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Abstract

This paper surveys the current status of our work on automated anal-

ysis of the logical and timing properties of concurrent software based on

the constrained expression approach. It describes our analysis toolset,

reports some extremely encouraging results of using the toolset to ana-

lyze logical properties of nontrivial concurrent systems, and discusses the

modifications we have made to the toolset to apply it to analyzing tim-

ing properties. It then outlines ongoing and planned research directed at

further improving these methods.

INTRODUCTION

Software systems can only be made truly robust and reliable if sufficiently

powerful analysis techniques are made available to software developers and

maintainers. Ideally, such analysis techniques should be applicable throughout

the development of a software system, from its initial specification through its�Research partially supported by NSF grant CCR-8806970 and ONR grant N00014-89-J-

1064.yResearch partially supported by NSF grant CCR-8704478 with cooperation from DARPA

(ARPA order 6104).
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design and coding, and also during its subsequent lifetime, when they would

greatly aid its maintenance and modification. Therefore, these analysis tech-

niques should be applicable to a wide range of software system descriptions,

not just a single specification, design or programming language. Obviously, to

be of the greatest value, the techniques should also be applicable to the broadest

possible range of program structures and organizations. Finally, the techniques

must be able to analyze systems of realistic size in a reasonable amount of time.

This almost certainly requires that the techniques be automatable and compu-

tationally tractable.

Traditionally, the primary analysis problem for software developers and main-

tainers has been to assess logical properties of a software system. These logical

properties include such things as whether the system will compute the intended

results and whether the system’s computation will terminate. A variety of anal-

ysis techniques, ranging from program testing to program proving, have been

proposed and used, with greater or lesser success, to assess logical properties

of software. Most programs represent a very large number of distinct possible

sequences of statement executions, and most of these analysis techniques de-

pend upon reasoning about or examining as many of those distinct sequences

as possible. Generally speaking, they have suffered from limited applicability,

computational intractability, or both.

Difficult though it is to assess the logical properties of a single, sequential

program running on a single processor, it is significantly more difficult to as-

sess the logical properties of concurrent or distributed software systems. Such

systems consist of several programs running simultaneously, either in a logical

sense, by having their executions interleaved on a single processor, or by actu-

ally executing on several interconnected computers running in parallel. More-

over, the behavior of such systems is often nondeterministic. As a result, con-

current or distributed software systems typically represent even larger numbers

of distinct possible sequences of statement executions than do sequential pro-

grams. Furthermore, concurrent programs have additional logical correctness

properties, such as freedom from deadlock or mutually exclusive use of shared

resources, that must be assessed. It is these attributes that make analyzing con-

current or distributed software even more difficult than analyzing sequential

software. Not surprisingly, the analysis techniques that have been proposed for

concurrent and distributed software have suffered heavily from limited appli-

cability and computational intractability.

Several years ago, we set out to develop analysis techniques for concurrent
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and distributed software systems that would be as broadly applicable as possible

and that would be sufficiently computationally tractable that they could be used

to analyze realistic problems concerning realistic software systems. The result

of that effort is a collection of analysis techniques based on the constrained

expression formalism. These techniques have recently been automated in the

form of a prototype toolset, and we have begun to achieve some very encour-

aging results from applying the toolset to various standard concurrent system

problems. Most notably, the toolset demonstrates impressive performance on

nontrivial problems and the degradation in its performance as the size of the sys-

tem being analyzed increases is much less than that of most other approaches.

This suggests that analysis of realistic problems and systems using our tech-

niques may be a real possibility.

Real-time software systems, which are those software systems whose cor-

rectness depends upon timing properties as well as logical properties, pose an

additional set of challenges for software analysis techniques. A central require-

ment for correct operation of a real-time software system is that the software

have predictable timing properties. Of course, the traditional concern for logi-

cal correctness (i.e., that the software will compute the intended results) applies

to real-time software as well. However, the additional property characterizing

correctness for real-time software is that the maximum time required to produce

the intended results can be guaranteed to be within some specified bound. The

requirement of predictable timing properties implies a need for analysis tech-

niques that can accurately assess the timing, and timing-related (e.g., resource

demands), properties of software systems. As with logical properties, analyz-

ing timing properties of concurrent or distributed software is even more difficult

than performing similar analysis of sequential software.

We have recently developed and begun experimenting with a technique for

assessing timing properties of concurrent, real-time software. This technique

is an outgrowth of our work on the constrained expression techniques for an-

alyzing logical properties of concurrent software systems. The results of our

initial efforts to apply our constrained expression analysis techniques to real-

time system analysis problems have been very encouraging. By extending the

constrained expression formalism slightly and modifying parts of the proto-

type toolset we are now able to carry out an automated derivation of an upper

bound on the time that can elapse between the occurrence of any designated pair

of events in a concurrent system’s behavior. Since the constrained expression

techniques were explicitly tailored to be applicable to a wide range of software
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descriptions, program structures and organizations, techniques and tools result-

ing from extending them to real-time systems should have those same desirable

attributes.

In this paper, we begin by briefly describing the constrained expression for-

malism and analysis techniques. We then sketch the prototype toolset that au-

tomates the analysis techniques and give some representative highlights from

our experimentation with the use of the toolset in analyzing logical properties of

concurrent systems. Next we explain the modifications and extensions required

to apply the constrained expression techniques and toolset to the analysis of tim-

ing properties. Finally, we discuss ongoing research aimed at improving our

abilities to analyze both logical and timing properties of concurrent systems.

CONSTRAINED EXPRESSIONS

In the constrained expression approach to analysis of concurrent systems,

the system descriptions produced during software development (e.g., designs

in some design notation) are translated into formal representations, called con-

strained expression representations, to which a variety of analysis methods are

then applied. This approach allows developers to work in the design notations

and implementation languages most appropriate to their tasks. Rigorous analy-

sis is based on the constrained expression representations that are mechanically

generated from the system descriptions created by software developers.

This section contains a brief overview of the constrained expression formal-

ism. Detailed and rigorous presentations of the formalism appear in [12] and in

the appendix to [14], while less formal treatments intended to provide a more

intuitive understanding of the features of the formalism appear in [7] and [4].

The use of constrained expressions with a variety of development notations is

illustrated in [7] and [14]. A detailed discussion of the relation between con-

strained expressions and a variety of other methods for describing and analyz-

ing concurrent software systems can be found in [7] and [17].

The constrained expression formalism treats the behaviors of a concurrent

system as sequences of events. These events can be of arbitrary complexity,

depending on the system characteristics of interest and the level of system de-

scription under consideration. Associating an event symbol to each event, we

can regard each possible behavior of the system as a string over the alphabet of

event symbols. While this suggests that behaviors must be viewed as total or-

ders on events, in fact the constrained expression formalism is consistent with
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viewing concurrent system behaviors either as total orders or as partial orders

on events, as discussed in [4].

We use interleaving to represent concurrency. Thus, a string representing

a possible behavior of a system that consists of several concurrently execut-

ing components is obtained by interleaving strings representing the behaviors

of the components. The events themselves are assumed to be atomic and indi-

visible. “Events” that are to be explicitly regarded as overlapping in time are

represented by treating their initiation and termination as distinct atomic events.

The set of strings representing behaviors of a particular concurrent system

is obtained by a two-step process. First, a regular expression, called the sys-

tem expression, is derived from a description of the system in some notation

such as a design or programming language. The language of this expression

includes strings representing all possible behaviors of the system. It may, how-

ever, also include strings that do not represent possible behaviors, as the sys-

tem expression does not encode the full semantics of the system description.

This language is then “filtered” to remove such strings, using other expressions,

called constraints, which are also derived from the original system description.

A string survives this filtering process if its projections on the alphabets of the

constraints lie in the languages of the constraints. The constraints (which need

not be regular) enforce those aspects of the semantics of the design or program-

ming language, such as the appropriate synchronization of rendezvous between

different tasks or the consistent use of data, that are not captured in the system

expression. The reasons for this two-step process, which might not seem as

straightforward as generating behaviors directly from a single expression, are

discussed in [14], while an equivalent and more uniform interpretation process

for constrained expressions is presented in [4].

Our main constrained expression analysis techniques require that questions

about the behavior of a concurrent system be formulated in terms of whether a

particular event symbol, or pattern of event symbols, occurs in a string repre-

senting a possible behavior of the system. For example, questions about whether

the system can deadlock might be phrased in terms of the occurrence of symbols

representing the permanent blocking of components (e.g., processes or tasks) of

the system.

Starting from the assumption that the specified symbol, or pattern of sym-

bols, does occur in such a string, we use the form of the system expression and

the constraints to generate inequalities involving the numbers of occurrences

of various event symbols in segments of the string. If the system of inequali-
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ties thus generated is inconsistent, the original assumption is incorrect and the

specified symbol or pattern of symbols does not occur in a string corresponding

to a behavior of the system. If the inequalities are consistent, we use them in

attempting to construct a string containing the specified pattern.

In summary, the constrained expression approach is applicable to systems

expressed in a variety of notations and languages. It offers a focused approach

to analysis, which, by keeping the amount of uninteresting information pro-

duced to a minimum, can be very efficient. Over the last several years, we have

developed a set of tools automating various aspects of constrained expression

analysis and have achieved very good results in using them to analyze logical

properties of a range of concurrent system examples [4]. We briefly describe

the current version of the prototype toolset before discussing the application of

the formalism, analysis techniques and toolset to analyzing both concurrent and

real-time systems.

THE CONSTRAINED EXPRESSION TOOLS

The prototype toolset (see Figure 1) consists of five major components: a

deriver that produces constrained expression representations from concurrent

system designs in a particular design language; a constraint eliminator that re-

places a constrained expression with an equivalent one involving fewer con-

straints; an inequality generator that generates a system of inequalities from the

constrained expression representation of a concurrent system; an integer pro-

gramming package for determining whether this system of inequalities is con-

sistent or inconsistent, and, if the system is consistent, for finding a solution

with appropriate properties; and a behavior generator that uses the constrained

expression produced by the constraint eliminator plus the solution found by the

integer programming package (when the inequalities are consistent) to try to

produce a string of event symbols corresponding to a system behavior with the

desired properties. The organization of the toolset is illustrated in the figure.

We give brief descriptions of the tools and their use below. A more detailed

discussion of the toolset and its implementation appears in [4].

The current toolset is intended for use with designs written in the Ada-based

design language CEDL (Constrained Expression Design Language) [13]. CEDL

focuses on the expression of communication and synchronization among the

tasks in a distributed system, and language features not related to concurrency

are kept to a minimum. Thus, for example, data types are limited, but most of
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Figure 1: Diagram of Constrained Expression Toolset

the Ada control-flow constructs have correspondents in CEDL. We originally

chose to work with a design notation based on Ada because Ada is one of the

few programming languages in relatively widespread use that explicitly pro-

vides for concurrency, and because we expect our work on analysis of designs

to contribute to and benefit from the Arcadia Consortium’s work on Ada soft-

ware development environments [16]. Despite Ada’s shortcomings as a lan-

guage for real-time software [1], we have used CEDL and the existing deriver

in our initial experiments with analysis of timing properties.

The deriver [2] produces constrained expression representations from CEDL

system designs. The system expressions it produces consist of the interleave of

regular expressions, called task expressions, representing the behavior of the

various components (called tasks in Ada, and hence in CEDL, terminology) of

the concurrent system. The deriver also generates all required constraints.

The constraint eliminator [10] takes a subexpression of the system expres-
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sion and certain constraints, and produces a new expression whose language

is the set of strings in the language of the subexpression that satisfy the con-

straints. It requires that the subexpression and the constraints be regular and not

involve the interleave operator. We typically use the constraint eliminator with

a task expression and constraints that enforce correct dataflow within that task.

The constraint eliminator converts the task expression and constraints into de-

terministic finite state automata (DFAs), and uses a procedure based on standard

DFA intersection algorithms to produce a new automaton accepting only that

subset of the language of the task expression that also satisfies the constraints.

In earlier versions of the toolset, the new automaton was converted back into a

regular expression, and the original task expression and constraints were elimi-

nated from the constrained expression and replaced by this new task expression.

Although very compact systems of inequalities can be generated from regular

expressions, the conversion of the DFA resulting from constraint elimination

into a regular expression sometimes results in enormous regular expressions.

Our student, James Corbett, investigated this problem [9], and determined that,

in certain cases, a more compact system of inequalities can be generated from

the DFA representation of a task than from the regular expression into which

that DFA would be converted. (In addition, this eliminates the cost of con-

verting the DFA into a regular expression.) He also introduced a hybrid form

we call REDFAs. We have found that, in general, it is best to work from the

REDFA representation of tasks. The current implementation of the constraint

eliminator, therefore, can replace the eliminated task expression with a regular

expression, a DFA, or an REDFA, as specified by the user.

The inequality generator [3] takes a constrained expression representation

as input. For each task, the inequality generator produces a collection of lin-

ear equations involving variables representing the number of times a node in

a parse-tree of the task expression (or an arc in a DFA or REDFA representa-

tion of the task) is traversed in a behavior of the system. It then generates linear

inequalities in these variables reflecting part of the semantics of certain of the

constraints. The generation of equations for the tasks depends only on the ba-

sic structure of regular expressions and finite state automata, but, for reasons of

efficiency, the generation of inequalities from constraints depends on features

of CEDL.

The constraints impose restrictions on the order and number of occurrences

of event symbols in behaviors of the system. The integer programming vari-

ables we use represent only the total numbers of occurrences of symbols (or,
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more precisely, of traversals of nodes in the parse-trees or arcs in finite state

automata) and do not reflect the order in which those symbols occur. The in-

equalities we generate therefore do not directly reflect information about the

order in which the various symbols occur. Similarly, the fact that we restrict

ourselves to linear systems of equations and inequalities (in order to avoid the

much more difficult computational problems of nonlinear systems) means that

our systems do not fully reflect the semantics of the Kleene star operator (or,

equivalently, of cycles in task DFAs). For these reasons, which are discussed

more fully in [4], our systems of inequalities should be regarded as expressing

necessary conditions that must be satisfied by any behavior of the concurrent

system.

The inequality generator also provides an interactive facility allowing the

analyst to add additional inequalities representing assumptions or queries about

the behavior of the system and a reporting facility for use by a human analyst

interpreting output of the integer programming package.

The integer programming package, called IMINOS [8], is a branch-and-

bound integer linear programming system that we have implemented on top of

the MINOS optimization package [15]. When the generated system of inequal-

ities is consistent, the integer programming package produces a solution giving

counts for the number of occurrences of the various event symbols. The behav-

ior generator [11] uses heuristic search techniques to find a string of event sym-

bols having the given counts and corresponding to a system behavior, helping

the analyst to understand the solution found by the integer programming pack-

age. The behavior generator may also be used by the analyst for interactive

exploration of the system.

ANALYSIS OF LOGICAL PROPERTIES

We have used the prototype constrained expression toolset to analyze a

number of standard problems from the concurrent systems literature. We re-

port here the results of analysis of several versions of the dining philosophers

problem in order to give some idea of the capabilities and performance of the

toolset. Additional results on these problems and others, together with a more

detailed and complete discussion, appear in [4].

Perhaps the most widely known example in the concurrent systems liter-

ature is Dijkstra’s dining philosophers problem, in which a group of philoso-

phers sit at a round table with one seat for each philosopher and one fork be-
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phils tasks deriv elim ineq IMINOS behav size total

60 120 298 21 158 74 78 1141� 960 629

80 160 403 35 248 75 122 1521� 1280 883

100 200 501 60 399 120 169 1901� 1600 1249

20 41 140 105 157 65 603� 1261 467

30 61 190 437 538 58 903� 2491 1223

40 81 265 1079 1516 81 1203� 4121 2941

20 41 141 128 171 222 54 607� 1305 716

30 61 196 392 537 296 119 905� 2523 1540

40 81 259 1104 1603 865 239 1205� 4163 4070

Figure 2: Toolset Performance on Versions of the Dining Philosophers Problem

tween each pair of philosophers. The philosophers alternately think and eat. A

philosopher requires two forks to eat, and each philosopher who wants to eat

attempts to pick up one fork, say the one on the left, and then the other. Having

acquired both forks, the philosopher eats and then puts the forks down. The

system is interesting because of the possibility of deadlock caused by all the

philosophers picking up the forks on their left, leaving each of them unable to

pick up a second fork. Various approaches can be used to prevent the deadlock.

We have analyzed several variations of this system. In the basic one, we

model each fork by a task with two entries. Calls to the “up” entry represent the

fork being picked up by a philosopher and calls to the “down” entry represent

the fork being put down. Each fork task loops forever, accepting calls first at

its up entry and then at its down entry. Each philosopher is represented by a

task that repeatedly calls the up entry of the fork to its “left”, the up entry of the

fork to its “right”, and then the down entries of the two forks. A system with n
philosophers thus has 2n tasks. Our analysis is intended to detect the possibility

of deadlock.

One of the standard ways to prevent deadlock in the dining philosophers

system is to introduce a “host” or “butler” who ensures that all the philosophers

do not attempt to eat at the same time. We have modeled this by introducing an

additional host task and modifying the philosopher tasks. The host task has two

entries, “enter” and “leave”, and a philosopher must rendezvous with the host

at “enter” before attempting to pick up the first fork. After putting down the

second fork, the philosopher calls the “leave” entry. The host keeps track of
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the number of philosophers in the dining room (the number of rendezvous that

have occurred at “enter” minus the number at “leave”) and repeatedly accepts

calls at “enter” as long as no more than n � 2 philosophers are in the dining

room. The “leave” entry is unguarded, so calls at that entry can be accepted at

any time.

Although the dining philosophers system with host and n philosophers in-

volves only one more task than the basic system with the same number of philoso-

phers, control flow in the host task depends on the value of the variable counting

the number of philosophers in the dining room. The constraint eliminator inter-

sects the task expression for the host with the constraint involving this variable,

so that the system of inequalities properly reflects the dependence of control

flow on the number of philosophers in the dining room and the analysis does

not spuriously report deadlock. This process, however, together with the addi-

tional entry calls in the philosopher tasks, results in significantly bigger systems

of inequalities.

In Figure 2, we show the performance of the constrained expression toolset

in analyzing these dining philosophers problems. The columns in the table give,

respectively, the number of philosophers, the number of tasks in the system,

the time in seconds used by the deriver, the eliminator, the inequality genera-

tor, IMINOS, and the behavior generator, the size of the system of inequalities

(number of inequalities � number of variables), and the total time used by the

toolset. All the experiments reported in this paper were run on a DECstation

3100 with 24 MB of memory; times given are in CPU seconds on that machine

and include both user and system time. The first three lines of the table give

results for versions of the basic dining philosophers system with 60, 80, and

100 philosophers, respectively. In these examples, the toolset produces a be-

havior displaying the deadlock. The next three lines of the table give results

for versions of the dining philosophers problem with a host task and 20, 30,

and 40 philosophers respectively. In these examples, IMINOS correctly reports

that deadlock is impossible and it is not necessary to run the behavior genera-

tor. The last three lines of the table give times for 20-, 30-, and 40-philosopher

examples with host in which an erroneous bound in the host task allows all the

philosophers into the room at the same time. In these cases, the toolset produces

a behavior displaying the deadlock.

As the results in Figure 2 illustrate, the constrained expression toolset is ca-

pable of analyzing large systems. The toolset carries out a complete analysis of

the basic dining philosophers problem with 100 philosopher tasks and 100 fork
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tasks, starting from the CEDL code and producing a behavior displaying dead-

lock, in less than 21 minutes. When the behavior of the individual tasks is more

complex, the toolset cannot handle quite so many tasks, but it is clear that it can

be used with at least some systems that approach, or even exceed, realistic sizes

for concurrent system designs. By way of comparison, we know of few other

automated analysis techniques that are capable of handling versions of the basic

dining philosophers problem with as many as 10 philosophers, and their exe-

cution time typically increases exponentially with the number of philosophers.

With some other examples, however, the integer programming component

of the toolset finds solutions that do not correspond to behaviors of the concur-

rent system being analyzed. This is due to the fact that our systems of inequal-

ities do not fully reflect the semantics of the constrained expression represen-

tation of that concurrent system, giving instead only necessary conditions for a

sequence of events to correspond to a system behavior. In these cases, the be-

havior generator reports that the solution does not correspond to a behavior, but

the analysis is inconclusive because there may be other solutions to the system

of inequalities that do correspond to behaviors. In some cases, it is possible to

deal with these problems in an ad hoc manner.

The current implementation of the toolset is not able to address questions

involving fairness and can address certain questions about the order of event

occurrences only indirectly by transforming the question into one involving the

number of occurrences of other events. These problems are the subject of on-

going research.

ANALYSIS OF TIMING PROPERTIES

The constrained expression formalism and the toolset described in the pre-

ceding sections were originally developed to analyze logical properties of be-

haviors of concurrent or distributed systems. As a result, the formalism models

computation as a stream of non-overlapping atomic events, with no notion of

time, and the toolset is oriented toward finding (or disproving the existence of)

complete behaviors that have some specified property, such as deadlock.

To apply the constrained expression analysis techniques to real-time sys-

tems, the formalism must first be extended to account for time. This can be

done straightforwardly by assigning a duration to each event. The time required

for a sequence of events is then just the sum of the durations of the individual

events in the sequence. However, such an interpretation only makes sense when
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the events are non-overlapping, as would be the case if the concurrent system

being analyzed were to be run on a single processor. We adopt this straightfor-

ward extension to the formalism, and the corresponding limitation on the class

of concurrent systems whose timing properties we can analyze, as a first step

toward applying our constrained expression techniques to the analysis of real-

time systems. Ongoing research is directed toward applying our techniques to

“truly concurrent” (i.e., multiprocessor) systems.

We are interested in answering questions of the form “What is the longest

time that can elapse between an occurrence of event A and the next occurrence

of event B in a behavior of the system?” Such questions involve subsequences

of events that might occur within the full sequences that correspond to complete

system behaviors. (Of course, sometimes the subsequence of interest is the full

sequence.) Our initial approach to applying the constrained expression toolset

to the analysis of timing properties [6] was to manually modify the constrained

expression generated by the deriver and constraint eliminator so that it repre-

sented (approximately) the subsequences of interest. In effect, this transformed

questions about partial behaviors of the system into questions about complete

behaviors of the system represented by the modified constrained expression.

We then used the inequality generator and the integer programming package to

find a bound on the duration of these behaviors.

The investigation of the DFA and REDFA forms for representing task ex-

pressions, however, suggested an approach that has allowed us to generate in-

equalities describing subsequences of behaviors directly from the original con-

strained expression, and we have extended the toolset to implement it. We now

give an outline of this new approach. Details of our method and an example of

its application can be found in [5]. We note that, although these extensions to

the toolset were motivated by our interest in analyzing timing properties, they

will also be valuable for analyses of logical properties that involve considera-

tion of partial behaviors, such as detecting violations of mutual exclusion.

To explain our method for generating inequalities describing subsequences

of behaviors, it is helpful to begin by discussing how we generate inequali-

ties describing complete behaviors from DFA representations of tasks. Given

a DFA accepting the language of a task expression, the basic approach is to as-

sign a variable to each arc of the DFA. The value of the variable associated with

an arc gives the number of times that arc is traversed in a particular behavior

of the system. We then generate a “flow equation” for each state other than the

initial and accepting states. This equation says that the sum of the variables as-
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sociated with arcs into that state must equal the sum of the variables associated

with arcs leaving the state. The initial state and the accepting states must be

treated specially, of course. For the initial state, we set the sum of the variables

associated with arcs leaving the state to 1, representing fact that the task is acti-

vated once and begins its computation in the initial state of the DFA. The flow

equations then imply that the sum of the variables associated with arcs into the

accepting states is 1, corresponding to the fact that the task ends its computation

in exactly one accepting state.

In a subsequence of an event sequence corresponding to a complete behav-

ior of a concurrent system, of course, the state of a particular task DFA at the

beginning of the subsequence need not be its initial state and its state at the end

of the subsequence need not be an accepting state. So we need to add an extra

“flow in” at any state in which the DFA could be at the start of the subsequence,

and an extra “flow out” at any state in which the DFA could be at the end of the

subsequence. We do this by introducing additional variables representing the

state of the DFA at the start and end of the subsequence, and generating addi-

tional equations reflecting the fact that the DFA is in exactly one state at each

of those times.

The idea is as follows. Assume that each of the tasks of the concurrent sys-

tem is represented by a task DFA, and that we are interested in finding an upper

bound on the time between the occurrence of an event A in one task and the

next occurrence of event B, possibly in a different task. For simplicity, we will

restrict our attention to subsequences in which A does not occur again beforeB; we are thus asking for an upper bound on the duration of the subsequences

of behaviors beginning with A and ending with B, and having no other occur-

rences of A or B. We will also assume that the events A and B each occur in

exactly one task. This can easily be arranged by using unique names for event

symbols corresponding to the events in different tasks.

We generate equations for each task DFA. As in the analysis of complete

behaviors, we assign a variable xa to each arc a in the task DFAs. We then

assign a start variable si to each state i. This variable will be 1 if the task is

in state i at the beginning of the subsequence, and 0 otherwise. If the symbol

corresponding to A appears as a label on an arc in the DFA, we omit the start

variables on all states except those with an outgoing arc labeled by the symbol

corresponding to A, since we want the first event in the subsequence to be A.

Similarly, we assign a halt variable hi to each state i, but in the DFA in which

the symbol corresponding to B occurs, we omit the halt variables for states not
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having an incoming arc with this symbol. The variable hi will be 1 if the task

is in state i at the end of the subsequence, and 0 otherwise.

We then write flow equations for each state, counting si as flow into state i
and hi as flow out. These equations have the formsi + Xa2In(i) xa = hi + Xa02Out(i) xa0 ,
where In(i) is the set of arcs into state i and Out(i) is the set of arcs out of statei. We then write equations stating that the sum of the start variables in each task

DFA is equal to one. As before, the flow equations then imply that the sum of

the halt variables in each task DFA is one.

Finally, we generate an additional equation for each pair consisting of an

entry in the concurrent system and a task calling that entry. This equation ex-

presses the fact that the number of times the given task calls that entry must be

equal to the number of times a rendezvous with that task is accepted at the entry.

This equation involves the variables corresponding to arcs labeled by symbols

representing calls to the entry (in the DFA of the calling task) and acceptances

of calls at that entry (in the DFA of the accepting task).

The system of equations we have generated expresses a large part of the

semantics of the constrained expression representing the behavior of the con-

current system. It states that a DFA representing a task must be in a single state

at the start and end of the subsequence, that the number of times the DFA en-

ters any other state must equal the number of times it leaves that state, and that

the events corresponding to rendezvous of two tasks must occur the same num-

ber of times in the behavior of each of the two tasks. Any subsequence of an

actual behavior starting with A and ending with B must satisfy the system of

equations. Furthermore, if we were interested in subsequences satisfying some

additional condition involving the occurrence of other events, we could easily

augment the system of equations to express this. For example, if we wanted

a bound on the duration of subsequences starting with A, ending with B, and

containing no occurrences of event C , we would add equations stating that the

arc variables labeled by the symbol corresponding to C must all be 0.

The total duration of a set of events corresponding to a solution of this sys-

tem of equations is simply the sum of the arc variables, weighted by the du-

rations of the events whose symbols label the arcs. Taking this weighted sum

as the objective function, the integer programming component of our toolset

will find a solution to the system of equations, assuming they are consistent,
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giving the maximum possible value for the total duration. (If there is no maxi-

mum value, IMINOS will report that the duration is unbounded. In practice, for

reasons discussed below, we usually impose some relatively large upper bound

on the variables, thus ensuring that the duration is bounded.) This maximum

possible duration reported by IMINOS is a bound on the total duration of the

subsequences we are considering.

Because the system of equations represents only necessary conditions that

must be satisfied by the subsequences of behaviors and does not completely

characterize those subsequences, the solution found by the integer program-

ming package may not correspond to a subsequence of a behavior. In that case,

while the maximum value of the objective function found by the integer pro-

gramming package is an upper bound on the durations of the subsequences in

question, it need not be the least upper bound. There are two reasons that so-

lutions to the system of equations may not correspond to subsequences of be-

haviors.

The first reason is that the equations represent most, but not all, of the se-

mantics of constrained expressions. The equations do not guarantee that events

will occur in the order required by the concurrent program, and it may be the

case that this order is not consistent with the solution found by IMINOS. Fur-

thermore, the system of equations does not completely constrain the number of

occurrences of events labeling arcs forming a cycle in a task DFA. Consider a

state i with an arc a from i to itself. The corresponding variable, xa, will oc-

cur on both sides of the flow equation generated for i, since a will belong to

both In(i) and Out(i). The flow equation thus does not restrict the value of xa
at all. Indeed, there may be solutions to the system of flow equations in which

the variable xa has a nonzero value but the variables corresponding to the other

arcs entering and leaving state i are all zero. Such a solution cannot correspond

to a subsequence of a behavior because it does not describe a path through each

DFA. The equations saying that the number of calls from a task to an entry must

equal the number of times those calls are accepted add enough additional re-

strictions to eliminate such solutions in many, but not all, cases.

The second reason that a solution to the equations may not correspond to a

subsequence of a behavior is that it may not be possible to reach all of the start

states in that solution at the same time in any actual behavior of the concurrent

system. The equations do not impose any restrictions on the start states of the

various DFAs, and therefore do not exclude solutions that are inconsistent with

the behavior of the concurrent system.
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In some cases, it is possible to tighten the bound obtained by integer linear

programming through procedures that overcome some of the problems associ-

ated with cycles and with solutions whose initial states are not simultaneously

reachable in an actual behavior. We now briefly describe a marking algorithm

that reduces the problems due to cycles in DFAs and a procedure for generating

additional equations to eliminate many solutions with unreachable initial states.

Detailed descriptions of these methods are given in [5].

If upper bounds for all variables are introduced into the integer linear pro-

gramming problem, the variables associated with cycles that can occur arbitrar-

ily often will all take the maximum value in a solution to the equations giving

an upper bound on durations. Such variables can be easily detected by inspec-

tion of the solution, and it might seem that a valid upper bound could be ob-

tained by simply subtracting those variables from the solution. This is not the

case, however, since the cycle may contain an event that occurs in the subse-

quence attaining the true maximum duration and eliminating the events in the

cycle would eliminate this subsequence. Our marking algorithm removes cer-

tain cycles from the DFAs without eliminating any actual subsequences of be-

haviors. The idea is essentially to mark only those transitions in a task DFA that

can be reached from a transition corresponding to the event starting the sub-

sequences (or any other event that the analyst has indicated must occur in the

subsequences). Any other transitions cannot occur in any subsequence starting

with the specified event and can thus be removed (equivalently, one can think

of setting the corresponding arc variables to zero).

The problem with unreachable start states can be addressed by introducing

additional variables and generating equations representing conditions that must

be satisfied by the initial segment of a behavior containing the subsequence of

interest. Essentially, we use the equations to simultaneously find a subsequence

starting with A and ending with B and an initial segment that would make that

subsequence possible.

We have modified the constrained expression toolset to implement these

methods and applied them to several examples with very encouraging results.

The upper bounds found by the modified toolset are generally quite good, and

frequently are indeed attained by subsequences of behaviors. Detailed discus-

sion of the methods and an illustration of their application are given in [5].
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CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have given a brief, high-level description of the current

status of our work on automated analysis of concurrent and real-time software.

Results obtained from applying our automated constrained expression analy-

sis techniques to a range of representative, nontrivial concurrent and real-time

programming problems suggest that these techniques have the potential to be of

significant value for realistic analysis applications. Our experiments have also

suggested a number of directions for further improvements to the techniques

and the tools that automate them. We outline a few of these here; more detailed

discussions appear in [4] and [5].

The performance of our constrained expression toolset on a range of con-

current system analysis problems is already quite impressive. Various changes

to the toolset’s components could make its performance even better, however,

and changes to its user interface could make it much easier and more convenient

to use. We plan, for example, to improve the deriver by removing some of the

minor restrictions that it currently imposes on CEDL programs, such as a pro-

hibition on global variables, and by replacing its semantic analysis phase with

a better and faster one. We plan to improve the toolset’s integer programming

component by introducing new and better branch-and-bound strategies making

use of semantic information from the CEDL design in choosing a branching

variable. We are also exploring alternative approaches to solving inequalities

that can take advantage of the special structure of the inequality systems gen-

erated by our analysis techniques. We also expect to expand the capabilities of

the behavior generator, such as its ability to help an analyst add inequalities that

eliminate spurious ILP solutions, and to improve its heuristics so as to reduce

its search times. Finally, we plan to add a uniform and friendly user interface,

as well as improving the interfaces between the tools.

We also plan to extend the constrained expression formalism and analysis

techniques so that we can use them to address a wider range of analysis prob-

lems. Among the topics that we are investigating are methods for directly han-

dling more complex queries, such as “Can event A occur between event B and

event C?”, which are needed to directly analyze such logical properties as mu-

tually exclusive use of resources. We are also looking at ways to express infi-

nite behaviors, so that questions of fairness and starvation can be addressed by

our analysis techniques. Another very important concern is with approaches to

decomposing analysis problems into smaller parts, and then recombining the
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results of analyzing those smaller parts in a way that gives accurate analyses of

the full system. Finally, we are interested in developing both formal and empir-

ical characterizations of the range of analysis problems and classes of concur-

rent systems to which constrained expression analysis techniques can fruitfully

be applied.

Our application of the constrained expression analysis techniques and tools

to real-time problems is still in the early stages. One immediate goal for our

work in this area is an extensive experimental evaluation of our current au-

tomated analysis of timing properties, similar to the experimentation we have

done with our automated analysis of logical properties of concurrent systems.

We are also investigating several extensions to our real-time analysis techniques,

including approaches to representing “truly concurrent” events, such as would

occur in a multiprocessor or distributed real-time system, and methods for de-

scribing the effects of various scheduling mechanisms on real-time system be-

havior. Our preliminary efforts in both of these areas involve extensions to both

the constrained expression formalism and the toolset, whose impacts have yet

to be assessed.

Extensive experimentation with the constrained expression toolset has shown

it to be very effective for performing automated analysis of logical properties of

a range of concurrent system examples of realistic size and nontrivial complex-

ity. Preliminary experimentation with applying the toolset to analysis of timing

properties has yielded promising results. We expect that further experimenta-

tion and improvements along the lines suggested above will lead to automated

analysis techniques for concurrent and real-time software that can contribute

significantly to the robustness and reliability of this class of software systems.
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