
Modeling Resources for Activity Coordination

and Scheduling

Rodion M� Podorozhny � Barbara Staudt Lerner and Leon J� Osterweil

University of Massachusetts� Amherst MA ������ USA

Abstract� This paper describes experience in applying a resource man�
agement system to problems in two areas of agent and activity coordi�
nation� In the paper we argue that precise speci�cation of resources is
important in activity and agent coordination� The tasks and actions that
are to be coordinated invariably require resources� and the scarcity or
abundance of resources can make a considerable di�erence in how to best
coordinate the tasks and actions� That being the case� we propose the
use of a resource model� We observe that past work on resource modeling
does not meet our needs� as the models tend to be either too informal �as
in management resource modeling	 to support de�nitive analysis� or too
narrow in scope �as in the case of operating system resource modeling	
to support speci�cation of the diverse tasks we have in mind�
In this paper we introduce a general approach and some key concepts in
a resource modeling and management system that we have developed�
Although rigorous and complete speci�cation of the model and system
is beyond the scope of this paper� the descriptions provided su
ce to
support explanation of two experiences we have had in applying our
resource system� In one case we have added resource speci�cations to
a process program� In another case we used resource speci�cations to
augment a multiagent scheduling system� In both cases� the result was
far greater clarity and precision in the process and agent coordination
speci�cations� and validation of the e�ectiveness of our resource modeling
and management approaches� A range of future work in this area is
indicated at the conclusion of the paper�

Keywords

Resource modeling� resource management� process programming� planning� agent
coordination

� Introduction

Resources are essential to the performance of any task� Indeed� it is not unrea�
sonable to adopt as a working de�nition that a resource is any entity or agent
that is needed in order to perform a task� but for which there is only a lim�
ited supply available� That being the case� it is reasonable that speci�cations of
needed resources be present in speci�cations of the way in which tasks are to be
done� and in attempts to automate support for such tasks�

The need for the speci�cation of resources has been realized by other commu�
nities� Resource speci�cations are important in operating systems� where con�
tention for resources can lead to such dangerous situations as deadlock and star�
vation� Thus� operating systems incorporate models of key resources� keep track
of resource utilization and analyze utilization to either recognize or avoid such
pathologies as deadlocks� Resource speci�cations are important in management
as well� where they are critical to the e�ective scheduling of tasks to individu�
als and granting of access to� and utilization of� scarce resources to support the
execution of tasks�

More recently work�ow� software process� and activity coordination research
has recon�rmed the importance of resource speci�cation� One key goal of sys�
tems that support the modeling and execution of processes is to expedite the
performance of complex tasks� Early systems in this area have focused partic�
ularly strongly on the structure of these tasks� Analysis of task structures has
been shown to be useful in indicating possible parallelization of activities� for ex�
ample� But it has become increasingly clear that such analyses are handicapped
if they are not supplemented by consideration of resources�

Thus� for example� a simple structural analysis of a process speci�cation
may seem to indicate that two tasks may be parallelizable� But if both require
access to a single resource that cannot be shared� then parallelization of the
tasks is impossible� As another example� a project is likely to bene�t if the most
experienced or competent performers are assigned to the most critical tasks�
Only analysis and evaluation of available human resources can help here�

These realizations have sparked an interest in resource modeling� speci�ca�
tion� and analysis by the community of researchers working on process� work�ow
and activity coordination technology� Study of the existing literature in the area
of resource speci�cation has indicated that the existing work is largely insu��
cient to meet the needs of these newer areas� Management resource modeling
seems too informal to support the needs of work�ow and process� Models in this
area seem to be largely intended to support humans who are expected to make
judgments about resource allocation that may be mostly intuitive� Operating
system resource modeling is� in contrast� quite rigorous and precise� The rigor
and precision of models in this area is necessary as they are used to support
automated analyses and reasoning� The resources about which such reasoning is
carried out are� however� rather limited in scope and nature� Generally operating
systems reason about hardware resources such as storage devices� and blocks of
central memory�

Resource models for use in work�ow� process� and activity coordination are
intended to support automated reasoning and analysis about the full spectrum
of resources that may be needed in any activity to be modeled� As the span of
applicability of these systems is very broad� they seem to require at least the
breadth and diversity of scope that characterizes management resource models�
But as the goals of such systems include the ability to reason de�nitively about
such issues as deadlock� and optimal allocation� the rigor and precision that
characterizes operating system resource modeling also seems necessary here�

In this paper we describe early experiences with such a system� Our resource
speci�cation and modeling system is designed to support the representation of
an unusually broad spectrum of resource types with precision and rigor that
seems su�cient to support powerful reasoning and inference�

Space limitations prevent the presentation of the details of our approach
�these are contained in a companion paper that is in preparation�� But we do
summarize key features of this system and indicate why we believe our early
experiences with it support our belief in the value of our approaches�

� Overview

Our resource management system is intended to be a component that should be
useful and usable in any one of a variety of larger systems that may� for exam�
ple� support processes execution� carry out reasoning about real�time systems�
or perform multiagent planning� Since we believe that the need for powerful and
precise resource management is widespread we have designed this component to
support the modeling of a wide range of types of resources� from physical entities
such as robots� to electronic entities such as programs or data artifacts� and to
human entities� The resource management component similarly does not pre�
scribe speci�c protocols about how resources should be used� but rather leaves
the de�nition of those protocols to the external system with which it is to be
integrated� In this section� we present an overview of our resource management
component� introducing some key terminology� A detailed and rigorous presenta�
tion of our resource management system cannot be presented here due to space
limitations� This is the subject of a separate� companion paper that is to appear
shortly�

A resource model is a model of those entities of an environment that may be
required� but for which an unlimited supply cannot be assumed� The resource
model is organized as a collection of resource instances� resource classes� and
relations among them�

A resource instance is a representation of a unique entity from the physi�
cal environment� such as a speci�c person� printer� or document� Each resource
instance is described using a set of typed attribute�value pairs� There are prede�
�ned attributes required of all resources� such as a name and description� as well
as user�de�ned attributes that are speci�c to the various types of resources� The
attribute values of a resource serve to identify the resource and distinguish it
from other similar resources� For example� a printer might have an attribute in�
dicating whether it produces color or black�and�white output� but that attribute
would not be required of resources that are not printers� A human might have
an attribute that represents his or her level of skill in coding in a particular
language� while hardware devices would not have this attribute�

A resource class represents a set of resources �other classes and	or in�
stances� that have some common attributes� The resource classes in a resource
model form a singly�rooted DAG� The root of the DAG is the prede�ned resource
class named Resource� Each child class inherits all the attributes of its parent�

but presumably adds in some additional attributes� Each child class name adds
a quali�er to its parent class name�

There are two kinds of resources classes
 schedulable and unschedulable� A
schedulable resource class is ordinarily a collection of resources� all of which
can actually be allocated to tasks� These instances are generally su�ciently
similar that it can be expected that they are ordinarily substitutable for each
other� For example� Laser�Printer would probably be a schedulable resource
class in most circumstances� as laser printers generally o�er the same sorts of
printing capabilities� Thus� a schedulable resource class can be viewed as a
conceptual generalization that groups a number of resources with very similar
capabilities and performance characteristics� It would make sense to introduce
a schedulable resource class only if it is expected that there can be two or
more very similar resource instances to be generalized�

An unschedulable resource class is more abstract and is intended more as
an organizational convenience when de�ning the resource model� For example�
the distinguished root Resource is not schedulable� and the class Hardware is
generally not likely to be schedulable either� While it is ordinarily expected
that at least one of the children of an unschedulable resource class will
not be a resource instance� e�ciency considerations may sometimes dictate that
all children of an unschedulable resource class be resource instances� An
example of this is given in the next section�

A resource model also contains three relations that connect the resources
classes and instances in the model
 the IS�A relation� the Requires relation�
and the Whole�Part relation�

The IS�A relation was hinted at above� It is the relation that de�nes pairs
of classes �or class�instance pairs� that share sets of attributes� In particular� the
attributes of the parent in the IS�A relation are all inherited by the child in
the relation�

The Requires relation connects one resource instance or resource class to
another to indicate that some particular resource class� or a member of some
particular resource class� is always required in order for the �rst to be useful�
For instance� a particular piece of software might require a computer with a
particular operating system or with some minimum memory requirements� Use
of this relation dictates that these dependency requirements are to be universally
true� independent of any particular application in which the related resources
are to be used�

A Whole�Part relation connects resources that may at times need to be
considered part of an aggregate resource in addition to being considered as indi�
vidual resources� For example� individual developers are separate resources� but
may also at times need to be considered to be part of a development team� An
example of this� arising from our experience� is described in a later section of
this paper�

We have taken resource models represented as just described and built around
them a resource management system� The purpose of this system is to support
applications that need support for allocating resources and keeping track of

current allocation status� This system is built upon the use of four primary
operations on the resource model

� Identi�cation� which identi�es speci�c resource instances that can satisfy
speci�c stated requirements� Requirements can be expressed either as a spe�
ci�c resource name �which could be a class or instance name�� or by queries
over the attribute values of the resource class that is required� In either case�
the requirement speci�cation can also include an amount of time for which
the resource is requested�

� Reservation� which reserves a speci�c resource instance �generally one that
has previously been identi�ed��

� Acquisition� which locks a resource instance for use in a speci�c activity�
The resource instance is generally one that has been previously reserved or
one identi�ed with a resource speci�cation�

� Release� which frees a reserved or acquired resource instance so that it can
be used by other activities�

Reservation and acquisition do not necessarily require exclusive use of a re�
source instance� Instead� they can specify the quantity or fractional usage of a
resource instance that they will require� For example� a person might be required
to work on a speci�c assignment for �� hours	week for weeks� The remaining
capacity can be allocated to other activities that request it�

The remainder of this paper describes our experiences integrating our re�
source management component into two systems
 a process programming exe�
cution system and an arti�cial intelligence multiagent planning system�

� Experiences with our approach

We have gained experience with our resource manager by integrating it into
two di�erent systems� The �rst is Little�JIL� a visual process programming lan�
guage� The second is MASS� a multi�agent planning system� In this section� we
describe how the resource manager meets resource management needs in these
two application domains�

��� Integration with Little�JIL

In Little�JIL ����� ������ a process is represented as a hierarchical decomposition
of steps� Attached to each step is a list of resources that are required to carry out
that step� Typical resources in Little�JIL include execution agents �which may be
human� software� robots� for example�� physical resources �printers� computers�
specialized hardware� for example�� licensed software �compilers� design tools�
word processors� for example�� and access permissions for data �documents or
portions thereof� for example��

In Little�JIL� each step has an execution agent� From Little�JIL�s perspective�
the execution agent is distinguished from the other resources by virtue of the
fact that it is the entity with which the Little�JIL interpreter communicates to

assign tasks and get results� From the resource manager�s perspective� however�
an execution agent is simply a resource�

Little�JIL assumes that a resource model describing all available resources
is de�ned outside of the process� The resource speci�cations attached to steps
enable the identi�cation� acquisition� and release of resource instances that meet
the needs of the step� This binding between speci�c resource instances managed
by our resource manager and speci�c step instantiations in a Little�JIL process
being executed is done dynamically as follows�

The resource declarations attached to each step identify the name of a re�
source class or instance and� optionally� a query de�ned in terms of the attribute
values of the desired instance�� When a step is �rst considered for execution� all
resources required by the step are identi�ed� If the resource manager cannot �nd
a matching resource in the resource model� an exception is thrown indicating
this and control �ows to an exception handler de�ned for the Little�JIL pro�
gram� Assuming the necessary resources exist in the model� the execution agent
resource is acquired and Little�JIL assigns to it responsibility for executing the
step to which it is bound� The execution agent may have several steps assigned
to it and therefore might not actually start the step for some time �minutes
or even weeks� depending on the nature of the process�� In order to not tie up
the resources for an unnecessarily long period of time� the Little�JIL interpreter
does not actually acquire the rest of the resources required for the step until the
agent indicates that it is starting the step� At that point� it is possible that the
necessary resources are being used elsewhere� In this case� the resource manager
indicates its inability to acquire the resources and Little�JIL throws an exception
that again is handled by a handler designed to deal with exceptions of this sort�
Resources may be passed to substeps when those substeps are ready for execu�
tion� When the step �and all its substeps� have completed� Little�JIL releases

the resources that were acquired for execution of that step�

A Static Resource Model Figure � shows a resource model used within a
simple Little�JIL process that speci�es the coordination of a team of people
who are carrying out an object oriented design activity� This model de�nes six
unschedulable resource classes used to organize the model
 Person� Group �of
people�� Software� Software Agent� Software Tool� and Computer� Person is
subdivided into two schedulable classes
 Manager and Designer� There are three
instances beneath Manager
 Amy� Bill� and Carol� There are four designer in�
stances
 Carol� Frank� Dave� and Emily� Carol apparently has both managerial
and design expertise and thus can serve in either role� The �gure shows only the
names of the resources� but not their other attribute values� The attributes asso�
ciated with Person include such things as Salary and Years of Experience� The
Designer class might add additional attributes such as Domains of Expertise�

� Currently these queries are written in Java� but ultimately we expect to provide a
query language that will allow in�place resource speci�cations directly in the process
de�nition�

PC4

Legend:
Parent-child relationship in
the IS-A hierarchy

Resource

Person

Manager Designer

Amy Bill Carol Dave Emily

Frank

Group

SigDefined ClassReserver

OpsDefined AreDocumented

RelDefined

Class

Design Team

Team1

Whole-Part relationship

Windows
platform

Linux
platform

Requires relationship

resource class

schedulable resource class

resource instance

1+

Software

Software Agent

UMLEditor

Software Tool

Rose

Computer

PC1 PC2 PC3

Fig� �� Resource Model used in a Little�JIL Design Process

Most of the edges in the resource model represent IS�A relations� There is a
Requires relation between Rose� an instance of UMLEditor� and the schedulable
resource class that represents PCs running Windows� This indicates that any
step that uses Rose also requires a PC running Windows� Because the Requires
edge exists� a step that uses Rose does not need to declare its need of a Windows
PC in any other way�

This example also illustrates an important interplay between the di�erent
types of relations� Were it not for the Requires relation just mentioned� it might
be reasonable to treat Computer as a schedulable resource class having four
instances� But the need to indicate the dependence of the Rose software resource
on a particular kind of platform creates a need for the schedulable resource
class Windows�Platform as a subclass of Computer� which at that point is most
reasonably considered to be an unschedulable class�

The alternative of having the four computer platform instances all be children
of the Computer unschedulable resource class requires that the operating system
simply be an attribute attached to the instances� There are several reasons not to
do that� however� First� if we had done that� it would not be possible to specify
in the resource model that Rose required a computer running Windows without
binding it to speci�c computers� which is overly restrictive� If we choose not to

represent the requires relation in the model� the process programmer would be
forced to add the Windows computer as a resource at each step that speci�ed
Rose� Furthermore� if we had another UMLEditor that ran on Linux� the resource
speci�cation would become more complicated in order to ensure that compatible
software licenses and computing platforms were available when the step began�

The resource model also includes a Whole�Part relation between the Design
Team class and the Designer class� indicating each design team contains one or
more designers� The Team� instance is therefore required to have one or more
designers as parts� In this case� it has two members� Dave and Emily� It is
possible that the initial resource model might not include any speci�c teams�
The teams could be created during process execution� creating both the Team
instances as well as the Whole�Part edges identifying the team members� In
the �gure� we have shown the team composition� which may have been created
statically before execution of the process� or may be thought of as a snapshot of
the resource model after the relation has been created dynamically�

Figure � also shows two types of software
 software agents and software tools�
A software agent is a piece of software that can be assigned the responsibility
of performing a step of the process� whereas a software tool is a licensed tool
that a user requires in order to complete a step� Thus� the software agents are
resources required directly by the Little�JIL interpreter� while software tools are
resources required by the human agent carrying out a process step�

The remaining resource class is named Class� This class represents a data
artifact� namely the collection of the designs of the various individual classes
that are created as the products of the activity of designing the particular appli�
cation system that is being speci�ed by this process� These application classes
are represented as resources instances� and represented in our resource model� in
order to support coordination of the activities of the designers of the application�
Speci�cally� as the design of the application proceeds� individual classes of the
design being created will have to be acquired as resources for various substeps of
the individual process steps� in order to make them available to the individual
designers who are the execution agents of those steps� In this way� the resource
manager can assist in case it is desired that multiple designers do not all work on
the design of the same class� Di�erent processes could� of course� allow designers
to work on the same class design collaboratively� or even require that di�erent
designers must work on the same class collaboratively� Our resource modeling
and management capability can be used to support all of these situations� It
should be noted that the resource model shows no resource instances as children
because this example assumes that the various instances are to be created dy�
namically and the design process has not yet progressed to the point of creating
any of them�

agent: Designer where team == SubprojectTeam DesignInParallel

Identify major abstractions

agent: DesignTeam Design subproject

DesignInParallel

DesignByIndividual

NoMoreDesigners

SubprojectTeam <- agent

Fig� �� A Little�JIL Process with Resource Declarations

Dynamic Interaction between a Little�JIL Process and the Resource
Manager The process that used this resource model was a simple multi�user
design process built on top of the Booch Object Oriented Design methodology
����� ����� as shown in Figure �� In this process� a design team is given a design
task� They perform some initial design activities as a team and then subdivide
the assignment into individual design assignments� The design activity follows
the four step Booch methodology of �� identifying abstractions� �� identifying
the semantics of the abstractions� �� identifying the relationships between ab�
stractions� and � implementing the abstractions� Each of these steps is carried
out by a human �or team of humans�� but some substeps are used to check post�
conditions on completion of some of these steps� and these substeps may have
software systems as their execution agents� For example� the AreDocumented
substep �Figure �� is invoked after identifying the abstractions to check that
some documentation exists for each named abstraction� This substep is to have
a software system as its execution agent�

Some comments on this example seem to be in order� First� we note that
software systems often have a distinctive nature in the resource model as these
systems are often available in su�cient abundance that scheduling of them is
not required� Such is the case in this example� and that explains why requests

for them are not shown in this Little�JIL process program� The software systems
required here are not licensed software� there is no contention for them� no need
to schedule them� and thus they do not need to be part of the resource model�

It is also worth noting that in this example we see a case where a speci�c re�
source instance is speci�ed as the required execution agent for a step� It is more
usual for a speci�cation to name a resource class� In cases where speci�c resource
instances are speci�ed� these resource instances may be introduced into �or even
created for� the model to support the speci�c process� In such cases� these soft�
ware agents are not the types of general reusable� contended�for resources we
normally expect to �nd in a resource model� They exist simply because the
Little�JIL interpreter requires that all agents be treated as resources� Because of
this we found that it was sometimes necessary to customize a resource model to
support a speci�c Little�JIL process� Our experience was that such customiza�
tions turned out to be simple to do� and did not seem to have any noticeable
e�ect on the operation of the resource manager�

The Whole�Part relation between a team and its members is critical in ex�
pressing the notion of team and individual responsibilities commonly found
within organizations� The design team as a whole is responsible for an entire sub�
project� As a team they meet to decompose the subproject into major abstrac�
tions that can be further designed in �relative� isolation by individual designers�
This is represented in the process by specifying a Design Team to be the agent
for the Design Subproject step� At this point the resource manager is asked
to acquire all team members for the design activity� Once this has been done�
the entire team is inherited as the agent for the Identify Major Abstractions

step� Once this resource has been identi�ed� the Design In Parallel step is
recursively invoked� As the �rst substep of Design In Parallel� the Design

By Individual step is invoked� and this step requires as an execution agent a
Designer who is a member of the Design Team� The purpose of this step is to
give an individual assignment to an individual member of the team�� Since the
design team members have already been acquired by a parent step� they are not
re�acquired here� Instead� their assignments are simply re�ned to the more spe�
cialized tasks at hand� This is done by making the members of the design team
be the entire resource model that is available for reservation and allocation to
this step� The Whole�Part relation is essential to guiding the resource manager
in doing this�

The design process demonstrates another feature that we have found to be a
particularly e�ective use of a resource model to support the de�nition of reusable
processes� The motivation behind separating a resource model from the process
is to allow a single process to be reused e�ectively across a range of resource avail�
ability scenarios� The process speci�es the essential resource requirements using
speci�cations� while the speci�c instances are bound dynamically based upon
what is available in the environment� In addition to supporting substitutable
resources� this also allows us to specify a process in which activities can be per�

� Note that we have elided many details in order to focus on the essential resource
management issues of interest here�

formed in parallel if su�cient resources exist but need to be done sequentially
if there are insu�cient resources� This has led to a common Little�JIL idiom of
resource�bounded parallelism as exempli�ed by the Design In Parallel step�
Resource�bounded parallelism allows multiple instantiations of a step to be per�
formed in parallel� with each step getting new resources� When all the available
resources have been allocated� a newly instantiated step�s request for resources
will be denied� an exception will be thrown� and no more parallel instantiations
will be created� We have also found resource�bounded recursion to be a useful
idiom� although it does not occur in this example�

In addition to the interaction between the resource manager and the Little�
JIL interpreter� the agents themselves can communicate directly with the re�
source manager when the default identi�cation	acquisition	release semantics
provided by the interpreter are insu�cient� For example� an agent� rather than
the process program� might be in the best position to select which speci�c re�
sources to acquire� or might want to release resources in some substep rather than
waiting for the entire step to complete� This is particularly true for the man�
agement of human resources� where one would almost certainly want a human
manager to make such decisions as which people should perform which speci�c
assignments� The entire functionality of the resource manager is thus available to
agents to re�ne the use of resources within a process� The ClassReserver agent
is an example of using the resource manager�s functionality to create a process
speci�c acquisition procedure� The ClassReserver agent is a GUI tool that en�
ables the human designer to select which classes the designer wants to work on�
acquiring those classes for the designer and thereby preventing other designers
from working on the same classes simultaneously� Other processes might pro�
vide other mechanisms for doing this binding� such as having a human manager
specify all class�designer assignments�

��� Integration with a Multi�Agent Planning System

The second resource sensitive system that was used to evaluate the resource
manager is MASS ���� a multi�agent planning system� The resource manager
was used in an application of MASS to the task of housekeeping� Although the
MASS computational model is signi�cantly di�erent from that of Little�JIL� the
resource manager was still found to be useful�

In MASS� as in Little�JIL� a process is considered to be a collection of steps�
each of which is executed by an execution agent� But in MASS� unlike Little�JIL�
the set of execution agents is established at the beginning of the process� the
set of steps is also established� but rather than having a step interpreter bind
execution agents to steps� the agents identify the steps themselves and bind them
as their tasks� As a result� it is the individual tasks �steps� that are contended for�
rather than the execution agents �which do the contending�� Thus� the execution
agents do not need to be represented using schedulable resource classes in our
resource model� They are regarded as being �xed from the outset and therefore
it su�ces to consider them as individual resource instances� They are not even
depicted in our model�

The collection of resources that the agents need is also �xed from the outset�
While their availability cannot be assured at any time� their existence is never in
doubt� Thus� the use of the Identify method of our resource manager was not
needed� Thus� in MASS agents acquire resources when they need them� release
them when they are done� and react appropriately if they are not available when
the agent wants them�

We now brie�y outline an example of the use of the resource manager for
a speci�c application of MASS� In this example� the agents are a dishwasher�
a washing machine� a vacuum cleaner� an air conditioner� and a heater� The
resource model for this example is shown in Figure ��

resource instance

Resource

Consumable

Water Noise Electricity

Robots

Robot1 Robot2 Robot3

Legend: Parent-child relationship in

the IS-A hierarchy

resource class

schedulable resource class

Fig� �� Resource Model for the Housekeeping Task

While the MASS system does not require the use of many capabilities o�ered
by the resource management system� it did require augmenting the resource man�
agement system by adding a rather di�erent type of resource� namely consumable
resources� Consumable resources as those that have a limited capacity� but may
be shared by di�erent agents up to that capacity level� The resource may either
be exhausted through use� or may be regenerated either instantaneously or over
time� In our example there are three consumable resources
 water� allowed noise�

and electricity� All are instantaneously regenerated when released by an agent� In
the example� depending on the capacity of the water �ow� it might or might not
be possible to operate the dishwasher and washing machine at the same time�
Similarly� this application limits the amount of noise that can be produced at
one time� It is possible that an agent will not be able to execute at a particular
time because it would raise the noise volume above the desired threshold�

We were able to model consumable resources by adding to them a capacity
attribute� For example� the capacity of water might be expressed in gallons per
minute� When an agent acquires a resource� it indicates how much capacity it
needs� If there is su�cient capacity remaining� it is given to that agent� Other�
wise� an exception is thrown so the agent can decide whether to wait or to work
with a lower capacity� When the agent is done with the resource� it releases the
capacity it was using�

This particular resource model is an approximation of the resource environ�
ment� A more accurate representation would have also modeled the access points�
such as faucets or electrical outlets� as resources that were contended for� This
model also assumes a constant capacity for the resources� Some consumable re�
sources are more accurately represented as resources whose capacity decreases
until an agent replenishes the resource� An example of this would be paper for
a printer or gasoline for a car�

The following is an informal description of a typical task that MASS is sup�
posed to solve� Let us assume it is ��
�� now� In a two hour period the following
goals have to be accomplished to prepare for the arrival of guests

� The dishes have to be cleaned
� The tablecloth has to be washed
� The �oors need to be cleaned
� Room temperature needs to be at �� degrees when the guests arrive

Constraints

� The noise level should be low between ��
�� and ��
�� because the baby is
napping�

The MASS system orchestrates activities performed by the agents taking
into account resource and environmental constraints� Every agent produces its
own local schedule� An agent informs other agents of its schedule and conducts
negotiation if there are any con�icts over resources� Resource con�icts can occur
if the agents� as a group� intend to use more capacity of a particular resource
during a particular time period than is available in the environment� In the case
of contention for a resource� agents negotiate the use of the resource and decide
which one of them is going to get access to the resource during this time� Once the
decision is made the local schedules of the agents involved are correspondingly
updated to exclude the contention�

This example� combined with the Little�JIL example� demonstrates the �exi�
bility provided by the resource manager� The types of resources modeled and the
ways in which the resources are used are quite di�erent in the two cases� Even

so� the resource manager was able to address all these concerns and operate
e�ectively in these very di�erent environments�

� Related work and other Approaches

High adaptability to new environments� the use of a prede�ned� yet extensible�
resource class abstraction �i�e� through the use of our IS�A hierarchy� and ease of
integration are some key characteristics that di�erentiate our work from previous
approaches to resource modeling in resource sensitive systems�

Other resource modeling and speci�cation work has been done in such re�
source sensitive application areas as software process� operating systems� arti��
cial intelligence planning and management� The approaches in these areas have
some similarities to our own work� as these areas concern themselves with such
similar problems as the coordination of activities that can span long time peri�
ods�

��� Related work in software process

There have been a number of software process modeling and programming lan�
guages and systems that have addressed the need to model and manage resources�
Among the most ambitious and comprehensive have been APEL ���� and MVP�L
����� both of which have attempted to incorporate general resource models and
to use resource managers to facilitate process execution� We believe that these
systems do not support resource modeling with su�cient rigor� precision� and
generality� There are a number of other languages that provide for the explicit
modeling of di�erent sorts of resources that seem to �t nicely into our larger re�
source modeling capability� Merlin ���� for example� provides rules for associating
tools and roles �or speci�c users� with a work context �which may be likened to a
Little�JIL step�� Some others that o�er similar limited capabilities are ALF ���
Statemate ���� and ProcessWeaver ���� In all of these cases� however� the sorts of
resources that are modeled are rather limited in scope�

��� Related work in operating systems

The problem of scheduling resources has been extensively studied in the �eld
of operating systems ����� Chapter ���� The most common resources in this
problem domain include peripheral devices and parts of code or data that require
exclusive access� The di�erences between the needs of resource management in
operating systems and software engineering �or arti�cial intelligence� arise from
the fact that operating system resources

� are generally all resource instances� and hence there is little need for resource
hierarchies�

� are used for much shorter periods of time �hence� more elaborate notions of
availability are not usually needed��

� are generally far less varied �e�g� Humans are not considered to be re�
sources in operating systems�� while process and AI systems must consider
far broader classes of resource types�

� are generally far more static� Typically it is necessary to reboot an operating
system in order to add resources�

As a result operating systems resource management systems are of only lim�
ited applicability to our needs�

��� Related work in AI planning systems

Probably� the closest resource modeling approach to ours is suggested in the DI�
TOPS�OZONE system� OZONE is a toolkit for con�guring constraint�based
scheduling systems ����� DITOPS is an advanced tool for generation� analysis
and revision of crisis�action schedules that was developed using the OZONE
ontology� The closeness is evidenced by the fact that OZONE also incorporates
a de�nition of a resource� contains an extensive prede�ned set of resource at�
tributes� uses resource hierarchies� o�ers similar operations on resources� and also
resource aggregate querying� We believe that our resource modeling approach
places a greater emphasis on human resources in the prede�ned attributes and
allows for an implementation that is easier to adapt to di�erent environments�

The Cypress integrated planning environment is another example of a resource�
aware AI planning system� It integrates several separately developed systems
�the SIPE�� planning execution ����� PRS�CL� etc�� The ACT formalism ����
used for proactive control speci�cation in the Cypress system has a construct
for resource requirements speci�cation� It allows the speci�cation of only a par�
ticular resource instance� The resource model does not allow for resource hier�
archies and the set of prede�ned resource attributes is rigid and biased towards
the problem domain �transportation tasks��

��� Related work in management

An example of a resource modeling approach in a management system is pre�
sented in the Toronto Virtual Enterprise �TOVE� project ���� This approach sug�
gests a set of prede�ned resource properties� a taxonomy based on the properties�

and a set of predicates that relate the state with the resource required by the
activity �� The predicates have a rough correspondence to some methods of our
resource manager� It is very likely that our resource manager would satisfy the
functionality requirements for a resource management system necessitated by
the activity ontology suggested in the TOVE project�

� Properties include Divisibility �this property can take two values � Consumable or
Reusable	� Quantity� Component �part�of relationship	� Source

� Predicates include� use�state�activity�� consume�state�activity��
release�state�activity�� produce�state�activity�� quantity�state�resource�amount�

��	 Related work in other distributed software systems

The Jini distributed software system ����� which is currently being developed by
Sun Microsystems� seems to employ a resource modeling approach that seems
somewhat similar to ours� The Jini system is a distributed system based on the
idea of federating groups of users and the resources required by those users� The
overall goal of the system is to turn a network into a �exible� easily administered
tool on which resources can be found by human and computational clients� One
of the end goals of the Jini system is to provide users easy access to resources�
Jini boasts the capability for modeling humans as resources� allows for resource
hierarchies� provides ways to query a resource repository using a resource tem�
plate that is very similar to resource queries in our suggested approach� Because
information about Jini is limited it is di�cult to say what kind of a resource
model is used� It is also di�cult to see how easily Jini
s resource model can be
adapted to new environments�

� Evaluation and Future Work

These two applications of the resource system con�rmed that the features of the
system we have developed are of substantial value� and that the approaches we
are taking seem appropriate� Our experiences have resulted in the creation and
modi�cation of our initial notions and decisions�

For example� the Whole�Part relation was incorporated into the resource
modeling capability after the need became apparent in trying to address the
problem of programming the design of software by teams�

In addition� the MASS example showed the need to treat acquisition and
release of consumable and replenishable resources di�erently from reusable ones�
The IS�A hierarchy of the resource model was modi�ed to include the Consum�
able class and an attribute describing this property for every resource instance
was introduced� In addition to that� the semantics of acquisition and release of
a consumable resource was modi�ed to decrease the capacity of a consumable
resource after it was used by a consumer �e�g� dishwasher for water resource��
increase it after it was used by a producer �e�g� pump for water resource� and
allow several agents to use the same consumable resource for the same period of
time if there is enough capacity�

Our experiences have encouraged us to continue to develop our resource
model and resource management system further� Next we plan to introduce fea�
tures that would ease de�nition of the resource model and resource requirements�
The process of de�nition of the resource model can be facilitated by a resource
speci�cation language and a GUI� The resource speci�cation language would
also enforce rigor in de�nition of resources� The GUI to support de�nition of
a resource model would provide a user�friendly way to change or modify the
resource model� A resource requirement speci�cation language would allow a
non�programmer to specify the requirements �currently the queries are speci�ed
in Java�� We believe that this language should be orthogonal to the activity

speci�cation language so that it would be able to enhance an arbitrary resource
sensitive activity speci�cation�

Finally� we are currently completing work on more complete� precise� and rig�
orous speci�cations of the resource modeling formalism� and the resource man�
ager�

� Acknowledgments

We wish to thank Stan Sutton� Eric McCall� Sandy Wise and the members of
the Software Process team of the University of Massachusetts Laboratory for
Advanced Software Engineering Research �LASER� for their many helpful com�
ments and suggestions� and for their assistance with the Little�JIL evaluation�
We would also like to thank Regis Vincent for his assistance with the MASS eval�
uation� Finally� we acknowledge the support of the Defense Advanced Research
Projects Agency� and Rome Laboratories for their support of this research under
grant F��������C����� and F����������������

References

�� G� Booch� Object�Oriented Design with Applications� The Benjamin�Commings
Publishing Company� Inc�� ���

�� C�Fernstr�om� PROCESS WEAVER� Adding process support to UNIX� In The
Second International Conference on the Software Process� pages ������ ���

�� H� M� Deitel� An Introduction to Operating Systems� Addison�Wesley� Reading�
Massachusetts� ����

�� G�Canals� N�Boudjlida� J��C�Derniame� C�Godart� and J�Lonchamp� ALF� A
framework for building process�centered software engineering environments� In
A� Finkelstein� J� Kramer� and B� Nuseibeh� editors� Software Process Modelling
and Technology� pages �������� Research Studies Press� Ltd�� Taunton� Somerset�
England� ���

�� G�Junkermann� B�Peuschel� W�Sch�afer� and S�Wolf� MERLIN� Supporting co�
operation in software development through a knowledge�based environment� In
A� Finkelstein� J� Kramer� and B� Nuseibeh� editors� Software Process Modelling
and Technology� pages ������� Research Studies Press� Ltd�� Taunton� Somerset�
England� ���

�� M� Gruninger and M� S� Fox� An Activity Ontology for Enterprise Modelling�
Submitted to AAAI��� Dept� of Industrial Engineering� University of Toronto�
���

�� D� Harel� H� Lachover� A� Naamad� A� Pnueli� M�Politi� R� Sherman� A� Shtull�
Trauring� and M� Trakhtenbrot� STATEMATE� A working environment for the
development of complex reactive systems� IEEE Trans� on Software Engineering�
����	��������� April ���

�� J�Estublier� S�Dami� and A�Amiour� APEL� A graphical yet executable formalism
for process modelling� In Automated Software Engineering� March ���

� B� S� Lerner� L� J� Osterweil� J� Stanley M� Sutton� and A� Wise� Programming
process coordination in Little�JIL� In V� Gruhn� editor� Proceedings of the �th
European Workshop on Software Process Technology �EWSPT ����� number ����

in Lecture Notes in Computer Science� pages �������� Weybridge� UK� September
��� Springer�Verlag�

��� K� L� Myers and D� E� Wilkins� The Act Formalism� Working document� Ver�
sion ���� SRI International� Arti�cial Intelligence Center� September �� ���
http���www�ai�sri�com� act�act�spec�ps�

��� H� Rombach and M�Verlage� How to assess a software process modeling formalism
from a project member�s point of view� In The Second International Conference
on the Software Process� pages ������� ���

��� S� F� Smith and M� A� Becker� An Ontology for Constructing Scheduling Systems�
InWorking Notes from 	��
 AAAI Spring Symposium on Ontological Engineering�
Stanford� CA� March ���

��� X� Song and L� J� Osterweil� Engineering Software Design Processes to Guide
Process Execution� IEEE Transactions on Software Engineering� ���	��������
���

��� R� Vincent� B� Horling� T� Wagner� and V� Lesser� Survivability Simulator for
Multi�Agent Adaptive Coordination� Proceedings of International Conference on
Web�Based Modeling and Simulation� ����	�������� ���

��� J� Waldo� Jini Architec�
ture Overview� Sun Microsystems� Inc�� �� San Antonio Road� Palo Alto� CA
����� ��� http���www�javasoft�com�products�jini�index�html�

��� D� E� Wilkins� Using the SIPE�� Planning System� A Manual for Version �	
�
SRI International Arti�cial Intelligence Center� Menlo Park� CA� October ���

��� A� Wise� Little�JIL ��� Language Report� Technical report ����� Department of
Computer Science� University of Massachusetts at Amherst� ���

This article was processed using the LATEX macro package with LLNCS style

