
Improving Architectural Description Languages to Support
Analysis Better

Lori A. Clarke
Department of Computer Science

University of Massachusetts
Amherst, MA 01002
clarke@cs.umass.edu

ABSTRACT

Software architecture is an emerging new area. It
encompasses the traditional area of software design with an
emphasis on the design of distributed systems. Based on the
past failures of complex design techniques to gain wide
spread acceptance, software architecture languages must
demonstrate that they provide significant value. A primary
benefit will be the early detection of software faults. This is
particularly important for distributed systems, since even
simple distributed systems can be difficult to understand.
This paper outlines some ways in which architectural
description languages need to be designed to increase their
usability, acceptability, and consequently analyzability.

KEYWORDS
software architecture, distributed systems, software analysis

On the one hand, software architecture is nothing more than
the renaming of a well-established research area, namely
software design. On the other hand, this renaming is
perhaps justified since software systems are very different
from how they use to be and new software design
techniques need to be developed to address those differences.
The primary differences are that systems now utilize an
object oriented, polymorphic typing model that encourages
reuse and that systems are distributed collections of
subsystems. The first change affects how systems are
represented and has been the focus of several design
modeling notations such as OMG and UML. The second
area is the major concern of software architecture; that is,
how to design distributed software systems. It is this second
area and the importance of analysis that is addressed in this
position paper.

Distributed systems have many advantages, such as
concurrent execution, with its concomitant potential for
great savings in execution time, and the flexibility of
component substitution. Unfortunately, such systems are
much harder to reason about, and thus much harder to
design correctly. Since it costs less to detect and fix flaws
in a system early as opposed to later in the development
process, it is advantageous to develop design notations for
distributed systems that will lay the foundation for
analyzing those designs and detecting problems early.

In addition to analyzability, we know from past experience
that design notations must be simple and visually
appealing. They are intended to convey information about
the system relatively easily and thus are provided to
facilitate system understanding. We also know from past
experience with numerous graphical program
representations that such representations make great
demonstrations, but few developers use them in practice. As
soon as systems get large or complex, a visual
representation is not that helpful. For example, flow charts
and control flow graphs are not widely used by system
developers as software understanding aids; they are used as
the basis for underlying analysis however.

Many of the current architecture description languages fail
to satisfy these two goals. Some, such as Rapide, are
basically supercharged programming languages. Although
visually appealing graphical representations can be
provided, users must be familiar with the various
architecture programming notations that comprise Rapide.
Other languages, such as Wright, are based on mathematical
formal models; such notations have never been widely
accepted in industry and thus will probably not be widely
embraced outside the academic community. Others, such as
ACME, are graphical notations that are relatively easy to
view but for which there is no agreed upon semantics upon
which to base interesting and useful analysis. Thus, if
accepted by practitioners, there will be numerous dialects of
ACME, thereby increasing the confusion and hampering
software understanding.

In this paper I advocate four requirements for architectural
description languages that focus on how architectural
description languages can better support analysis as well as
software understanding.

CONNECTOR ABSTRACTION:
Architecture description languages must provide support for
the most common component interaction abstractions.
When procedure invocation was the primary means of
component interaction, design language notations easily
represented this control construct (usually by arrows). Now,
however, there are several commonly used interaction
models for distributed systems, such as remote procedure

call, message passing, and event based notification. These
interaction abstractions must be first class entities in the
architecture description language. While it might still be
useful to have a generic connector that can be instantiated in
terms of one of these higher level distributed control
constructs, it is also important that the choice of interaction
can be stated explicitly and easily.

Analysis techniques have tended to focus on the
synchronous communication model that is used in Ada and
CSP. Until recently, this was the only reasonable
alternative; Ada was one of the few languages that had a
well-defined concurrency control construct. C and C++ in
contrast tended to use platform dependent constructs.
Developers of analysis techniques must focus on general
and widely used models. It is too expensive, in terms of
human effort, to develop approaches that address one-of-a-
kind techniques.

Architecture researchers and analysis researchers should join
forces to help define a reasonable set of connector
constructs. These constructs should represent the main
concurrency control mechanism in use today. If architectural
description languages supported these constructs, these
languages would have a greater chance of being widely used,
and analysis researchers would have a test bed of examples
on which to evaluate their analysis techniques. As new
constructs are developed and gain acceptance, these too
could be added to the library of abstract connectors.
Considering past history, many such constructs might be
proposed, but few would gain widespread acceptance, and
thus this library would grow very slowly. With appropriate
forethought, analysis techniques could even be developed
that support multiple concurrency control abstractions,
thereby being applicable to the many software systems with
mixed distribution paradigms.

ARCHITECTURAL STYLE:
The early work on software architecture by Mary Shaw
advocated recognizing common templates and learning how
to exploit that information. It is interesting that this
approach, now called design patterns, has become very
popular in programming. Programmers recognize that they
are frequently reinventing the wheel and that it behooves
them to be knowledgeable about these patterns. As with
many breakthroughs in software development, patterns
bring a higher level of abstraction to the software
development process. Earlier work focused more on
capturing abstractions directly in the programming
language, as was the case with structured control constructs
(e.g., case statements), data abstraction, and object oriented
programming constructs. Design patterns use the primitive
constructs in a language to capture higher level
abstractions. Previously this had been done with data
structures, such as stacks and queues, but with patterns the
focus is on control abstractions instead of data abstractions.

Software architect researchers need to explore and define
common architectural control abstractions. Some of these
have been identified, such as the pipe and filter style and the
heartbeat style, but there still is not wide spread acceptance
of these styles nor agreement on the requirements or
constraints that identify such a style.

These architectural control abstractions along with their
specification requirements will provide considerable
opportunities for analysis. If a developer believes that an
architectural description should satisfy a pattern then the
associated specifications for that pattern can be validated by
analysis techniques. Since writing specifications is a
difficult and error prone process, having generic
specifications associated with well-known and accepted
patterns would help considerably. These would be
application independent, style specific properties. As noted
below this would also help with compositional
development and software understanding.

COMPOSITION AND REFINEMENT:
Software architecture is usually concerned with supporting
the development of large systems. Such systems are not
developed all at once, but are incrementally evolved over
time. Thus, architectural description languages and
associated analysis techniques should support incremental
development. There are several aspects to this problem.

One of these is supporting the description and analysis of
incomplete systems. It is useful if missing components can
be represented by high-level specifications. These
specifications are assumed to be true during the analysis of
the existing components. When a missing component
becomes available, any specifications that were assumed
about this component would need to be validated. If found
false, any previous analysis that was based on these false
assumptions would have to be revisited.

Such an approach supports another aspect of incremental
development--that is, the incremental development of
specifications of such systems. With such an approach,
analysis is undertaken hand-in-hand with development and,
thus, developers receive early feedback as the system
evolves. Specifications of missing components would be
incrementally developed depending on the contexts in which
each is used. When a new component is defined, it is
checked to be sure that it is consistent with all these
contexts. If not, it is clear what re-analysis and redesign
must be considered. In addition, any new specifications of
the component would be defined and validated.

A SIMPLE FORMAL SEMANTICS:
Architectural description languages need to be relatively
simple to create, understand and maintain or developers will
eschew their use. Even if analysis of such descriptions is
shown to reduce errors and decrease overall development and
maintenance costs, these languages will not be used by

developers unless they can see short term benefits in their
use. This pessimistic view is validated by studies of
software inspection techniques, where it has been shown
that even this well-known effective technique (of which
there are very few) is dropped when resources are tight. The
more pain (i.e., intellectual effort) required to use a
technique, the more likely it will be avoided. Thus,
architectural specification must be relatively easy to
describe, must provide relatively appealing visual
representations, and must be shown to be effective.

Analysis of architectural representations is the primary
means by which this approach will be shown to be
effective. If errors are caught and corrected early, then
overall develop costs will be reduced. However, analysis can
not be done unless the languages have meaningful
semantics upon which to base this analysis and unless
developers use these architectural description languages.
This would seem to be a contradiction since developers
often shun formal, semantically rich models.

Recent work on specification patterns by Dwyer, Avrunin
and Corbet is addressing some of these concerns. This work
has been developing a high-level, natural language like
specification notation. This notation can be mapped unto
many of the more mathematically formal and thus obtuse

specification languages upon which many analysis
techniques rely. Thus developers do not need to understand
or use the more formal notation. A similar approach needs
to be developed for architectural specification languages.
Just like programmers no longer need to understand the
low-level register operations that underlying a high-level
programming language, specifications and architectural
description languages should relieve developers of
understanding the precise, formal semantics that must
underlie these languages.

In summary, architectural description languages have the
potential to improve the quality of software systems and to
reduce software development effort. These benefits are based
on the assumption that powerful analysis techniques will be
developed to support analysis of system descriptions written
in these languages. Without such support, architectural
descriptions will not provide enough benefit to warrant the
cost of their development. Thus analysis and software
architecture researchers must work together to address the
needs of developers. There is great potential to improve the
software development process but researchers must be
pragmatic about what might work and must develop
approaches that can be demonstrated to be effective, that are
relatively easy to use, and that take into account current
programming practices.

