysis. We ran each analysis three times and took the average of those times. The run-times
include all overhead costs related to the object management infrastructure on which the tools are built. The
reported run times are extremely large and re
ect the fact that this evaluation was done on a prototype
system designed for
exible experimentation [DC96] and not for e�ciency. A more e�cient version of the
FLAVERS/Ada tool set that includes several optimizations is currently under development and prelimi-
nary data suggests that it achieves 2 orders of magnitude better performance than the prototype described
here. The timing results reported here, however, are still useful since they represent an upper bound on the
performance of the FLAVERS approach.

To reason about the rate of growth of the cost of analysis we plot analysis time versus the number of
nodes in the TFG for the program under analysis. These plots are made on a log-log scale. We judge rate
of growth by comparing the slopes of these plots to the slopes of reference polynomials, such as N3 where
N is the number of TFG nodes. If the slope of the analysis time plot is less than that of the reference then
the rate of growth is less than the reference polynomial. We refer to these as rate-of-growth plots.

8.2 Detailed Empirical Results

We applied FLAVERS/Ada to four scalable and one non-scalable Ada tasking programs. The source code
for these programs is given in [Dwy95]. For all of the experiments with scalable programs, we started with
a small, yet sensible, version of the program and looked at progressively larger versions of the program.
Each larger version is twice the size of the preceding one; we look at �ve versions for each problem. Unless
explicitly noted the tool was able to handle each size problem.

8.2.1 A Simple Protocol Problem

This simple protocol is a program that illustrates a common mechanism for resource management: exclusive
locks. Corbett [Cor92] presents it to illustrate capabilities of the constrained expressions (INCA) toolset.
We use a slightly modi�ed version of that code, since the original was not a legal Ada program.

The system consists of at least 3 tasks, a lock manager task, a communication channel task, and two or
more client tasks; thus, it is scalable in the number of clients. The client tasks attempt to gain access to a
resource. Once a task holds the lock to that resource, it sends a message over a simulated communication

32

channel. A lock manager task is responsible for controlling exclusive access to the resource. Our code di�ers
from Corbett's in that we use a single entry for acquiring and releasing the resource as opposed to separate
entries for each client task. This is a more practical implementation since the lock manager task need not
change with every change in the number of clients. The communication channel task can be thought of as a
passive data server; it accepts data and transmits it over the simulated channel.

We checked a number of properties related to the possibility that messages from di�erent clients are
interleaved as they are sent over the channel. We wanted to check the global property that "when client i
sends a header then client i's packet will be sent before any other header". A QRE speci�cation of such a
property is problematic because it will depend on the number of clients. We initially explored a simple and
locally restricted version of such a speci�cation. The QRE header-packet for client 1 of a 2 client version
of the protocol is:

fh1, p1, h2, p2g
all

[-h1]*;(h1;[-p1,h1,h2]*;p1;[-h1]*)*

It says that if a header from client 1, h1, is ever sent then we will not see a header from either client 1 or 2
until we see a packet from client 1, p1. We applied our re�nement and constraint selection process to explore
the e�ects of di�erent re�nements and feasibility constraints on the precision and cost of analysis of this
property. We performed seven di�erent variations of FLAVERS analyses: basic, alphabet-re�ned, alphabet
and communication interval re�ned, and alphabet re�ned with 1, 2, 3 and 4 TAs. We found three analyses
that obtain conclusive results and the cheapest, by an order of magnitude, was alphabet and communication
interval re�nement combined. In the analyses of successively larger versions of the protocol program we
applied both of these re�nements.

We next considered how the cost of analysis scaled as we increase the number of client tasks in the
protocol program. For this program, since we know that all the client tasks are identical, we could argue
that once we show that this property holds between client 1 and client2, then it holds among all pairs of
clients. In general, the clients may not be identical, however. Hence, we attempted to evaluate how the
FLAVERS analyses would scale if we tried to verify the global property. Thus, in addition to the single
task header-packet property described above, we considered two global variants of this property: multiple
application of the single task version (where the analysis time is summed over this set) and a composite
version. Multiple application of the single task version involves constructing a di�erent header-packet
property for each program task; these QREs are all simple renamings of one another. The analysis time is
then summed over each. The composite version is an iterated disjunction of each of these individual single
task versions.

We start with the single task property. Figure 15 plots total analysis time versus the number of nodes
in the TFG. This is a rate-of-growth plot that includes a reference line whose slope is N3. We can see that
the rate of growth of the alphabet and communication interval re�ned analysis is sub-cubic for this problem.
Total analysis time for the largest example, 32 clients, was approximately 19 minutes.

The multiple version analysis runs, for each Client task in the program, a di�erent version of the single
task property. We use the fact that the global property of the program we wish to reason about can be
decomposed into a conjunction of a number of more local properties, i.e., relating events in a smaller set of
program tasks. Each of these conjuncts can then be analyzed in isolation. The design of the FLAVERS/Ada
tools allows us to reuse almost all of the analysis artifacts across all of the single analyses; thus the cost of
TFG construction and re�nement is amortized over many individual analyses. Because each of the single
task QREs share a common alphabet, the re�ned TFGs can be reused. Thus, only the QRE construction
and state propagation analysis need to be executed for each client task of the program. Figure 15 also plots
rate of growth for analysis via multiple header-packet analyses. We include an additional reference line
whose slope is T �N3 where T is the number of tasks. We see from this plot that the cost of analysis appears
to grow faster than N3 but less than T � N3. Total analysis time for the largest example, 32 clients, was
approximately 3 hours and 44 minutes.

Another approach to analyzing the global property of the program is to write a single QRE that speci�es

33

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

100

U
se

r+
S

ys
 (

se
c)

TFG Nodes
4 Tasks 6 Tasks 10 Tasks 18 Tasks 34 Tasks

Composite Total Time
Individual Total Time
All Tasks Total Time

T*N^3
N^3

Figure 15: Total Analysis Times for header-packet

the desired pattern of behavior for each task in the system. This QRE can grow quite long; for the 32 client
program the alphabet consists of 64 symbols and the regular expression contains 1386 instances of those
symbols and the regular operators. While this appears impracticably large for a speci�cation, it turns out
that the property is very regular and was easily produced by expansion of a simple macro. For the two client
program the QRE is as follows:

fh1, p1, h2, p2g
all

[-h1,h2]*; ((h1;[-p1,h1,h2]*;p1 | h2;[-p2,h1,h2]*;p2); [-h1,h2]*)*

We note that unlike the previous versions of the header-packet property, this composite QRE will scale as
the number of clients scales. Figure 15 includes a rate-of-growth plot for analysis of the composite property.
We see from this plot that the cost of analysis appears to grow faster than N3 but less than T �N3. Total
analysis time for the largest example, 32 clients, was approximately 51 minutes.

We have illustrated two FLAVERS analyses that are capable of verifying the global header-packet
property. While the multiple analyses approach is more e�ective for small problems it quickly increases
above the cost of the composite analysis, crossing at a program with approximately twelve tasks. We note
that this instance of a multiple analyses approach is about the best we could hope for; we have maximized
the amount of reuse of analysis artifacts. While we cannot generalize from just this example, it is clear that
a composite analysis can fare well in comparison to multiple analyses.

We now turn to the analysis of a property of the protocol program that speci�es that there should be
no-orphan-packets. Intuitively, every packet sent should have a matching preceding header. For this
study, we speci�ed a weaker version of this property, that the �rst packet sent by a single task cannot appear
before its matching header, as the following QRE:

fh1, p1, h2, p2 g
none

[-h1]*;p1;.*

This is weaker, as conceivably the error could appear on subsequent packets. Unlike the previous properties,
this one speci�es that no program execution satis�es the speci�ed pattern of behavior. We tried basic,
alphabet and communication interval re�ned analysis and found that alphabet and communication interval
re�nements combined produced conclusive results.

34

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

100

U
se

r+
S

ys
 (

se
c)

TFG Nodes
4 Tasks 6 Tasks 10 Tasks 18 Tasks 34 Tasks

Total Time
N^3

Figure 16: Total Analysis Time for no-orphan-packets

In Figure 16 we present the rate-of-growth plot of the total analysis time for this property. We see from
this plot that the cost of analysis appears to grow less than N3. Total analysis time for the largest example,
32 clients, was approximately 11 minutes.

8.2.2 The Readers/Writers Problem

The readers/writers problem is a standard example that implements a means of safe access to shared data.
A number of researchers have analyzed versions of the readers/writers problem [ABC+91, DBDS93]. The
state space of the program grows exponentially with the number of tasks, where a state of the program
records the states of the readers and writers. Assuming a client task can only be in one of two states, we end
up with 2r+w states, where r is number of readers and w is number of writers. Thus, if we can demonstrate
polynomial growth of an accurate analysis we will have improved on naive reachability analysis.

The readers/writers problem consists of a central data server, called the control task, and a collection
of reader and writer tasks; thus, it is scalable in the number of client tasks. In the program, readers only
attempt to read and writers only attempt to write the shared data; the data server, however, can support
clients that both read and write. Our code di�ers slightly from the examples that others have analyzed
[CA94] in that we include explicit program termination code; the controller will only shutdown when there
are no active readers or writers. Unlike many of the other example programs that we looked at, such as the
protocol and dining philosopher programs, the global state of a readers/writers program is not completely
captured by the control states of the client tasks. The control task maintains some local state variables that
determines the pattern of communication events that it engages in. The controller enforces exclusive write
semantics; if a writer is active then no other writer or reader can be active. These semantics are encoded
using local variables WriterPresent and ActiveReaders.

There are two alternatives for reasoning about the execution of the clients: we can reason about events
local to the clients or we can reason about events that are shared with the control task. The header-
packet property of the protocol program was formulated in terms of local client events. We take the other
approach here and specify patterns of events in terms of rw.control.start write, rw.control.stop write,
rw.control.start read and rw.control.stop read, which are the fully-quali�ed Ada names of the control
task entries. We use the abbreviations wstart, wstop, rstart and rstop, respectively, to make the QREs
more readable.

The QRE for the exclusive-read-write property is:

35

fwstart, wstop, rstart, rstopg
all

[-wstart]*;(wstart;[-rstart,rstop,wstart,wstop]*;wstop;[-wstart]*)*

This QRE excludes the possibility of a write or a read being initiated while a writer is active, however, it
does not preclude a reader from being active when a writer starts. An additional QRE can be used to insure
this no-read-upon-write condition:

fwstart, rstart, rstopg
none

.*;rstart;[-rstop]*;wstart;.*

We performed �ve di�erent variations of FLAVERS analysis on the 2 reader 2 writer program for the
exclusive-read-write property: basic, alphabet re�ned, alphabet and communication interval re�ned,
alphabet re�ned with a TA for the control task, and alphabet re�ned with a VA for the WriterPresent

Boolean variable in the control task. We found that only alphabet re�nement with the WriterPresent VA
obtained conclusive results. In analyses of this property for successively larger versions of the readers/writers
program, we applied these re�nements and constraints, and as expected, FLAVERS continued to produce
conclusive results.

In analyzing the no-read-upon-write property we start with the assumption that modeling the WriterPresent
variable will be necessary; as it proved invaluable in gaining precise analysis results for the previous property.
We found that incorporating a VA for that variable was insu�cient for gaining conclusive analysis results
for the no-read-upon-write property. We perform two di�erent variations of FLAVERS analysis on the 2
reader 2 writer program for the no-read-upon-write property: alphabet re�nement with a WriterPresent
VA constraint and alphabet re�nement with WriterPresent VA and an ActiveReaders counter VA con-
straint. The ActiveReaders variable is, like WriterPresent, local to the control task; it is manipulated as
a bounded counter variable. This variable controls the maximum number of readers that can be reading
at any time. It can be bounded at any value up to the number of readers in the program. It turns out
that we need only use a Boolean abstraction of this counter variable to check the speci�ed property. This
is because we only need to know whether some reader is active and not how many are active. In the data
presented below we bound the number of readers at 2 for all sizes of the program. We found that for the
no-read-upon-write property only the alphabet re�nement with both VAs obtained conclusive results.
In analyses of successively larger versions of the readers/writers program we applied these re�nements and
feasibility constraints and continued to obtain conclusive results.

We now consider a di�erent property of the readers/writers program. Intuitively, the shared data repos-
itory should contain some data before a reader accesses it; this is typical of producer consumer problems
where the data repository is some kind of queue. We specify that on all program executions a write must
precede the �rst read as the following QRE:

fwstart, rstartg
all

[-rstart]*;wstart*;.*

We perform �ve di�erent variations of FLAVERS analysis on the 2 reader 2 writer program for the write-
�rst property: basic, alphabet re�ned, alphabet and communication interval re�ned, alphabet with a TA,
and alphabet with a WriterPresent VA. Unlike the analysis for exclusive-read-write, the incorporation
of a TA for the control task was su�cient for producing conclusive analysis results. This is because the
patterns of behavior that write-�rst expresses are pre�xes of program executions that are encoded in the
control
ow structure of the control task. Only after the shared data server has been initialized will the local
state variables in
uence the pattern of communication. We found two analyses for the write-�rst property
that obtain conclusive results, alphabet re�nement with the TA or the VA, but using the VA analysis was
less costly. In analyses of successively larger versions of the program, we applied alphabet re�nements with
the VA feasibility constraints.

36

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

100

U
se

r+
S

ys
 (

se
c)

TFG Nodes

5 Tasks 9 Tasks 17 Tasks 33 Tasks 65 Tasks

exclusive-read-write
no-read-upon-write

write-first
N^3

Figure 17: Total Times for readers/writers Analyses

To evaluate how the cost of analysis scales for this program, we began with two readers and two writers,
and then increased the size of the program by doubling the number of readers and writers, up to 64 clients,
for each of the three properties with their selected re�nements and constraints. Figure 17 plots total analysis
time versus the number of nodes in the TFG for the three di�erent analyses. We can see that the rate of
growth is sub-cubic for all three analyses. Total analysis time for the largest example, 32 readers and 32
writers, was approximately 96 minutes, 51 minutes, and 32 minutes, for the three properties respectively.

8.2.3 The Gas Station Problem

The gas station problem is a simulation of an automated self-serve gas station [HL85]. The gas station
consists of a collection of client tasks and a collection of tasks that act as a server. It is similar to the
readers/writers problem in that both have a server subsystem and client tasks. In the readers/writers
problem the server is the control task. In the gas station the server is a scalable collection of co-operating
tasks. Thus, the gas station problem is scalable in two signi�cantly di�erent dimensions: number of clients
and size of server.

The server component consists of an operator task that accepts payments and gives change to customers
and a number of pump tasks that independently start and stop the pumping of gas. The operator interacts
with the pumps by enabling them to pump gas after payment has been received and by getting information
about how much gas was pumped. The clients, or customers, pay for gas, pump it, and get their change.
Our code di�ers slightly from the examples that others have analyzed [CA94] in that we include explicit
program termination code; the operator will shutdown when there are no active customers and after it has
successfully turned the pump o�.

We check a property related to exclusive access to a pump. From a black box perspective this is a
potentially interesting property to check, since insuring that a single customer may be using the pump at
any time is a desirable system property. From a white box perspective, however, the property appears trivial
to check due to the control
ow in the pump tasks. The QRE for the one-per-pump property is:

fgas pump start pumping, gas pump stop pumpingg
all

[-gas pump start pumping]*;
(gas pump start pumping;

[-gas pump start pumping,gas pump stop pumping]*;

37

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

100 1000

U
se

r+
S

ys
 (

se
c)

TFG Nodes

5 Tasks 8 Tasks 14 Tasks 26 Tasks 50 Tasks

Alpha
Alpha+CI

N^3

Figure 18: Total Analysis Times for one-per-pump

gas pump stop pumping;
[-gas pump start pumping]*

)*

We performed three di�erent variations of FLAVERS analysis on the 3 customer 1 pump program for
the one-per-pump property: basic, alphabet re�ned, alphabet and communication interval re�ned. The
latter two produced conclusive results, but alphabet re�ned was signi�cantly less expensive. Thus, we used
alphabet re�nement when we scaled the problem.

To evaluate how the cost of the analysis scaled, we increased the number of customer tasks in the gas
station program. We began with 3 customers, then increased the size of the program by doubling the number
of customers at each step. Figures 18 gives the rate-of-growth plots and again shows that the analysis of
this problem is sub-cubic. Total time for the alphabet re�ned analysis of the largest example, 48 customers,
was approximately 32 minutes.

8.2.4 The Dining Philosophers Problem

A number of researchers have analyzed versions of the dining philosophers problem [ABC+91, CA94, DBDS93,
MR93, YTL+95] to insure deadlock freedom.

The dining philosophers problem consists of equal numbers of philosopher and fork tasks. The program
has at least 4 tasks; it is scalable in the number of philosophers and their forks. The tasks are organized into a
ring with alternating philosopher and fork tasks. Conceptually, the philosophers are the active entities; each
philosopher task has access to two forks, left and right. Philosophers attempt to gain access to both forks
simultaneously by communicating with the appropriate fork tasks. Each fork is shared by two philosophers.

A dining philosophers program has the most distributed control of all of the programs considered in this
evaluation. Most of the example programs, e.g., readers/writers, gas station, and protocol programs, have
centralized servers. The DARTES system, discussed below, has a centralized master task.

We wanted to check the property that "adjacent philosophers cannot eat concurrently", which we refer
to as the neighbors-think property. As in the case of the header-packet property we considered the
possibility of specifying a number of versions of the property. Using the fact that neighbors must acquire a
shared fork, we specify the property for a single philosopher as the QRE:

f phils f1 d1, phils f1 u1 g

38

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

100 1000

U
se

r+
S

ys
 (

se
c)

TFG Nodes

6 Tasks 12 Tasks 24 Tasks 48 Tasks 96 Tasks

Single
Multiple

N^3

Figure 19: Total Analysis Times for neighbors-think

all
[-phils f1 u1]*;
(phils f1 u1;[- phils f1 u1]*;

phils f1 d1;[- phils f1 u1]*
)*

From a black box perspective this is a potentially interesting property to check, since insuring that at
most one of a pair of adjacent philosopher may be using the fork at any time is a desirable system property.

From a white box perspective, however, the property appears trivial to check due to the control
ow in the
fork tasks. Given our experience with the protocol problem we considered specifying a composite version of
the property. Unfortunately, the complexity of that QRE grows very rapidly since we must allow the forks to
operate independently; the result is a speci�cation of the interleavings of the desired event sequences for each
fork. This is the �rst example we encountered where a natural property of a system requires an exponentially
long QRE speci�cation. The number of PA states for such a speci�cation will grow exponentially as well.
In addition, this property suggests an entire class of such speci�cations. The alternate approach of checking
the pattern of behavior for each fork in isolation seems more attractive; this is analogous to the multiple
header-packet analysis for the protocol program.

Based on experience we started our analysis series with alphabet re�nement and found that FLAVERS
produced conclusive analysis results.

To consider how the cost of the alphabet re�ned analysis scales as we increase the number of philosophers
and fork tasks in the program, we began with three philosophers and three forks and increased the size of
the program by doubling the number of philosophers and forks at each step. Figure 19 plots total analysis
time versus the number of nodes in the TFG for the alphabet re�ned analysis of a single neighbor. The
rate of growth for this analysis also appears to be sub-cubic. Total analysis time for the largest example, 48
philosophers and 48 forks, was approximately 7 minutes.

8.2.5 The DARTES Application

DARTES is a concurrent weapon simulation application. Since it was not developed as an analysis test case,
it may be more representative of "typical" concurrent Ada programs than some of the other programs we
consider.

Masticola [Mas93] and Corbett [CA94] have analyzed versions of the program to check for deadlock

39

freedom. We use a version that is identical to the one used in Corbett's experiments. This is a variant
of Masticola's version, which was not a legal Ada program. We note that both Corbett's and Masticola's
versions are hand-inlined versions of the original application that preserves the communication structure of
the application but not all of the details of the computation.

The system consists of 32 tasks and is non-scalable. The simulation is structured such that there are two
main controlling tasks: one to initialize the simulation and one to shut it down. The other 30 tasks are
broken into two classes: data servers and simulation tasks. The data servers provide access to shared data
that is needed by multiple simulation tasks. The simulation tasks read from some collection of data servers,
compute new values for a component of the simulation, and update data servers appropriately. All of the
data servers have the same control structure. The simulation tasks have similar control structure; they vary
based on the local computation and the number of data servers they interact with. While data servers and
simulation tasks have somewhat di�erent control structures, they share a common pattern of interaction
with the control task. Given the uniformity of these tasks, we chose to analyze properties related to the
interaction of the control tasks with various data servers and simulation tasks.

The no-premature-go property describes a pattern of events that are local to a single task. We selected
the task DISPLAY x STATUS UPDATE and specify the property that "on no program execution can
the go action precede the �rst pair of initialize and stop actions". For brevity we write the fully-quali�ed
Ada name of task DISPLAY x STATUS UPDATE as T in the QRE for this property:

fT go, T initialize, T stop g
none

[-T go]*;T go;[-T initialize]*;T initialize;[-T stop]*;T stop

We perform analysis to insure that the behavior of the other tasks in the system cannot interfere with the
speci�ed operation of T.

Unlike some of the other examples, such as dining philosophers, the tasks in the DARTES program have
relatively complex internal control
ow. Applying the basic FLAVERS analysis to the no-premature-
go property caused the FLAVERS/Ada toolset to exceed its storage capacity. Incorporating alphabet
re�nement, however, allows the analysis to easily handle this problem.

For this problem, conclusive analysis results were obtained in less than 6 minutes.

8.3 Discussion

We believe that the empirical results in this section clearly demonstrate the feasibility of FLAVERS analyses.
In particular, it demonstrates that there exist natural properties of non-trivial programs that can be veri�ed
using an analysis approach whose cost increases as a low-order polynomial in the size of the program.

For many of the analysis problems we found that there were multiple FLAVERS analyses that produced
conclusive analysis results. In some cases, such as the single header-packet speci�cation of the protocol
program, the di�erence in the cost of analysis was more than an order of magnitude. In other cases, such as
the write-�rst speci�cation of the readers/writers program, the di�erence in the cost of analysis was very
small. As a practical matter we want to �nd the least expensive FLAVERS analysis that provides the level
of precision we require. We must, however, factor the cost of �nding that analysis into the overall cost of
checking the desired speci�cation on a program. We have adopted a greedy approach, taking the �rst precise
analysis we �nd when looking at the smallest instance of a program. As we look at larger programs, however,
this choice may not be the best since some analyses will scale better than others. For example, the composite
header-packet speci�cation is more costly to analyze than the multiple header-packet speci�cation for
small instances of the protocol program. For protocols with more than 12 clients, however, the composite
speci�cation becomes cheaper since it grows at a lower rate than for the multiple speci�cation.

Intuitively, one of the most important factors that in
uences the cost of FLAVERS analysis is the degree
to which a speci�cation is local or global. A local speci�cation refers to program events whose only instances
are in a small cluster of tasks. A global speci�cation refers to program events whose instances are scattered
widely throughout the program. If we imagine using only task automata to add information to a FLAVERS

40

analysis, it is clear that, in general, the fewer TAs we add the less costly the analysis. A local speci�cation
will, in general, require fewer TAs than a more global speci�cation. The properties analyzed in the previous
sections vary from being local to a pair of tasks to including events from all program tasks. By using
conservative speci�cations of the behavior of parts of a system we can focus a FLAVERS analysis on speci�c
sub-systems and win both performance and accuracy improvements.

For all of the scalable analysis problems we considered the rate of growth was bounded by either N3 or
TN3, where T is the number of program tasks and N is the number of TFG nodes. Some of the rate-of-
growth curves exhibit a slight cupped shape; this is due, at least in part, to the fact that for some of the
analyses the measures of cost grow as a function of both the size of the TFG and the size of the property and
constraints used. For all of these analysis problems it is the case that the slope between any pair of points
on the associated rate-of-growth plot is sub-cubic. For a number of the programs considered it is well known
that the cost of unreduced state space enumeration techniques will scale exponentially with the number of
tasks. Thus, it is not the case that we are choosing "easy" problems, rather FLAVERS is demonstrating
polynomial growth on problems that grow exponentially in the number of potential program executions.
Since we have considered a relatively small collection of programs and properties in this evaluation, we
cannot generalize our observations about the rate of growth of the cost of FLAVERS analysis to as yet
untried analysis problems.

All �nite state veri�cation techniques reason about the execution behavior of non-�nite state systems by
approximating that behavior with a �nite model. Flow analyses have typically used weaker approximations
to gain performance at the expense of precision. When applying
ow analysis, and FLAVERS in particular,
to veri�cation problems, one of the key questions is whether the analysis can produce su�ciently precise
results. Our experience suggests that by incorporating additional information into FLAVERS analyses,
spurious results can be eliminated. For all of the examples considered in this section, the precision of
analysis results was su�cient to verify a given speci�cation with respect to a given program. The cost of this
increased precision varied with the program and speci�cation under analysis. FLAVERS analyses can obtain
the same level of precision as state space enumeration techniques. Incorporating TAs for all program tasks
and VAs for variables that are feasible to model is equivalent to exploring the state space of the program.
Fortunately, it is usually the case that we don't need that much information to gain precise analysis results
with FLAVERS.

9 Conclusion

We have presented FLAVERS, a �nite state veri�cation approach that analyzes whether concurrent or
sequential programs satisfy user-de�ned correctness properties. In contrast to other �nite-state veri�ca-
tion techniques, FLAVERS is based on algorithms with low-order polynomial bounds on the running time.
FLAVERS achieves this e�ciency at the cost of precision. Analysts, however, can improve the precision
of the results by selectively and judiciously incorporating additional semantic information into the analysis
problem. FLAVERS provides automated support for creating some of the common constraints that are used
to represent this additional information.

Our evaluation, although preliminary and carried out on an early prototype of the system, indicates that
su�cient precision can be achieved relatively easily and that the cost for such analysis grows as a low-
order polynomial in the size of the program. Our experimental evaluation also provided insight into which
re�nements are most e�ective. For example, alphabet re�nement is now always done, and, based on our
�ndings, more e�ective techniques for eliminating unnecessary MIP edges are being aggressively explored
[NA98, NAC99b, NCC99].

In addition to the evaluation reported here, the toolset has been applied in a number of interesting
ways. It has been used in an empirical evaluation of concurrency analysis techniques [Cha96], to analyze
communication protocols [NCO96], partial software systems [Dwy97], and architectural system descriptions
[NACO97].

Although this paper has described the approach in some detail for Ada programs, the approach is relatively

41

language independent. Each new programming language must be carefully translated into the programmodel
so that the ordering of events is conservatively captured in the TFG's
ow of control. To date, translators have
been successfully developed by others for C++ and for Jovial. We are currently exploring some alternative
models for Java [NAC99a]. Interestingly, the state propagation algorithm has not needed to be changed for
these di�erent languages, although we would not expect this to always be the case.

In addition to being applicable to programming languages, the FLAVERS approach is applicable to other
artifacts that capture the
ow of events through a system. For example, it could be applied to architectural
descriptions or detailed designs. We have emphsized how it can be used to verify properties of systems. This
could be viewed as a complementary activity to testing. Or it could be used to help with debugging where
a hypothesis about a fault is formulated as a property and FLAVERS is then used to determine if there are
any traces through the TFG (and thus consequently through the code) that would cause this fault to occur.

Distributed applications are becoming extremely common. Such systems are more di�cult to reason
about, to test, and to debug. Because of non-determinism, and thus the inability to even replicate test
results, it is extremely important that practical techniques be developed to help reason about such systems.
Although the experimental evaluation reported here is very preliminary and the example programs are small,
the worst case bounds and subsequent work on furthering optimizing the prototype, lead us to believe that
the FLAVERS approach will mature into a technique that is of practical use to developers of distributed
software.

References

[ABC+91] G.S. Avrunin, U.A. Buy, J.C. Corbett, L.K. Dillon, and J.C. Wileden. Automated analysis of
concurrent systems with the constrained expression toolset. IEEE Transactions on Software
Engineering, 17(11):1204{1222, November 1991.

[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading MA, 1974.

[ASU85] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles, Techniques, and Tools. Addison-
Wesley, 1985.

[BK84] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information and
Control, 60:109{137, 1984.

[BMD96] Christina Bouwens, Rick McKenzie, and Christopher Dean. Investigating static data
ow analysis
for advanced distributed simulation veri�cation. In Proceedings of the 15th Workshop in the
Interoperability of Distributed Interactive Simulation, pages 473{478, September 1996.

[CA94] J.C. Corbett and G.S. Avrunin. Towards scalable compositional analysis. Software Engineering
Notes, 19(5):53{61, December 1994. Proceedings of the ACM SIGSOFT Symposium on the
Foundations of Software Engineering.

[CC95] Cli� Click and Keith D. Cooper. Combining analyses, combining optimizations. ACM Transac-
tions on Programming Languages and Systems, 17(2):181{196, March 1995.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-state concurrent
systems using temporal logic speci�cations. ACM Transactions on Programming Languages and
Systems, 8(2):244{263, April 1986.

[Cha96] A.T. Chamillard. An Empirical Comparison of Static Concurrency Analysis Techniques. PhD
thesis, University of Massachusetts at Amherst, May 1996.

[CK93] S.C. Cheung and J. Kramer. Tractable
ow analysis for anomaly detection in distributed pro-
grams. In Proceedings of the European Software Engineering Conference, 1993.

42

[CKS90] D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synchronization in a parallel pro-
gramming tool. In Proceedings of the Second Symposion on Principles and Practice of Parallel
Programming. ACM, 1990.

[Cor92] J.C. Corbett. Verifying general safety and liveness properties with integer programming. In Pro-
ceedings of the 3rd International Workshop on Computer Aided Veri�cation, Montreal, Canada,
July 1992.

[Cor96] J.C. Corbett. Evaluating deadlock detection methods for concurrent software. IEEE Transactions
on Software Engineering, 22(3), March 1996.

[CPS93] R. Cleaveland, J. Parrow, and B. Ste�en. The concurrency workbench: A semantics based tool
for the veri�cation of concurrent systems. ACM Transactions on Programming Languages and
Systems, 15(1):36{72, January 1993.

[DAC99] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in property speci�cations for �nite-state
veri�cation. In Proceedings of 21st International Conference on Software Engineering, May 1999.

[DBDS93] S. Duri, U. Buy, R. Devarapalli, and S.M. Shatz. Using state space methods for deadlock
analysis in Ada tasking. Software Engineering Notes, 18(3):51{60, July 1993. Proceedings of the
International Symposium on Software Testing and Analysis.

[DC96] M.B. Dwyer and L.A. Clarke. A
exible architecture for building data
ow analyzers. In Pro-
ceedings of the 18th International Conference on Software Engineering, March 1996.

[DKM+94] Laura K. Dillon, G. Kutty, Louise E. Moser, P. M. Melliar-Smith, and Y. S. Ramakrishna.
A graphical interval logic for specifying concurrent systems. ACM Transactions on Software
Engineering and Methodology, 3(2):131{165, April 1994.

[DP98] Matthew B. Dwyer and Corina S. Pasareanu. Filter-based model checking of partial systems. In
Proceedings of the Sixth ACM SIGSOFT Symposium on Foundations of Software Engineering,
November 1998. to appear.

[DS91] E. Duesterwald and M.L. So�a. Concurrency analysis in the presence of procedures using a data

ow framework. In Proceedings of the ACM SIGSOFT Symposium on Testing, Analysis and
Veri�cation (TAV4), October 1991.

[DS97] M.B. Dwyer and D.A. Schmidt. Limiting state explosion with �lter-based re�nement. In Pro-
ceedings of the 1st International Workshop on Veri�cation, Abstract Interpretation and Model
Checking, October 1997.

[Dwy95] M.B. Dwyer. Data Flow Analysis for Verifying Correctness Properties of Concurrent Programs.
PhD thesis, University of Massachusetts at Amherst, September 1995.

[Dwy97] M.B. Dwyer. Modular
ow analysis for concurrent software. In Proceeding of the 12th IEEE
Conference on Automated Software Engineering, November 1997.

[FO76] Lloyd D. Fosdick and Leon J. Osterweil. Data
ow analysis in software reliability. ACM Com-
puting Surveys, 8(3):305{330, September 1976.

[GS93] D. Grunwald and H. Srinivasan. E�cient computation of precedence information in parallel
programs. In Proceedings of the Sixth Annual Workshop on Languages and Compilers for Parallel
Computing, Portland, OR, August 1993.

[Gun92] C. Gunter. Semantics of Programming Languages, Structures and Techniques. MIT Press, 1992.

43

[GW91] P. Godefroid and P. Wolper. Using partial orders for the e�cient veri�cation of deadlock freedom
and safety properties. In Proceedings of the Second Workshop on Computer Aided Veri�cation,
pages 417{428, July 1991.

[Hec77] M.S. Hecht. Flow Analysis of Computer Programs. The Computer Science Library Programming
Language Series. Elsevier North-Holland, 1977.

[HL85] D. Helmbold and D. Luckham. Debugging ada tasking programs. IEEE Software, 2(2):47{57,
March 1985.

[Hol88] G.J. Holzmann. An improved reachability analysis technique. Software: Practice and Experience,
18(2):137{161, February 1988.

[Hol97] G.J. Holzmann. The model checker spin. IEEE Transactions on Software Engineering, 23(5):279{
294, May 1997.

[How86] W.E. Howden. A functional approach to program testing and analysis. IEEE Transactions on
Software Engineering, SE-12:997{1004, October 1986.

[HR81] L.H. Holley and B.K. Rosen. Quali�ed data
ow problems. IEEE Transactions on Software
Engineering, SE-7(1):60{78, January 1981.

[KSV96] Jens Knoop, Bernhard Ste�en, and J. Vollmer. Parallelism for free: E�cient and optimal bitvec-
tor analyses for parallel programs. ACM Transactions on Programming Languages and Systems,
18:268{299, 1996.

[KU77] J.B. Kam and J.D. Ullman. Monotone data
ow analysis frameworks. Acta Informatica, 7:305{
317, 1977.

[Kur85] R.P. Kurshan. Modeling concurrent processes. In B. Gopinath, editor, Computers and Commu-
nications, volume 31 of Proceedings of Symposia in Applied Mathematics, pages 45{57, 1985.

[Mas93] S.P. Masticola. Static Detection of Deadlocks in Polynomial Time. PhD thesis, Rutgers Univer-
sity, May 1993.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[Mer92] N. Mercouro�. An algorithm for analyzing communicating processes. In Proceedings of Mathe-
matical Foundation of Programming Semantics '91, Pittsburgh, PA, March 1992. published in
LNCS 598.

[Mil79] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer-Verlag, 1979.

[MMR95] S.P. Masticola, T.J. Marlowe, and B.G. Ryder. Lattice frameworks for multisource and bidi-
rectional data
ow problems. ACM Transactions on Programming Languages and Systems,
17(5):777{803, September 1995.

[MR90] T.J. Marlowe and B.G. Ryder. Properties of data
ow frameworks. Acta Informatica, 28:121{163,
1990.

[MR93] S.P. Masticola and B.G. Ryder. Non-concurrency analysis. In Proceedings of the 4th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, May 1993.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of IEEE, 77(4):541{580,
April 1989.

44

[NA98] G.N. Naumovich and G.S. Avrunin. A conservative data
ow algorithm for detecting all pairs of
stat ements that may happen in parallel. In Proceedings of the Sixth ACM SIGSOFT Symposium
on the Foundations of Software Engineering, November 1998.

[NAC99a] G.N. Naumovich, G.S. Avrunin, and L.A. Clarke. Data
ow analysis for checking properties of
concurrent java programs. In Proceedings of 21st International Conference on Software Engi-
neering, May 1999.

[NAC99b] G.N. Naumovich, G.S. Avrunin, and L.A. Clarke. An e�cient algorithm for computing mhp in-
formation for concurrent java programs. In Proceedings of the ESEC/FSE 99, Joint 7th European
Software Engineering Conference(ESEC) and 7th ACM SIGSOFT International Symposium on
the Foundations of Software Engineering (FSE-7), September 1999.

[NACO97] G.N. Naumovich, G.S. Avrunin, L.A. Clarke, and L.J. Osterweil. Applying static analysis to
software architectures. In LNCS 1301. The 6th European Software Engineering Conference held
jointly with the 5th ACM SIGSOFT Symposium on the Foundations of Software Engineering,
September 1997.

[NCC99] G.N. Naumovich, L.A. Clarke, and J.M. Cobleigh. Using partial order techniques to im-
prove performance of data
ow analysis based veri�cation. In Proceedings of the ACM SIG-
PLAN/SIGSOFT Workshop on Program Analysis For Software Tools and Engineering, Septem-
ber 1999.

[NCO96] G.N. Naumovich, L.A. Clarke, and L.J. Osterweil. Veri�cation of communication protocols using
data
ow analysis. In Proceedings of the Fourth ACM SIGSOFT Symposium on the Foundations
of Software Engineering, October 1996.

[NCO98] G.N. Naumovich, L.A. Clarke, and L.J. Osterweil. E�cient composite data
ow analysis applied
to concurrent programs. In Proceedings of the ACM SIGPLAN/SIGSOFT Workshop on Program
Analysis For Software Tools and Engineering, June 1998.

[NM90] R.H. Netzer and B.P. Miller. Detecting data races in parallel program executions. In Proceedings
of the 3rd Workshop on Programming Languages and Compilers for Parallel Computing, Irvine,
CA, August 1990.

[OO90] K.M. Olender and L.J. Osterweil. Cecil: A sequencing constraint language for automatic static
analysis generation. IEEE Transactions on Software Engineering, 16(3):268{280, March 1990.

[OO92] K.M. Olender and L.J. Osterweil. Interprocedural static analysis of sequencing constraints. ACM
Transactions on Software Engineering and Methodology, 1(1):21{52, January 1992.

[Pnu85] A. Pnueli. Applications of temporal logic to the speci�cation and veri�cation of reactive systems:
a survey of current trends. In J.W. de Bakker, editor, Current Trends in Concurrency, volume
224 of Lecture Notes in Computer Science, pages 510{584. Springer-Verlag, 1985.

[RS90] J.H. Reif and S.A. Smolka. Data
ow analysis of distributed communicating processes. Interna-
tional Journal of Parallel Programming, 19(1), 1990.

[SAIC97] Science Applications International Corporation. Advanced interoperability technology develop-
ment: Investigating static data
ow analysis for advanced distributed simulation veri�cation.
Technical report, SAIC, Orlando, FL, May 1997.

[Sch98] D.A. Schmidt. Data-
ow analysis is model checking of abstract interpretations. In Proceedings
of the Twenty-�fth Annual ACM Symposium on Principles of Programming Languages, January
1998. to appear.

45

[SMBT90] S.M. Shatz, K. Mai, C. Black, and S. Tu. Design and implementation of a petri net based toolkit
for ada tasking analysis. IEEE Transactions on Parallel and Distributed Systems, 1(4):424{441,
October 1990.

[Ste93] Bernhard Ste�en. Generating data
ow analysis algorithms from modal speci�cations. Interna-
tional Journal on Science of Computer Programming, 21:115{139, 1993.

[Tay83a] R.N. Taylor. Complexity of analyzing the synchronization structure of concurrent programs.
Acta Informatica, 19:57{84, 1983.

[Tay83b] R.N. Taylor. A general-purpose algorithm for analyzing concurrent programs. Communications
of the ACM, 26, May 1983.

[TBC+88] R.N. Taylor, F.C. Belz, L.A. Clarke, L.J. Osterweil, R.W. Selby, J.C. Wileden, A.L. Wolf,
and M. Young. Foundations for the Arcadia Environment Architecture. In Proceedings of SIG-
SOFT88: Third Symposium on Software Development Environment, pages 1{13, November 1988.
Published as ACM SIGPLAN Notices 24(2) and as SIGSOFT Software Engineering Notes, 13(5)
November 1988.

[TO80] R.N. Taylor and L.J. Osterweil. Anomaly detection in concurrent software by static data
ow
analysis. IEEE Transactions on Software Engineering, SE-6(3):265{277, May 1980.

[Val90] A. Valmari. A stubborn attack on state explosion. Computer Technology Laboratory report
26.4.1990, Technical Research Centre of Finland, 1990.

[Wol83] P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1-2):72{93,
1983.

[WZ91] M.N. Wegman and F.K. Zadeck. Constant propagation with conditional branches. Transactions
on Programming Languages and Systems, 13(2):181{210, April 1991.

[YTL+95] M. Young, R.N. Taylor, D.L. Levine, K.A. Nies, and D. Brodbeck. A concurrency analysis tool
suite: Rationale, design, and preliminary experience. ACM Transactions on Software Engineering
and Methodology, 4(1):64{106, January 1995.

[YY91] W.J. Yeh and M. Young. Compositional reachability analysis using process algebra. In Pro-
ceedings of the ACM SIGSOFT Symposium on Testing, Analysis and Veri�cation, pages 49{59,
Victoria, Canada, October 1991.

46

