
The Criticality of Modeling Formalisms in Software Design Method

Comparison �

Rodion M� Podorozhny and Leon J� Osterweil

August ��� ����

email� fpodorozhjljog�cs�umass�edu

Laboratory for Advanced Software Engineering Research

Computer Science Department
University of Massachusetts

Amherst� Massachusetts �����

Abstract

This paper describes experimentation aimed at making the comparison of software design
methodologies �SDM�s� more of an exact science� Our aim is to lay the foundations for this more
exact science by establishing �xed methods and conceptual frameworks that are able to assure
that comparison e�orts will yield predictable� reproducible results� Earlier papers have proposed
the use of a systematic process to compare SDM�s� This process assumes that the comparison
will be done relative to a �xed standard SDM feature classi�cation schema� and with the use of
a �xed formalism for modeling the SDM�s� Early experiments with this approach have yielded
interesting SDM comparisons� but have raised questions about how sensitive these results might
be to the choice of modeling formalism� In this paper we study this sensitivity by varying the
choice of modeling formalism� We describe an experiment in which we �x a pair of SDM�s and
then use two di�erent formalisms to obtain two di�erent comparisons of that pair of SDM�s� We
then compare the comparisons� Our results suggest that comparison results may be relatively
insensitive to di�erences in modeling formalisms� This paper also suggests an approach to
further experimentation�

Keywords Software Development Methodology� Software Process� Process Formalism� Com�
parison� Base Framework

�This work was supported in part by the Air Force Materiel Command� Rome Laboratory� and the Advanced
Research Projects Agency under Contract F���������C����	

� Introduction

��� Background

In earlier work ���� ��� we have argued that processes should be viewed as artifacts that can be
thought of as emerging from a process	development activity
 As developed products� it seems only
natural to consider what might be necessary in order to assure that these products are developed
e�ectively� and that they are of demonstrably high quality
 In short� the realization that processes
are products suggests the importance of a discipline of engineering them

While this may seem to be an attractive notion� it is complicated by the fact that processes are
products that di�er from conventional manufactured products in some signi�cant and daunting
ways
 Processes are not tangible
 They cannot be seen� touched� or accessed by any of the �ve
human senses
 In that they have no physical manifestations� they obey no laws of mechanics� and
cannot be measured in conventional ways
 While certain dynamic properties and behaviors may
be attributable to them� they should not be expected to obey Newtonian Laws of Motion

Instead� processes must be thought of as being products of thought processes
 They are intellectual
products
 They can be sensed� understood� and evaluated only by indirect means through their
e�ects and manifestations
 While these characteristics di�erentiate processes from most conven	
tional products� it seems to us that they also place processes in a category with computer software
another type of product that we know well� and for which we have devised important engineering
tools
 Like processes� computer software is invisible and intangible
 It has important dynamic
properties� yet obeys no laws of Physics and de�es physical measurement

In earlier work we have suggested that many of the ideas� approaches� techniques� and formalisms
of software engineering should be applied to the engineering of processes as well
 Our earlier work
has evaluated this suggestion by applying a range of software engineering techniques to process
engineering
 In ��� we suggested that software development environments should be viewed as sys	
tems for supporting the development� execution� evaluation� and evolution of software development
processes
 In ���� we suggested that programming languages should be used to program the process
of developing software� and presented evidence that a speci�c language we had developed showed
promise of being e�ective in supporting this
 In ����� �� we suggested that software design notations
and software process programming formalisms could be useful in establishing baselines that could
be e�ective bases for the objective classi�cation and comparison of processes
 This paper builds
upon that latter work and provides further evidence of the plausibility of this suggestion

��� Discussion of Problem

We believe that one of the hallmarks of a mature scienti�c or engineering discipline is its ability to
support the comparison and evaluation of the artifacts with which it deals
 Comparison� in turn�
seems to rest upon classi�cation
 Thus we believe that the establishment of a discipline of process
engineering requires the development of techniques and structures for supporting the classi�cation�

�

comparison� and evaluation of processes
 In our earlier work we have proposed such techniques
and structures� and have demonstrated their use by carrying out classi�cations and comparisons of
processes drawn from the narrow and specialized domain of software design processes

In ���� we have proposed CDM �Comparison of Design Methodologies� and presented a model
of this process for the comparison of design processes
 In that work we have also proposed the
use of BF� a classi�cation schema for organizing the key components of design processes
 In ����
���� we demonstrated the use of CDM and BF in comparing some software design processes
 In
�� we have suggested that CDM and BF must be considered to be only initial suggestions� and
that considerable community participation in evaluating and migrating them is necessary� based
upon an ongoing series of design process classi�cation and comparison activities
 In particular� it
seemed clear that others might suggest classi�cation schemas other than BF
 We also noted that
the results we had obtained were based largely upon the use of a single formalism for modeling
the design processes that we compared
 The use of that modeling formalism� HFSP ���� seemed
to enable us to obtain a range of interesting� useful� and credible design process classi�cation and
comparison �ndings
 In the spirit of our earlier paper ��� however� we did feel that it was important
to evaluate the use of HFSP as we were concerned that the comparison results obtained might be
biased by the use of HFSP as the basis for these comparisons

Thus� we embarked upon a new set of experiments aimed at attempting to evaluate the sensitivity of
the classi�cation and comparison results we obtained to the choice of modeling formalism selected

Speci�cally we repeated some of the design process comparison experiments �e
g
� comparing Booch
Object Oriented Design �BOOD� ��� to Jackson System Development �JSD� ���� using CDM and
a single �xed classi�cation schema� but substituting a di�erent modeling formalism for HFSP
 In
these new experiments we used SLANG ��� to model the design processes
 We then compared
the comparison results obtained using SLANG to comparison results obtained using HFSP
 In this
paper we describe the results obtained
 We also o�er this paper as evidence of the feasibility of
systematically evolving a maturing discipline of software process engineering

� Approach

��� Comparison of the results of SDM comparison as a way to determine the in�uence

of the modeling formalism used

Fig
 � models an SDM comparison process that is essentially the same as CDM� described in
����
 But this model emphasizes the major functional components in the process
 This functional
decomposition provides a conceptual framework that seems convenient as the basis for establishing
a discipline of SDM comparison
 The �gure also shows dependencies between these functional
components
 Note that although the diagram is strictly sequential� the process of comparison may
be iterated using di�erent formalisms and classi�cation schemas
 The �gure highlights the critical
role played by the choice of MF� the process modeling formalism and CS� the feature classi�cation
schema
 Any formalism allows us to see only those components of an SDM that can be expressed in
it
 A classi�cation schema allows us to compare only the components in those classes and categories

�

guiding control

SDM1

SDM2

Model1

Model2

Sets

of

features

Modeling

Formalism

Feature

Comparator

(MF)

SDM

Modeling
Extraction of

Features

SDM Comparisons

Classification

Schema (CS)

based upon MF, CS

Legend: activity artifact data flow

Figure �� Model of CDM applied to two SDMs

that it includes
 Thus� if an SDM has an aspect not captured by the formalism and�or schema�
that aspect will not be considered and hence comparison results may be skewed and�or inaccurate

We now use functional notation to express the comparison process of Fig
 � more rigorously
 The
process consists of three principal functional transformations�

� SDM ModelingMF � SDM � SDM ModelMF � where SDM is the space of all SDMs
and SDM ModelMF is the space of models of SDMs in the modeling formalism MF

� Extract FeaturesMF�CS � SDM ModelMF � Feature StructureCS�MF �
where Feature StructureCS�MF is the space of all feature sets� structured by CS

� Feature ComparatorCS � Feature StructureCS�MF � Feature StructureCS�MF

� SDM ComparisonsCS � where SDM ComparisonsCS is the space of comparisons of
features identi�ed by CS

We can now de�ne the entire process of using CDM� MF� and CS to compare two SDMs as�

�

Comparison of Differences

CDM

CDM

HFSP

BOOD

JSD

SDM_Comparisons

SDM_Comparisons

Legend: activity

artifact

SLANG

CS

HFSP, CS

SLANG, CS

data flow

Difference_Comparator

Figure �� Model of our Experiment

CDMMF�CS � SDM � SDM � SDM ComparisonsCS �

The SDM Modeling function of CDM entails construction of models of SDMs
 In
theExtract Features phase the features of the SDMs are extracted from the SDMmodels� based
on the classi�cation schema used
 The last phase� Feature Comparator� takes two structures
of features� one per SDM model� compares them� and outputs a comparison of the two feature
structures
 In this research we attempted to study the sensitivity of CDMMF�CS to di�erences
in the MF
 Thus� let us represent the process of comparing JSD and BOOD based on a speci�c
chosen MF and CS as the function�

CDMMF�CS�JSD�BOOD�

Then� let us de�ne a new function�

� Compare DifferencesCS � SDM ComparisonsCS � SDM ComparisonsCS
� Comparison DifferencesCS �

where Comparison DifferencesCS is the space of distances between pairs of comparisons based

�

on CS� as measured by some distance measure
 Then this research is aimed at computing

� Compare DifferencesCS�CDMHFSP�CS�JSD�BOOD��

CDMSLANG�CS�JSD�BOOD��

for some function measuring di�erence between CS	based comparisons
 Fig
 � is a model of this
activity
 In other words� we are trying to begin to assess how much the choice of the modeling
formalism a�ects the results of software methodology comparison
 This formula is currently con	
ceptual� since we do not provide any rigorously de�ned numerical measurement of the di�erences
between comparisons at this time
 Though we do not have such a rigorous measure� we nevertheless
can and do subjectively assess the di�erence between comparisons informally and anecdotally in
this paper

��� The Classi�cation Schema used

Ideally� a comprehensive classi�cation schema should include all the details of all the features of a
complete universal SDM
 In that case� we would be sure that no comparison could overlook any
features of the SDM models being compared
 While it is doubtful that such an ideal classi�cation
schema can be created� we believe it is feasible to develop a sequence of approximations to this
ideal through iterative creation and modi�cation
 Each time a new or di�erent SDM feature is
encountered� we envisage classifying it and putting it in the proper place in the classi�cation schema

Thus� analysts performing comparisons should be prepared to check whether all the features of
compared SDM models are captured by the classi�cation schema used and suggest modi�cations
needed
 Ideally� this would be done as a community activity leading to an increasingly broadly
accepted classi�cation schema

Indeed� it is clear that this activity is already underway
 Thus� for example� in earlier work ��� we
have proposed BF
 More recently Brinkkemper et al
 ��� have suggested a di�erent classi�cation
schema which they refer to as a supermethod
 A careful comparison of BF and Brinkkemper et al
�s
supermethod is beyond the scope of this paper� but it seems clear that the supermethod is more
detailed� but less structured than BF
 To underscore the generality of the Compare Di�erences
analysis suggested here� we adopt the features in Brinkkemper et al
�s supermethod as the basis for
our comparison of SLANG	based and HFSP	based comparisons of BOOD and JSD
 We will denote
Brinkkemper et al
�s supermethod as BSM
 BSM encompasses an extensive set of SDM features

Brinkkemper et al
 call them concepts and divide them into four classes� static modeling� dynamic
modeling� functional modeling� and implementation modeling
 For the sake of consistency with our
earlier work� we will continue to use the term �features� rather than �concepts� in this paper

��	 The formalisms used

As mentioned above� our experiment entails measuring the sensitivity of the results of the SDM
comparison to the choice of the modeling formalism used
 In order to experimentally study this we

�

sought two MFs having di�erences that seemed relatively small� but still signi�cant
 We selected
HFSP and SLANG because both rest upon the centrality of the major concept of activity
 Both
support hierarchical activity decomposition
 Both support speci�cation of artifact �ows through
activities
 On the other hand HFSP supports artifact decomposition� while SLANG does not

SLANG supports speci�cation of timing constraints while HFSP does not
 HFSP is textual� while
SLANG is graphical
 Thus we believed that HFSP and SLANG met our requirements for a pair of
MFs that are close to each other� while retaining some signi�cant di�erences

� Analysis of comparisons

This section contains the comparisons of JSD and BOOD for some selected features of BSM
 We
show how SLANG and HFSP were used to identify SDM components relevant to the selected BSM
features� and how the comparisons were then performed
 We then analyze the di�erences between
the two comparisons

	�� Selection of BSM features to be compared

The number of features in BSM is quite large and space does not permit us to present comparisons
for all of them here
 Therefore� we present a selected subset of BSM chosen to typify the range of
expected di�erences in comparisons

	�� Comparison of JSD and BOOD comparisons

The comparison presentations follow the process outlined in Fig
 �
 The �rst step of the process �
SDM Modeling � implies the execution of the functions� �

SDM ModelingHFSP �JSD�� yielding JSD ModelHFSP

SDM ModelingSLANG �JSD�� yielding JSD ModelSLANG

SDM ModelingHFSP �BOOD�� yielding BOOD ModelHFSP and

SDM ModelingSLANG �BOOD�� yielding BOOD ModelSLANG

JSD ModelHFSP and BOOD ModelHFSP were presented in ��� and are reproduced here as Ap	
pendices A
� and A
�
 JSD ModelSLANG is presented in Figs
 �� and BOOD ModelSLANG is
presented in Figs
 �� ��

The second step of the process in Fig
 � entails feature extraction� the third entails feature com	
parison
 We now summarize our work in carrying out these two steps for each of the three selected

�It should be mentioned that the descriptions of the JSD and BOOD methodologies used in the comparison are
now outdated� but for the purposes of this experiment it was essential that all models be constructed from the same
descriptions
 The descriptions used were the ones in ����

�

JSD

Developers RW Users

 Interview

Develop Spec

Develop Impl

RW_Desc

Sys_Spec_Diag

Sys_Impl_Diag +

Sys_Spec_Diag

Design_Spec

Figure �� JSD Level �

BSM features in turn

	���� Identify Objects

Identify Objects is a feature of BSM
 It is a part of the Analysis of Requirements activity �cf

Appendix A
��� and it performs identi�cation of objects in the system being designed

� Extract FeaturesHFSP�BSM

We evaluated the function

Extract FeaturesHFSP�BSM�JSD ModelHFSP � to yield JSD FSBSM�HFSP

This model of JSD in HFSP does not mention identi�cation of objects �there is no function
whose name would imply that it deals with identi�cation of objects�� but it mentions entities
and functions on them
 The notion of an entity in JSD seems to be very close to the notion
of an object in BSM because both seem to play the role of autonomous units into which a
system is decomposed
 The HFSP model of JSD contains a function called Identify Entity
which seems to support the �Identify Objects� feature of BSM
 There is no other component
of the model that seems to refer to this BSM feature

Sys_Spec_Diag

Develop_Sys_Model

Develop_Sys_Func

Develop_Spec

RW_Model Init_Sys_Spec_Diag

Sys_Spec_Diag

Sys_Spec_Diag

RW_Desc

Data Design

Combine Processes

Sys_Spec_Diag

Data_

Access_

Storage_

Desc

Sys_Impl_Diag +

Sys_Spec_Diag

Develop_Impl

Level 2

Sys_Spec_Diag

Sys_Impl_Diag +

Figure �� JSD Level �

We then evaluated the function

Extract FeaturesHFSP�BSM�BOOD ModelHFSP � to yield BOOD FSBSM�HFSP

This model of BOOD in HFSP contains a function called Identify Objects which obviously
supports this feature of BSM �it so happened that the name of this BOOD component co	
incides with the name of a BSM feature�
 There is no other component of the model that
seems to refer to this class

We then evaluated the function

Extract FeaturesHFSP�BSM�JSD ModelSLANG� to yield JSD FSBSM�SLANG

This model of JSD in SLANG contains the Identify Entity transition �Fig
 �
 By the above
considerations it seems to be an �Identify Objects� feature of BSM

Finally� we evaluated the function

Extract FeaturesHFSP�BSM�BOOD ModelSLANG� to yield BOOD FSBSM�SLANG

This model of BOOD in SLANG contains the Identify Object transition at level � in Fig
 �
which seems to be a function that supports the �Identify Object� feature

Thus both HFSP and SLANG identify the same components of JSD and BOOD that support
the �Identify Objects� feature of BSM
 Now let us compare how e�ectively the two MFs

�

Create Sys_Spec_Diag

Model Reality

Model System

Develop_Sys_Model

RW_Desc Level 3

RW_Model

RW_Model Init_Sys_Spec_Diag

RW_Model Init_Sys_Spec_Diag

Develop_Sys_Func

Define_Func

Define_Timing

RW_Model Init_Sys_Spec_Diag

Init_Sys_Spec_Diag
Sys_Func

Func_Process

Timing +

Sys_Func +

Init_Sys_Spec_

Diag

Sys_Spec_Diag

Sys_Spec_Diag

Figure �� JSD Level �

support the comparison of the semantics of how these components support this BSM feature

� Feature ComparatorBSM

We began by evaluating

Feature ComparatorBSM�JSD FSBSM�HFSP � BOOD FSBSM�HFSP �
to yield JSD BOOD COMPBSM�HFSP

From the model of JSD we can see that the Identify Entity function produces the artifact
called Entity List from the nouns found in the Real World Description of the system
 Accord	
ing to the decomposition it is on the sixth level and depends on two functions� Identify Noun
and Select Entity� and the following artifacts� Real World Desc �the system requirements
document� and Action List

The model of BOOD shows us that the Identify Object function is on the �rst level of de	
composition and hence depends on many more functions than its JSD counterpart
 Namely�
it depends on the following functions� Identify Nouns� Identify Concrete Objects�
Identify Abstract Objects� Identify Server� Identify Agent� Identify Actor� Identify Class� and
Identify Attributes
 Judging from its constituent functions� BOOD�s Identify Object also de	
termines objects by �nding nouns in the system requirements document �Req Spec artifact�

But there are many more di�erent kinds of objects that are identi�ed
 So while the output of

�

RW_Model

Model_Reality

Identify_Entity_Action

Draw_Entity_Structure

RW_Desc

Entity_Action_List

Entity_Structure_List +

Entity_Action_list

RW_Model

Model_System

Identify_Model_Process

Connect

Specify_Model_Process

M_Proc_Name

List

Connection_List +

M_Proc_Name_List

Model_Process_List

Init_Sys_Spec_Diag
RW_Model

RW_Model

Level 4

Figure �� JSD Level �

JSD�s Identify Entity seems to be a list of objects� the output of BOOD�s Identify Objects is
a union of many lists �one per each kind of object�
 In addition� one can see from the BOOD
model that objects in BOOD are also assigned attributes� that is� the objects are described�
while the JSD model does not indicate any possible description of its entities

We then evaluated

Feature ComparatorBSM�JSD FSBSM�SLANG� BOOD FSBSM�SLANG�
to yield JSD BOOD COMPBSM�SLANG

The same comparison results were obtained from studying the JSD and BOOD SLANG
models
 Transitions and places of SLANG diagrams seem to map directly to functions and
input and output lists of HFSP
 For instance� the functions Develop System Model and De	
velop System Func found on the second level of the HFSP model of JSD �Appendix A
��
correspond exactly to Develop Sys Model and Develop Sys Func transitions in the SLANG
model of JSD

These observations are the basis for our determination of the evaluation of

Compare DifferencesBSM�JSD BOOD COMPBSM�HFSP � JSD BOOD COMPBSM�SLANG�

We concluded that both MFs support reasoning and observations that turn out to be the
same
 In retrospect this is not surprising as analysis of the �Identify Objects� feature seems

��

RW_Desc

Identify_Entity_Action

Identify_Action

Identify_Entity

Action_List +

RW_Desc

Action_List +

Entity_List

Entity_Action_List

RW_Desc Level 5

Identify_Action

Identify_Verb

Select_Action

Specify_Attributes

RW_Desc
Level 6

Verbs RW_Desc

Action_List RW_Desc

Action_List +

RW_Desc

Action_List +

Figure � JSD Level �� �

to require largely capabilities for functional decomposition and data�ow speci�cation
 In
these aspects both SLANG and HFSP o�er essentially equivalent capabilities
 It is worth
noting� however� that our observation that BOOD�s object list is attributed is easier to see
from the HFSP model� which supports artifact decomposition� than from the SLANG model�
which does not
 The conclusion seems rather easily reached from SLANG	based models� but
it is a less direct result
 This suggests that it should be particularly interesting to compare
comparisons of artifact related features

	���� Attributes

Thus� let us compare the functioning of JSD and BOOD relative to the �Attribute� feature of BSM

� Extract FeaturesHFSP�BSM

We �rst examine

 JSD FSBSM�HFSP

This HFSP model of JSD does not mention Attributes as artifacts directly� but there is
a function called Specify Attributes on the sixth level �Appendix A
��
 The output of

��

Interface

BOOD

Establish_Visibility

Req_Spec

Req_Spec

Identify_Object

Objects

Identify_Operations

Design_Spec

Create Design_Spec

Design_Spec

Create Implementation

Implementation

Interface

Establish_Interface

Operations Objects Visibility States

StatesObjectsOperations

States

Figure �� BOOD Level �

this function is Action List� obviously augmented with attributes� which was also one
of the inputs without attributes
 Now� keeping in mind that Action List has attributes
added to it at the sixth level of decomposition� we can say that attributes are part of
Design Description �the �nal product of the SDM shown at level ��
 The model also
shows that the attributes describe actions of the objects identi�ed in the system being
developed because the Specify Attributes function �sixth level� Appendix A
�� takes as
input Real World Desc and Action List
 That is� the mentions of actions are found in the
real world descriptions and are assigned attributes based on the information presented
in the real world description
 So� we can say that JSD supports the feature of identifying
attributes
 This is inferred indirectly from the HFSP model

Next we examine

 BOOD FSBSM�HFSP

The HFSP model of BOOD mentions attributes as a product of the Specify Attr function
�Appendix A
�� second level� line e�� and shows that Attributes are part of Interface
�same �gure� line e�� which is part of Design Speci�cation �the product of the whole
SDM� line a��
 In addition� the functions� I�O lists suggest that States� Modules� and
Objects are assigned attributes and are hence described indirectly �this can be seen in
line e� which shows that States and Modules are assigned Attributes� and in line b�

��

States

Identify_Object

Identify_Nouns

Identify

Concrete

Object

Identify

Abstract

Object

Identify

Actor

Identify

Server

Identify

Agent

Identify_Class

Identify_Attributes

Req_Spec

Req_Spec

Concrete

Object

Server

Abstr

Obj

Agent

Actor

Class
Objects

Objects States

Nouns +

Req_Spec

Objects

Figure �� BOOD Level �

which shows that Objects are assigned attributes�

Now we examine

 JSD FSBSM�SLANG and BOOD FSBSM�SLANG

Virtually the same inferences can be drawn from the SLANG models because there is
again an exact correspondence between HFSP functions and SLANG transitions and
between HFSP I�O structures and SLANG places
 For instance� the Specify Attributes
function of the HFSP model of JSD corresponds to the Specify Attributes transition in
the SLANG model �level �� Fig
 � which also shows that the Action List artifact is both
an input and an output of this transition
 The SLANG model of BOOD contains the
Identify Attributes transition �Fig
 �� corresponding to the Identify Attributes function
in the HFSP model of BOOD
 The Specify Attributes transition corresponding to the
Specify Attributes function in the HFSP model can be found in Fig
 ��
 Using the
SLANG models we can arrive at analogous results� but we have to track the input and
output places of the transitions to see how artifacts are possibly modi�ed �for example� to
see that Action List does not contain attributes before the Specify Attributes transition
in the SLANG model of JSD while after this transition it does�

We then executed the third functional step of CDM� namely�

��

States

Identify_Operations

Identify

Suffered

Identify

Required

Order

Define_Time Define

Space

Objects
States

Req_Spec

Operation

Suffered
Operation

Required

Time

Order

Operations

Req_Spec

States

Objects

Identify

Operations

into Operations Structure

Incorporate Order and Space

Space

Operations

Operations

Objects

Figure ��� BOOD Level �

� Feature ComparatorBSM

Now that we have found the components of the two models that deal with the Attributes
feature of BSM we can compare them
 As in Sec
 �
�
�� this entails examining �rst
JSD BOOD COMPBSM�HFSP � obtained as the result of the function
Feature ComparatorBSM�JSD FSBSM�HFSP � BOOD FSBSM�HFSP �

In JSD� Attributes are part of the Action List as determined during classi�cation and they
most likely describe the actions of the objects mentioned in the real world description
 Even	
tually� attributes are part of the �nal product
 This can be determined from the HFSP model
of JSD �Appendix A
�� in the following way�

�
 line i�� The Specify Attributes function adds attributes to the Action List artifact which
is the output of the Identify Action function

�
 line g�� This artifact decomposition statement shows that Action List is a component
of the Entity Action List which is the output of the Identify Entity Action function

�
 line e�� The Draw Entity Structure function incorporates the Entity Action List artifact
into the Entity Structure List artifact

�
 line e�� This artifact decomposition statement shows that the Entity Structure List ar	
tifact is the Real World Model artifact which is the output of the Model Reality activity

��

Operations

Establish_Visibility

Specify_Objects_See Specify_Objects_Seen

Objects_See

Objects_Seen

Ident_Visibility

StatesOperations Objects

Objects

Operations States

VisibilityOperations Objects States

StatesVisibilityObjects

Figure ��� BOOD Level �

�
 line c�� The Model System function incorporates the Real World Model artifact into the
Init System Spec Diagram artifact which is the output of the Develop System Model
function

�
 line b�� The function Develop System Func incorporates the Init System Spec Diagram
artifact into the System Spec Diagram artifact which is the output of the Develop Spec
function

 line a�� This artifact decomposition statement shows that the System Spec Diagram
artifact is part of Design Spec which is the product of JSD

The HFSP model of JSD is not detailed enough to show the structure of the Action List� so
it is not clear what the structure of the artifact containing the attributes is
 Probably it is a
table �implemented either as a list or an array� containing the names of the action attributes
and their corresponding values

In BOOD� not only Objects� but also States and Modules� are assigned attributes
 Attributes
are part of the �nal product
 This can be seen from the HFSP model of BOOD �Appendix
A
�� in the following way� Attributes of Objects are in the �nal product because of

�
 line b�� The Identify Attributes function produces the States artifact from the Objects
artifact and� by this� apparently incorporates the attributes of objects into the States

��

Create Interface

Establish_Interface

Derive_Module

Specify_Attributes Specify_Proc Specify_Visibility

Module

Attributes
Procedures

Visibility_Spec

Interface

Interface

VisibilityObjectsOperations States

Operations Objects Visibility States

Figure ��� BOOD Level �

artifact which is the output of the Identify Object function

�
 line a�� The Establish Interface function incorporates the States artifact into the Inter	
face artifact

�
 line a�� This artifact decomposition statement shows that the Interface artifact is part
of Design Spec which is the product of BOOD

Attributes of States and Modules are in the �nal product because of

�
 line e�� The Specify Attr function produces the Attributes artifact from the States and
Module artifacts

�
 line e�� This artifact decomposition statement shows that the Attributes artifact is part
of the Interface artifact which is the output of the Establish Interface function

�
 line a�� This artifact decomposition statement shows that the Interface artifact is part
of Design Spec which is the product of BOOD

The name of the Identify Attributes function suggests that it just identi�es the names of the
attributes but not their values� while the name of the Specify Attr function suggests that
it assigns values to the attributes
 The model also suggests that the names identi�ed in

��

the Identify Attributes function are speci�ed in the Specify Attr function because the States
artifact is an output of the former and then input to the latter

It seems that the notions of Objects are similar in JSD and BOOD
 But from the HFSP
models it seems that BOOD is more meticulous about describing entities in terms of their
attributes
 To be sure of this it seemed advisable to �nd correspondences of BOOD�s States
and Modules in JSD� if any

Following CDM� we next examined JSD BOOD COMPBSM�SLANG � the output of function
Feature ComparatorBSM�JSD FSBSM�SLANG� BOOD FSBSM�SLANG�

The SLANG model of JSD shows that the Action List artifact describes the actions of the
objects found in the real world description
 It is more di�cult to see this in the SLANG
model because SLANG does not have an artifact decomposition capability
 One has to follow
a certain path of places in the SLANG diagrams to see whether a certain artifact is part of
another artifact
 In the SLANG diagrams it can be only assumed that the artifact in the input
place of a transition is put into the output place �unchanged� while HFSP states the artifact
decomposition explicitly
 The results concerning the relationship of the Identify Attributes
and Specify Attr functions in BOOD can be obtained from the SLANG model because the
reasoning involves only the names of transitions and input�output places

	���	 Concurrency

The �nal BSM feature we discuss is concurrency
 This feature is mentioned explicitly in Brinkkem	
per et al
�s supermethod in that two features� Concurrency between Objects and Concurrency within
Objects deal with concurrency
 In ��� �p
 ���� it is stated that �Concurrency is a property for de	
scribing Systems in which more Objects operate in parallel�
 Thus� those SDM components that
allow design of concurrent systems should be classi�ed as relating to BSM�s notion of concurrency

These components seemed to include�

� the artifacts containing information about communication between entities of the software
system designed and the entities themselves

� the activities operating on such artifacts

Let us see which SDM components satisfy these criteria

� Extract FeaturesHFSP�BSM

The components of JSD FSBSM�HFSP that seem to be directly involved with support
of the design of concurrent systems are �cf
 Appendix A
���

� line f�� The Connection artifact� which is composed of the State Vector and Data Stream
artifacts

�

� line f�� The Connect function� which produces the Connection List artifact out of
the Real World Model and M Proc Name List artifacts
 The relationship between
the Connection List and Connection artifacts is not clear from the model� but�
apparently� the Connection List artifact is a list of the Connection artifacts

� The Entity Structure List artifact is the Real World Model artifact �line e��
 The
Real World Model artifact is used to produce the M Proc Name List �line f��
These JSD components seem to be relevant to the Concurrency between Objects
feature
 No components were found which would clearly be seen as being relevant
to the Concurrency within Objects feature

The following components of BOOD FSBSM�HFSP seem relevant to the Concurrency
between Objects feature of BSM �cf
 Appendix A
���

� line b�� The Objects artifact

� line e�� The Interface artifact which is composed of the Attributes� Procedure� and
Visibility Spec artifacts

� line e� The Establish Interface function �i
e
� all the functions into which it is de	
composed�
No components can be easily identi�ed as part of the Concurrency within Objects
feature

JSD FSBSM�SLANG shows that the following components seem to support the Concur	
rency between Objects feature�

� The Connect transition �level �� Fig
 ��

� The Connection List and RW Model artifacts

Since SLANG does not support artifact decomposition it is not possible to see that the
Connection artifact is composed of the State Vector and Data Stream artifacts
 Also
the relationship between the RW Model artifact and Entity Structure List is not clear

From Fig
 � one can see that the RW Model artifact seems to be composed of the
Entity Structure List and Entity Action List artifacts
 The HFSP model clearly states
that the Entity Structure List artifact is the Real World Model artifact

BOOD FSBSM�SLANG indicates that the following components seem to support the
Concurrency between Objects feature�

� The Establish Interface transition �level �� Fig
 ��

� The Interface place �artifact� �the same �gure�

� The Objects place �artifact� �the same �gure�

No components can be identi�ed as being relevant to the Concurrency within Objects
feature
 The SLANG model fails to demonstrate that the Interface artifact is composed
of the Attributes� Procedure� and Visibility Spec artifacts

Now let us compare the identi�ed components

��

� Feature ComparatorBSM

In producing JSD BOOD COMPBSM�HFSP we see that JSD FSBSM�HFSP shows
that the Real World Model artifact keeps information about the objects and their struc	
ture
 Objects do not seem to be further subdivided into di�erent classes
 The Connect
activity takes the description of objects �the Real World model� and produces the Con	
nection List artifact� which has Connection artifacts as its elements
 JSD FSBSM�HFSP

also shows that the Connection artifact may be either a State Vector or Data Stream
artifact which indicates that JSD directly addresses the issue of communication model	
ing between objects
 BOOD FSBSM�HFSP shows that BOOD uses the Objects artifact
to keep information about the objects in the system
 BOOD does not seem to contain
information about the structure of the objects as JSD does
 On the other hand� BOOD
distinguishes many classes of Objects
 JSD FSBSM�HFSP shows that the Objects ar	
tifact is comprised of the Concrete Object� Abstract Object� Class� Agent� Actor� and
Server artifacts �Appendix A
�� line b��
 The last three artifacts indicate that BOOD
also distinguishes the roles played by the objects
 The communication between objects
is speci�ed in the Interface artifact produced by the Establish Interface activity
 BOOD
does not seem to model communication at as low a level as JSD does with State Vector
and Data Stream
 BOOD FSBSM�HFSP shows that the Interface artifact is composed
of the Attributes� Procedure� and Visibility Spec attributes

In producing JSD BOOD COMPBSM�SLANG we see that JSD FSBSM�SLANG allows
us to see that communication between objects is described in the Connection List arti	
fact� the information about objects is kept in the RW Model artifact� and the Connect
activity produces the Connection List
 JSD FSBSM�SLANG does not contain the decom	
position of the Connection List artifact� so it is not possible to see the communication
that JSD models through the State Vector and Data Stream artifacts

BOOD FSBSM�SLANG shows that BOOD keeps information about objects in the Ob	
jects artifact� describes communication in the Interface artifact� and uses the Estab	
lish Interface activity to create the communication description
 The SLANG diagram
shown in Fig
 � implicitly shows that the Objects artifact is probably composed of the
Concrete Object� Server� Abstract Object� Agent� and Actor artifacts whileBOOD FSBSM�HFSP

indicates it explicitly in an artifact decomposition statement
 Considering this� BOOD
seems to have a more developed object model while JSD seems to be more speci�c about
communication between objects

� Conclusions

As has been noted above� we were struck by the fact that the comparison results obtained based
upon HFSP models were generally very much the same as the results obtained using SLANG
models
 Both HFSP and SLANG feature the use of hierarchical functional decomposition at their
central semantic feature� and both also place major emphasis upon the speci�cation of data�ow

Thus� strong similarities in comparison results were not unexpected
 But the degree of closeness of
the comparison results to each other was beyond our expectations

��

We noted initially that HFSP o�ers support for the speci�cation of artifact decomposition� while
SLANG does not� and we expected that this would enable HFSP to be noticeably more e�ective
in making distinctions between how BOOD and JSD dealt with issues involving design artifacts

Indeed we did note that HFSP facilitated the detection of some details in the handling of attributes

On the other hand� we were surprised to see how readily these details were indirectly inferred from
SLANG models
 Thus� the advantage we had expected from the use of HFSP did not turn out to
be as great as we had expected

Other di�erences between HFSP and SLANG also did not turn out to be pivotal
 SLANG�s
visual representations by means of Petri Nets seemed comfortable and appealing� but we did not
sense that it fostered clearer mental images in the mind of the analyst than the images projected
from HFSP speci�cations
 SLANG also supports stronger speci�cation of concurrency
 But since
in our experiment we compared how well SDMs support development of concurrent systems as
opposed to the level of concurrency in SDMs themselves� this particular advantage of BOOD was
not highlighted

It is certainly true that comparison over just the three features described in this paper is hardly
a su�cient basis for conclusive �ndings about the importance of the modeling formalism� but our
informal considerations of a range of other SDM features in BSM seemed to all yield the same
conclusion
 Namely� that HFSP and SLANG tended to support very much the same comparison
results

It does seem important to note that our comparison results are ultimately based upon a less �rm
foundation than we would like� in that they are based upon our informal interpretations of what is
meant by the various SDM features in BSM
 As Brinkkemper� et
 al
 in ��� and Song and Osterweil
in ���� described SDM features informally� there is no de�nitive way to be sure that the features we
selected for comparison in this work are precisely the right features
 We believe that our selections
are the appropriate ones� but we acknowledge that the validity of this work can be attacked due
to possible disagreements about whether the SDM components we selected as being supportive of
the various features are the right ones
 This di�culty can only be remedied when CS features are
de�ned rigorously
 This is an extension of this work that seems most important to pursue

In addition� we noted that identi�cation of appropriate components to support the various features
was hampered from time to time by inadequacies in the actual SDM models we were studying

In some cases it turned out that the models themselves lacked needed details
 This was not the
fault of the modeling formalisms� but rather of the modeler using the formalisms
 In some cases we
felt that the comparisons would have been even more similar to each other had the modeler been
more e�ective
 Thus� another conclusion we draw is that the accuracy of the model� while strongly
a�ected by the modeling formalism used� is at least as critically a�ected by the skill of the modeler
using the formalism

��

� Future Work�

There are clearly a number of key directions in which this work should be continued
 Certainly
there is now strong motivation to continue comparing comparisons over a far wider range of BSM
features than just the three described here
 This work is necessary to either con�rm and undermine
the conjecture expressed here that the MF may not be as critically important as had originally been
anticipated

Especially if that conjecture holds up to further experimental scrutiny� then it seems most important
to consider the e�ect of MF�s that are more fundamentally di�erent from each other
 As has been
observed� we purposely selected two formalisms having strong fundamental similarities
 These
similarities seem to have been su�cient to assure essentially similar comparison results
 It now
seems important to carry out this same experiment using modeling formalisms that are more
radically di�erent
 The use of a rule	based formalism such as Prolog or Marvel� for example� seems
to represent a next logical step in this sort of investigation

As noted above� it also seems important to set this line of research on a more solid foundation of rigor
by using formalisms to de�ne the CS comparison framework and the features within in
 A formalism
capturing the structure of comparison topics also will be very helpful
 The comparison topics of our
experiment were not rigorously de�ned �i
e
� activities� concepts� techniques� additional properties
of methods�
 Such a de�nition would certainly make the comparison results more objective� since
there would be less room for ambiguity
 In addition� the comparer would have clear guidelines
concerning the actual comparison of two SDM components and the comparison job would become
easier and more repeatable
 Furthermore� it would be bene�cial to introduce a more formal measure
between SDMs based on the CS used and comparison topics used to compare features identi�ed by
the CS

In closing� we feel it is important to emphasize that we feel that this experiment is strongly en	
couraging in that it does seem to indicate that rigorous� reproducible comparison of SDM�s is quite
feasible
 This line of research was undertaken in reaction to a long string of SDM comparison
work that was essentially completely informal� o�ering no basis for scienti�c validation through
reproducible experimentation
 It was our hope that SDM comparison could be made rigorous� se	
mantically well	founded� and reproducible through the use of formally de�ned comparison processes
�such as CDM�� comparison schemas �such as BF and BSM�� and semantically well	based modeling
formalisms �such as HFSP and SLANG�
 This work continues to provide evidence that this sort of
rigor and reproducibility is possible
 It goes further than earlier work� however� in suggesting that
the comparisons attempted may be far less sensitive to di�erences in choices of modeling formalism

That will make this sort of comparison far more amenable to community participation than if all
comparisons needed to be made based upon one single� agreed	upon formalism

� Acknowledgments

Xiping Song provided invaluable help and suggestions throughout this study

��

A Appendix

A�� Model of JSD in HFSP

���	
�a� JSD�Real WorldjDesign Spec��
��� Develop Spec�Real World DescjSystem Spec Diagram�
��� Develop Impl�System Spec DiagramjSystem Impl Diagram�
��� Where Real World Desc � Interview�Users�Developers�Real World��
��� Design Spec � union�System Spec Diagram� System Impl Diagram��

Second level�
�b� Develop Spec�Real World DescjSystem Spec Diagram� �
��� Develop System Model�Real World DescjReal World Model� Init System Spec Diagram�
��� Develop System Func�Real World Model� Init System Spec DiagramjSystem Spec Diagram��

Third level�
�c� Develop System Model�Real World DescjReal World Model� Init System Spec Diagram� �
��� Model Reality�Real World DescjReal World Model�
��� Model System�Real World ModeljInit System Spec Diagram��

�d� Develop System Func�Real World Model� Init System Spec DiagramjSystem Spec Diagram� �
��� Define Func�Real World Model� Init System Spec DiagramjSystem Function�Function Process�
��� Define T iming�Init System Spec Diagram� System FunctionjT iming�
��� Where System Spec Diagram �
is composed of�Init System Spec Diagram� System Function�Function Process�T iming��

Fourth level�
�e� Model Reality�Real World DescjReal World Model� �
��� Identify Entity Action�Real World DescjEntity Action List�
��� Draw Entity Structure�Entity Action ListjEntity Structure List�
��� Where Real World Model � is�Entity Structure List��
��� Real World Process � is�Entity Structure��

�f� Model System�Real World ModeljInit System Spec Diagram� �
��� Identify Model Process�Real World ModeljM Proc Name List��
��� Connect�Real World Model�M Proc Name ListjConnection List�
��� Specify Model Process�Connection List�Real World Model�M Proc Name ListjModel Process list�
��� Where Init System Spec Diagram � is�Model Process List��
�	� Connection � is�State V ector� or is�Data Stream��

Fifth level Decomposition�
�g� Identify Entity Action�Real World DescjEntity Action List� �
��� Identify Action�Real World DescjAction List�
��� Identify Entity�Real World Desc�Action ListjEntity List�
��� Where Entity Action List � union�Action List� Entity List��

Sixth level Decomposition�
�i� Identify Action�Real World DescjAction List� �
��� Identify V erb�Real World DescjV erbs�
��� Select Action�Real World Desc�V erbs�Entity ListjAction List�
��� Specify Attributes�Real World Desc�Action ListjAction List��

�h� Identify Entity�Real World Desc�Action ListjEntity List� �
��� Identify Noun�Real World DescjNouns�
��� Select Entity�Real World Desc�Nouns�Action ListjEntity List��

��

��

A�� Model of BOOD in HFSP

���������������������������������������
�a� BOOD�Req SpecjDesign Spec��
��� Identify Object�Req SpecjObjects�States�
��� Identify Operations�Req Spec�Objects�StatesjOperation�
��� Establish V isibility�Req Spec�Objects�States�OperationjV isibility�
��� Establish Interface�V isibility� Objects�States�OperationjInterface�
�	� Establish Implementation�InterfacejImplementation�
�
� Where Design Spec � is composed of�Interface� Implementation��

Second Level�
�b� Identify Object�Req SpecjObjects�States� �
��� Identify Nouns�Req SpecjNouns�
��� Identify Concrete Object�Req Spec�NounsjConcrete Object�
��� Identify Abstract Object�Req Spec�NounsjAbstract Object�
��� Identify Server�Req Spec�NounsjServer�
�	� Identify Agent�Req Spec�NounsjAgent�
�
� Identify Actor�Req Spec�NounsjActor�
��� Identify Class�Req Spec�Agent� Server�Actor�Concrete Object�Abstract ObjectjClass�
��� Identify Attributes�ObjectsjStates�
�� Where Objects � union�Concrete Object�Abstract Object�Class�Agent�Actor� Server�

�c� Identify Operation�Req Spec�Object�StatesjOperation��
��� Identify Suffered�Req Spec�Object� StatesjOperation Suffered�
��� Identify Required�Req Spec�Object�StatesjOperation Required�
��� Defining T ime Order�Req Spec�OperationjT ime Order�
��� Defining Space�Req Spec�OperationjSpace�
�	� Where Operation � union�Operation Suffered�Operation Required�

�d� Establish Visibility�Req Spec�Objects�States�OperationjV isibility� �
��� Specify Object See�ObjectsjObjects See�
��� Specify Object Seen�ObjectsjObject Seen�
��� Where V isibility � union�Objects See�Object Seen�

�e� Establish Interface�V isibility� Object�States�OperationsjInterface��
��� Derive Module�ObjectjModule�
��� Specify Attr�States�ModulejAttributes�
��� Specify Proc�Operations�ModulejProcedures�
��� Specify V isibility�V isibility�ModulejV isibility Spec�
�	� Where Subsystem � is in term of�Module��
�
� Interface � is composed of�Attributes� Procedure�V isibility Spec��

���������������������������������������

��

B Appendix

B�� Superclasses of CS �activities of the supermethod�

Analysis Design
�
� Analysis of Requirements �
� Initial Design
�
� Analyze Objects and Classes �
� Class and Class Structure Design
�
� Analyze Relationships �
� Operations Design
�
� Analyze Attributes �
� Relationship�Attribute Design
�
� Partitioning �
� Human Interaction Design
�
� Dynamic Behavior �
� Data Management Design
�
 Analyze Functional behavior�Operations �
 System Design
�
� Analyze Communication �
� Validation

B�� Classes of CS �subactivities of the supermethod�

�
�
� Understand requirements speci�cation �
�
� Position Attributes
�
�
� Identify Objects �
�
� Check Attributes
�
�
�a Identify Classes �
�
� Describe Attributes
�
�
� Name Classes �
�
� Select Subsystems
�
�
�a Name Objects �
�
� Re�ne Subsystems
�
�
� Describe Classes and Objects �
�
� Prepare Scenarios
�
�
� Apply guidelines to control Classes and Objects �
�
� Identify Events
�
�
� Identify Abstract Classes �
�
� Build Event	Flow Diagrams
�
�
� Search for missing Classes �
�
� Match events between objects
�
�
� Identify Inheritance relationships �
�
� Build State Diagrams
�
�
� Identify part	of relationships �
�
�� Identify Operation
�
�
� Identify Multiple Structures �

� Build Data	Flow Diagrams
�
�
� Identify Associations �

� Describe functions
�
�
� Identify Abstract�Concrete Classes �
�
� Identify collaborations�message connections
�
�
� Identify other relationships �
�
 Support Data Man
 Component
�
�
 Describe associative objects �
�
� Add lower level components
�
�
� Check Associations �
�
� Choose Algorithms
�
�
� Check inheritance relationship �
�
� Choose data	structures
�
�
� Identify Attributes �
�
� Classify the humans
�
�
� Describe humans and task scenarios �

� Allocate programs to processors

References

��� Sergio Bandinelli� Alfonso Fuggetta� Carlo Ghezzi� and Luigi Lavazza
 SPADE� An Environ	
ment for Software Process Analysis� Design� and Enactment
 In Anthony Finkelstein� Je�
Kramer� and Bashar Nuseibeh� editors� Software Process Modelling and Technology� chapter ��
pages �������
 Research Studies Press� Ltd
� Taunton� Somerset� England� ����

��

��� Grady Booch
 Object	Oriented Development
 IEEE Transactions on Software Engineering�
SE	�������������� February ����

��� John R
 Cameron
 An Overview of JSD
 IEEE Transactions on Software Engineering� SE	
�������������� February ����

��� Sjaak Brinkkemper Geert van den Goor� Shuguang Hong
 A Comparison of Six Object	
Oriented Analysis and Design Methods
 Technical report� University of Twente� Enschede�
the Netherlands� ����

��� Takuya Katayama
 A Hierarchical and Functional Software Process Description and its Enac	
tion
 In Proceedings of the Eleventh International Conference of Software Engineering� pages
�������� ����

��� Leon J
 Osterweil
 Software Process Interpretation and Software Environments
 Technical
Report CU�CS�������� Department of Computer Science� University of Colorado� Boulder�
CO� April ����

�� Xiping Song and Leon Osterweil
 Toward Objective� Systematic Design	Method Comparisons

IEEE Software� pages ������ May ����

��� Xiping Song and Leon J
 Osterweil
 The Models of the Design Methodologies
 Technical
Report UCI������� University of California� Irvine� Irvine� CA ���� ����

��� Xiping Song and Leon J
 Osterweil
 Engineering Software Design Processes to Guide Process
Execution�
 Technical Report TR������� University of Massachusetts� Computer Science De	
partment� Amherst� MA� February ����
 Appendix accepted and published in Preprints of
the Eighth International Software Proces Workshop

���� Xiping Song and Leon J
 Osterweil
 Experience with an approach to comparing software design
methodologies
 IEEE Transactions on Software Engineering� �������������� May ����

���� Stanley M
 Sutton� Jr
� Dennis Heimbigner� and Leon J
 Osterweil
 APPL�A� A Language for
Software	Process Programming
 ACM Transactions on Software Engineering and Methodology�
������������� July ����

��

