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ABSTRACT 

A representation for concurrent programs, called task inter- 
action graphs, is presented. Task interaction graphs divide a 
program into maximal sequential regions connected by edges rep- 
resenting task interactions. This representation is illustrated and 
it is shown how it can be used to create concurrency graph rep- 
resentations that are much smaller than those created from con- 
trol flow graph representations. Both task interaction graphs 
and their corresponding concurrency graphs facilitate analysis of 
concurrent programs. Some analyses and optimizations on these 
representations are also described. 

1 INTRODUCTION 

Dealing with concurrent systems poses many interesting and chal- 
lenging problems. Clearly, it is much harder for developers to 
reason about concurrent behavior than sequential behavior, and 
thus it is likely that more errors will be introduced into these 
systems. Because of this added complexity as well as the dif- 
ficulties with reproducing results and simulating realistic sce- 
narios, it is important that analysis techniques be developed 
to evaluate concurrent systems [Avru85,Bris79,Helm85,Morg87] 
[Shat88,Tal85,Tay180,Tay183a,Tay183b]. In this paper we present 
a representation for concurrent systems, called a task interaction 
graph, that facilitates such analysis. 

Our representation is an extension and improvement upon the 
work of Taylor [Tay183a,Tay183b]. Using a reduced flow graph 
representation of each task in a system, Taylor defines a concur- 
rency graph that models the behavior of the total system. Since 
concurrency graphs capture all the possible states of a concur- 
rent system, they provide an interesting model upon which to 
base a number of different analyses [Tay183b,Youn86]. Unfortu- 
nately the number of states in a concurrency graph can be very 
large, thereby limiting the programs that can be analyzed and 
the types of analysis that can be performed. 

We have been developing a model of interacting tasks that 
considerably reduces the number of states in concurrency graph 
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representations. We call this representation a Task Interaction 
Concurrency Graph(TIcG), since it is derived from a Task Inter- 
action Craph(TIG) instead of from a control flow graph represen- 
tation. Using our model, we compared the resulting representa- 
tions fos some of the common concurrency examples that appear 
in the literature. For these examples the number of states were 
reduced substantially, usually by well over fifty percent. Such 
a reduction will have a major impact on the kinds of analysis 
that, can be applied and on the kinds of programs that can be 
analyzed. Moreover, this reduction comes with no loss of in- 
formation. In fact, the resulting representation appears to be 
even more amenable to analysis. This is because a TIG divides 
a task, not based on control flow information, but based on task 
interactions, the real focus of our concern. The other benefit of 
this choice of representation is that the nodes in a TIG identify 
maximal sequential regions in the task. Thus, sequential analysis 
techniques could be applied to these regions and then inter-task 
analysis techniques developed to evaluate the impact of task in- 

teractions, in much the same way that inter-procedural analysis 
is carried out for program optimization. 

In this paper we describe task interaction graphs and some of 
the ways they can be used as the basis for analysis of concurrent 
systems. The next section describes this graph representation 
and presents two examples. The third section describes how to 
create a TICG from a TIG and, using a simple example, illustrates 
this. Section 4 describes how the model can be extended to 
nested tasks, some of the analysis that can be done based on this 
model, and some refinements to the model that reduce the size 
of the TIG still further. The conclusion summ arizes the benefits 
of this representation and discusses directions of future work. 
The TICG and TIG models have been designed to capture the 
rendezvous-like interprocess communication mechanism found in 
languages like Ada [Ada83], Distributed Processes [Brin78], and 
CSP [Hoar’lS]. For this presentation we use an Ada-like language 
to illustrate the approach. 

2 Task Interaction Graphs 

This section shows how a task interaction graph represents a task 
as a set bf regions and a set of interactions between regions. A 
formal definition of a TIG is given and two examples are shown 
and discussed. 

There are four restrictions on the kinds of tasking programs 
we consider. The first two are for inherent problems with any 
static analysis method and the last two are to simplify the dis- 
cussion.. First, arrays of tasks are disallowed. In general, static 
analysis can not distinguish between different members of a com- 
pound object, such as different elements of an array. Second, it is 
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assumed that at most a fixed number of tasks are active simulta- 
neously. This restriction is needed since certain kinds of dynamic 
task creation can make static analysis intractable. Third, tasks 
do not, share variables and, fourth, all tasks are activated at the 
same time and terminate at the same time. Although not shown 
in this paper, the third restriction can be relaxed with appropri- 
ate modifications to the model. The fourth restriction is relaxed 
in Section 4.1. 

Formally, a task interaction graph is a tuple (N, E, S, T, L, C), 
where N is the set of nodes, E is the set of edges, S is the start 
node, T is a set of terminal nodes, L is a function- that assigns a 
label to each edge, and C is a function that assigns pseudocode to 
each node. Each node of this graph represents a task region and 

each edge represents a task interaction. The start node represents 
the region where the task starts execution. The terminal nodes 
represent regions where the task may finish execution. 

Each node in a TIG represents a different region of the task 
and has associated with it an explicit representation of the code 
for that region, referred to as pseudocode. In this paper, the 
pseudocode for regions consists of the same Ada-like language 
that is used to represent tasks with the addition of two kinds 
of transition pseudostatements, one that marks the entry to a 
region and the other to mark the exit(s). Note that regions may 
overlap, i.e., portions of the pseudocode describing one region 
may be duplicated in the pseudocode describing another region. 

Each edge in a TIC represents a task interaction, indicating 
a transition from one region to another. The boundary between 
these regions is represented by the two transition pseudostate- 
ments - one in each of the two regions connected by that in- 
teraction. An EXIT(interaction,nezt) is used in the first region 
to indicate a place where that region may be exited, where in- 
teraction specifies the type of task interaction that causes the 
transition and nert specifies the region that is entered after the 
interaction. The pseudostatement ENTER(interaction) is used 
in the second region to indicate the place where that region may 
be entered, where again interaction specifies the type of interac- 
tion. Thus in the representation of the TIG, for each edge between 
two nodes there is a transition pseudostatement in one node rep- 
resenting the head of the edge and a transition pseudostatement 
in the other node representing the tail of the edge. 

The result of the above discussion is that each entry call and 
each accept statement is modeled using two interactions that 
divide the task into three regions. Entry calls and accepts are 
divided into two interactions each (e.g., starting an entry, ending 
an entry, starting an accept, ending an accept) because when 
a rendezvous is initiated, information can be passed from the 
calling task to the accepting task via the parameters of the call 
and accept statements. Th ‘s c an es h g the environment of the 
accepting task, dividing it into two regions at this point. When 
the rendezvous is ended, information can be passed in the other 
direction, dividing the calling task into two regions at this point. 
Special cases where a more compact representation can be used 
are considered in Section 4. 

Finally, each edge in a TIG is labeled with the type of inter- 
action that is occurring along the edge and with instance infor- 
mation such as task and entry names. In addition, edges may 

be grouped together into edge groups. These groups are used to 
model the Ada select statement and aid deadlock detection and 
are discussed in Section 4. 

2.1 A Simple Example 

The task shown in Figure 1 is used to illustrate what is meant 
by a TIG. In addition to several assignment statements, this task 
makes an entry call to another task (S2.P) and has one entry 
(accept 01. 

task body Sl is 
begin 

w := 1; 
if f(w) = 2 then 

S2.P; 
x := 2; 

else 

accept Q; 
y := 3; 

end if; 
z := 4; 

end Sl; 

Figure 1: Task Sl 

As shown in Figure 2 the TIG for this task contains five re- 
gions. Region 1 consists of everything from the beginning of the 
task up to some task interaction, in this case, either the start 
of the entry call, S2.P, or the start of the acceEL-QZ Il.* 3 _ 

N = L2,3,4,5) 
E = {(1,2),(2,3),(1,4),(4,5)} 
S = 
T = ;3,5) 
L(1,2) = s2.f’~ L(2,3) = s2& 

L(l,4) = &s L(4,5)= QE 

C(1) = 

C(2) = 

C(3) = 

C(4) = 

C(5) = 

ENTER(WAITEORACTIVATION); 
task body Sl is 
begin 

w := 1; 
if f(w) = 2 then 

EXIT(CALL-START(SZ.P),2); 
else 

EXIT(ACCEPTSTART(Q),4); 
end if; 

ENTER(CALL-START(S2.P)); 
EXIT(CALL-END(SZ.P),3); 

ENTER(CALL-END(S2.P)); 
x := 2; 
z *= 4. . , 

end Sl; 
EXIT(TERMINATE,d); 

ENTER(ACCEPTSTART(Q)); 
EXIT(ACCEPTEND(Q),5); 

ENTER(ACCEPTEND(Q)); 
y := 3; 
z := 4; 

end Sl; 
EXIT(TERMINATE,d); 

Figure 2: Task Interaction Graph for Task Sl 

45 



consists of everything that occurs after the end of the entry call, 
S~.P, up to the next task interaction or, in this case, the end of 
the task. Similarly, region 5 consists of everything that occurs 
after the end of the accept, Q, up to the next task interaction or 
the end of the task. Region 2 consists of everything between the 
start of the entry call and the end of the entry call and region 4 
consists of everything between the start of the accept and the end 
of the accept. Note that the last statement in the task (z := 4;) 
is part of both regions 3 and 5. This is because this statement 
would be executed under different circumstances depending on 
which of the two task interactions preceded it. 

As can be seen, task interactions, and not control flow, cause 
transitions from one region to another. Thus, it is the task in- 
teraction (i.e., the start of the entry call) in the then-clause of 

the conditional statement that causes the transition from region 
1 to region 2. If the then-clause contained only nontasking state- 
ments, then those statements would be a part of region 1 and 
there would be no transition out of region 1 at this point. Simi- 
larly, it is the start of the accept statement in the else-clause that 
causes the transition from region 1 to region 4. The end of the 
entry call causes the transition from region 2 to 3 and the end of 
the accept causes the transition from region 4 to 5. 

The graphical representation of a TIG is shown in Figure 3. 
For the sake of brevity, the four task interactions represented in 
this example are represented by the labels S2.Ps, S2.&, Qs, 
QE, where the subscripts S and E stand for start and end. In 
the following, a label containing a dot always represents an entry 
call; the part before the dot is a reference to a particular task 
and the part after the dot is a reference to a particular entry 
in that task. A label without a dot represents an accept. The 
arrow pointing to node 1 indicates that it is the start node and 
the double circle around nodes 3 and 5 indicates that they are 
terminal nodes. . 

Figure 3: Graphical Representation of the TIG for task Sl 
- 

2.2 A More Complex Example 

Next we consider the TIG for a task that contains a more com- 
plicated control structure. Figure 4 shows a task based on an 
example in (Tay183bl. The TIG for task Tl is shown in Figure 5 
and the pseudocode for this graph is given in Figure 6. 

The TIG for task Tl consists of five regions. The first region, 
represented by node 1, corresponds to everything that could oc- 
cur from the time the task is activated until it makes an accept. 
Since the pseudocode for this region contains code that is exe- 
cuted only once, prior to the start of the loop, the task will not 
return to this region once it has left it. 

The next two regions, represented by nodes 2 and 3, corre- 
spond to the bodies of the accept statements. The ENTER state- 
ment in each of these regions corresponds to an ACCEPT-START. 
For node 2 it represents the start of the P accept and for node 3 

the start of the Q accept. Finally, each of these regions contains 
an EXIT statement that corresponds to the ACCEPTLEND of 
the respective accepts. 

The last two regions represent what happens after the cud of 
the two accepts. The ENTER statement in each of these regions 
is found in the middle of the pseudocode because each of these 
regions is entered in the middle of a loop. After entering node 
4, the loop is exited (note node 4 is a terminal node) or the 

end of the loop is reached causing a return to the beginning of 
the loop where the select statement is encountered. The select 
statement chooses between starting accept P or starting accept 
Q; thus, there is an edge from node 4 to node 2 and from node 
4 to node 3 representing these transitions. Node 5 is similar to 
node 4 except it is entered after the end of the Q accept instead 
of the P accept. 

task body Tl is 
DONE: boolean; 

begin 
loop 

select 
accept P; 

or 
accept Q; 

end select; 
. . . 
exit when DONE; 

end loop; 
end Tl; 

Figure 4: Task Tl 

F;&re 5: TIG for Task Tl 

3 Task Interaction Concurrency Graphs 

A TICG represents the behavior of an entire program and is con- 
structed from the TIGS of the tasks that make up the program. 

Here, the~r~ forTo&i is denoted Gi = (Ni,Ei,SiyTi,Li,Ci). 
A vertex of a TICG, which is known as a &ate of the graph,’ is 
a k-tupk, (nr,ns, . . . , TZJ.) where ni E Ni. States are connected 
by edges that represent the beginning and ending of rendezvous 

‘Not to be confused with the vertex of a task interaction graph, which% 

referred to as a node. 
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C(1) = 

C(2) = 

C(3) = 

C(4) = 

C(5) = 

ENTER(TASKACTIVATE); 
task body Tl is 

DONE: boolean; 
begin 

loop 
select 

EXlT(ACCEPTSTART(P),2); 
01 

EXIT(ACCEPTSTART(Q),3); 
end select; 

. . 
end loop; 

ENTER(ACCEPTSTART(P))); 
EXIT(ACCEPT_END(P),4); 

ENTER(ACCEPT-START(Q))); 
EXIT(ACCEPT_END(Q),5); 

loop 
select 

EXlT(ACCEPTSTART(P),2); 
0* 

EXIT(ACCEPTSTART(Q),3); 
end select; 
. . 
ENTER(ACCEPT-END(P)); 
. . . 
exit when DONE; 

end loop; 
end Tl; 
EXIT(TASK-TERMINATE,@ 

loop 
select 

EXIT(ACCEPTSTART(P),2); 
OI 

EXIT(ACCEPTSTART(Q),S); 
end select; 
. 
ENTER(ACCEPT-END(Q)); 
. 
exit when DONE; 

end loop; 
end Tl; 
EXIT(TASK-TERMINATE&; 

Figure 6: Pseudocode for Task Tl 

‘between tasks. There is an edge from state (ni, n2,. . . , nk) to 
state (ml, mz, . ,mk) if there exists i and j such that for all 
l#i,j,nl=mr,and 

(i) (n;,m;) E Ei, and 

(ii) (nj,mj) E Ej, and 

(iii) Li(n;,mi) = Taskj.Es and Lj(nj,mj) = Es, ~r 

Li(ni,mi) = Taslej.EE and Lj(nj,mj) = Ez. 

The edge between these two states represents either the start or 
the end of a rendezvous between Taski and Taskj. Two states 
are said to be adjacent if they are connected by an edge that 
satisfies the above rules. 

The definition given here for a TICG is similar to that given 
for control flow concurrency graphs [Tay183b] in that there is an 
edge between two states only if that edge involves as few tasks 

as possible, e.g., there are no edges corresponding to several in- 
dependent events occurring simultaneously. This approach does 
not overlook any possible states and includes all edges that corre- 
spond to the occurrence of a single event at a time. In addition, 
if more than one task makes an entry tail on the same entry of a 
task there is an edge in the TICG corresponding to a rendezvous 
for each of these entry calls. This is because a concurrency state 

represents all possible orderings of the entries in the queue for 
each entry. 

As an example, consider a program consisting of the tasks 
shown in Figures 4 and 7. The TIGS for these tasks are shown 
in Figure 5 and 8 and the TICG for this program is given in 
Figure 9. Each state in this graph is represented by a tuple 
(MAIN,Tl,TZ). The starting state for this example is (l,l, 1). 
There is an edge from state (1, 1,1) to state (1,2,2), representing 
the start of a rendezvous between tasks T2 and Tl, because there 
is an edge (1,2) in the TIG for task T2 and an edge (1,2) in the 
TIG for task Tl. Similarly, there is an edge from (l,l., 1) to 
(2,3,1) representing the start of a rendezvous between tasks Tl 
and MAIN. The other edges in the TICG likewise represent the 
start and end of rendezvous between pairs of tasks. Note that 
only states that represent &id synchronization states ofthe tasks 
are represented in the TICG. In general, the valid states are those 
that are reachable from the starting state (~1, ss, . . , sk). 

procedure MAIN is task body T2 is 
begin begin 

T1.Q; T1.P; 
end MAIN; end T2; 

Figure 7: Procedure MAIN and Task T2 

(4 

T1.p~ Tl.Ps 
-@ 

(b) 
Figure 8: TIGS for (a) MAIN and (b) T2 

(3,5,10 

5 (3,2,2D 

(394339 

Figure 9: A Task Interaction Concurrency Graph for (MAIN, 
Tl, T2) 
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A ~ro~ for a program can be easily constructed by starting 

with a single state (sr,sz,- . . , sh) and adding states and edges 

until no more states and edges can be added to the graph. The 
algorithm for constructing a TICG from a set Of TIGs is given in 

Figure IO and is very similar to the algorithm for Constructing 

concurrency graphs from reduced flow graphs described by in 
[Tayl88b]. The time required to construct a TICG is comparable 

TO-BE-CHECKED := {(ai, $2,. . . , Sk)}; 

while TO-BE-CHECKED # empty d0 

STATE := next state from TO-BE-CHECKED; 
for each state ASTATE adjacent to STATE do 

add edge (STATE,ASTATE) to EDGES; 
if ASTATE # OLD-STATES then 

add ASTATE to TOEE-CHECKED; 
end if; 

end ioop; 
if deadlock occurs at STATE then 

output warning message; 
delete STATE from TO-BE-CHECKED; 
add STATE to OLD-STATES; 

end loop; 

Figure 10: Concurrency Graph Construction Algorithm 

to the time required by the flow graph based algorithm. 
The basic algorithm is quite simple. Each state of the par- 

tially constructed TICG is checked to find its adjacent states. For 
each adjacent state, a new edge is added to the set of edges and 

the adjacent state is compared to a list of states that have al- 
ready been found. If this state is a new state, i.e., it is not on the 
list of states that have already been found, then it is added to 
the list of states to be checked. After all the adjacent states of a 
state have been checked, then the state is added to the list of old 

states and deleted from the list of states to be check. The process 
is repeated using the next state in the list of states to be checked. 
The algorithm terminates when there are no more states to be 
checked. This algorithm uses three sets: TOBE..CHECKED is 
the set of states to be checked, OLD-STATES is the set of states 
that have already been checked, and EDGES is the set of edges 
of the TICG. When the algorithm terminates, the TICG will con- 

sist of the states in the set OLD-STATES and edges in the set 
EDGES. 

Using task interaction graphs to form a TICG instead of the 
reduced flow graphs results in a representation of a program’s 
concurrency states that is usually substantially smaller than, and 

no larger than, the corresponding control flow concurrency graph, 
without any loss in power or applicability. Section 4.1 contains 
a direct comparison to a control flow concurrency graph and the 
corresponding TICG. 

4 Analysis and Refinements 

This section presents a flavor of some of the ways the task inter- 
action mosdel can be used to analyze concurrent systems and to 
represent realistic concurrent systems concisely. First, the model 
is extended to handle task activation and termination in Ada 
and then a deadlock detection analysis technique is described. 
Finally, an optimization that reduces the number of nodes in 
a concurrency graph is presented. Some more extensive analy- 
sis techniques have been explored along with several other re- 
finements to the model, such as concise ways of capturing and 
evaluating shared variable usage and compact representations of 
procedure calls [Long88]. 

4.1 Tacrk Activation and Termination 

Up to this point it has been assumed that tasks all become ac- 
tive at the same time and terminate when the program stops ex- 
ecution. This ignores situations where tasks become active and 
terminate in the course of execution of a program. For example, 
the Ada model of task activation and termination allows tasks 
that are declared within a task, subprogram, or block to become 
active just prior to the start of execution of the first statement in 
that task, subprogram, or block. Using Ada rules, the task, sub- 
program, or block is known as the master of the activated task. 
Tasks can terminate (I)- when they have finished execution and 
all their subordinate tasks have finished execution or (2) when 
the task is waiting at a terminate alternative, the task’s master 
has terminated, and all other tasks activated by the task’s master 
have either terminated or are waiting at a terminate alternative. 

To include this hierarchical view of task activation and termi- 
nation in the TIG model, interactions for representing these ac- 
tivities are needed. It is our view that the interactions involved 
in task activation and termination are of a different nature than 
those described earlier in the paper for rendezvous and, thus, 
are referred to as implicit interactions to distinguish them from 
the explicit interactions associated with the rendezvous. Just as 
explicit interactions separate tasks into regions, implicit interac- 
tions separate regions into subregions. It is important to note 
that adding extra nodes and edges to a task representation could 
have a substantial impact on the size of the concurrency graphs 
built from. that representation. Implicit edges are used to con- 
struct concurrency graphs in a manner that will minimize their 
effect on the size of the resulting graph. 

The implicit interactions used to model task activation and 
termination are illustrated in Figure 11. The four interactions 
illustrated here are WaitForActivation (WA), ActivateDepen- 
dents (AD), WaitForDepsToTerminate (WT), and Terminate 
(T). Each master task will have an AD edge that corresponds 
to a point at which it activates dependent tasks and a WT edge 
that corresponds to the point at which all these dependents have 
terminated. Each dependent task will have a WA edge that cor- 
responds to the point at which it becomes active and a T edge 
that corresponds to the point at which it terminates. Another 
implicit interaction, WaitSelectTerminate (ST), which is not il- 
lustrated here, is used to model the terminate alternative of the 
select statement. 

WA AD 

o- 

WT T ------ 

Figure 11: Implicit Interactions in a Task 
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The use of implicit edges is illustrated with the following ex- 
ample. Suppose that the tasks of Figure 4 and Figure 7 are 
reorganized as shown in Figure 12. In this example, the tasks 
Tl and T2 are placed inside a procedure SUBR, which is called 
by the procedure MAIN. The TIGS for these tasks are shown in 
Figure 13. In these TIGS, regions are denoted by numbers and 
subregions are denoted by letters (i.e., the nodes la and lb repre- 
sent two subregions of region 1). Note that tasks without masters 
do not have WA and T edges and that tasks without dependents 
do not have AD and WT edges. .--. 

procedure MAIN is 
procedure SUBR is 

task body Tl is . . .end Tl; 
task body T2 is . . .end T2; 

begin 
T1.Q; 

end SUBR; 
begin 

SUBR; 
end MAIN; 

Figure 12: A Nested Concurrent Program 

(cl 

Figure 13: TIGS for (a) MAIN (b) Tl and (c) T2 

The TICG for the TIGS in Figure 13 is given in Figure 14. 
This example illustrates several ways that implicit edges can be 
optimized during the construction of a TICG. For exampIe, con- 
sider the edge between states (la,la,la) and (lb,lb,lb) that 
represents the activation of the two dependent tasks by the main 
procedure. If a concurrency state were to be constructed for each 
intermediate step in this process, it would require five states to 
represent this activation as shown in Figure 15. Of course, the 
situation will be much worse when there are more than two de- 
pendent tasks. However, the unoptimized version provides no 
more information about the tasks than was already known, i.e., 
that there is more than one order in which the tasks can become 

activated. By advancing the master task along its AD edge at 
the same time as each of its dependents advance along their WA 
edges, these intermediate states can be eliminated without loss of 
any information. Similar optimizations are possible for other im- 
plicit edges. For example, in some situations tasks can advance 
along their T edges at the same time as their siblings and their 
masters. This occurs in Figure 14, in the transition from (3a, 5a, 
3a) to state (3b, 5b, 3b). However, care must be exercised for 

(la,la,la) 

I 
(lb,lb,lb) 

(lb,24 (23,lb) 

Figure 14: A TICG With Implicit Interactions 

(la,la,la) 

I 

(lb,la,la) 

(lb,lb,la) (lb,la,lb) 

jilb,lb,lb> 

Figure 15: Unoptimized Task Activation 

those tasks, such as Tl, that have T edges and some other edge 
leaving the same node. When this occurs, each edge must be 
considered independently. For this example, this results in two 
successor states to state (lb, 4a, 3a) and state (3a, 5a, lb). 

The approach outlined here compares favorably with that 
found in [Tayl63b]. For example, in that paper the concurrency 
graph for a program similar to the one in Figure 12 contains 
36 states and 54 edges as compared to the TICG representation, 
which has only 14 states and 13 edges. Moreover, this does not 
appear to be an unrepresentative example. Other programs we 
have examined have resulted in considerable reductions. For ex- 
ample, the TICGS for the 2,3, and 4 philosopher versions of dining 
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philosophers problem contain 40, 268, and 1792 states, respec- 
tively. The concurrency graphs contained in [Wamp85] for these 
examples contained 51, 470, and 4176 states, respectively. 

The interactions described here are sullicient to model nested 
tasks, procedures, and blocks in Ada if there are no task interac- 
tions in the declarative regions of tasks. Such task interactions 

might occur, for example, if a declaration called a function that 
made an entry call. This restriction could be easily eliminated 
by the addition of an implicit edge type for TIGS that would force 
the elaboration of the declarations of all the dependents to com- 
plete before the execution of the body of the master task was 
allowed to begin. The cost of such a TIG edge, however, would 
be quite high in that it would require a large number of states 

in the associated TICG in order to represent all the possible ways 
the dependent tasks could complete the elaboration of their dec- 
larations and begin execution. As one might suspect from the 
resulting size of a concurrency graphs, allowing declarative task 
interactions is an unwise progra mming practice. Thus we decided 
not allowing task interaction in declarative regions is a reasonable 
restriction. On the other hand, using the TIG approach we have 
been able to remove most of the restrictions usually imposed by 
concurrency analysis techniques (e.g., [Dill88,Kemm88]). Such 
restrictions tend to make concurrency analysis inapplicable to 
realistic programs. 

4.2 Deadlock Detection 

Deadlock occurs when a task waits for a rendezvous that can 
never occur. To detect deadlock, a check can be applied during 
the construction of each state in the TICG. This check depends, 
in part, on the concept of edge groups. Groups are used to model 
Ada select statements where a task can select from among one of 
several different alternatives. A task will remain blockeduntil one 
of the alternatives can be chosen. A select statement is modeled 
in a TIG by placing all the edges representing its alternatives in 
the same edge group. Deadlock occurs at a state (nr, ns, _ . , nk) 
if there exists an i and an edge (ui,mi) E Ei such that one of 
the following four conditions hold and no other tasks are able to 
rendezvous. 

(i) h(ni,mi ) = Taakj.Ps and 

(1) for no edge (nj, mj) E Ej does Lj(nj, mj) = Ps, or 

(2) for some edge (nj,mj) E Ej, Lj(nj,mj) = Q, where 
Q # P.y and (nj, mj) is not in the same edge group as 
any edge labeled Ps. 

(ii) Li(ni,mi) = Taskj.PE and 

(1) for no edge (uj,mj) E Ej does Lj(nj,mj) = PE, or 

(2) for some edge (nj,mj) E Ej, Lj(nj,mj) = Q, where 

Q # PJJ and (uj, mj) is not in the same edge group as 
any edge labeled PE. 

(iii) Li(ni,mi) = Ps and for all j # i 

(1) there is no edge (nj,mj) E Ej such that Lj(nj,mj) = 
Taski.Ps, or 

(2) there is an edge (nj,mj) E Ej such that Lj(nj,mj) = 
Q, where Q # Taski.PS and (nj,mj) is not in the 
same edge group as any edge labeled Taski.Ps. 

(;u) Li(ni,mi) = PE and for all j # i 

(1) there is no edge (nj,mj) E Ej such that Lj(nj,mj) = 
Taski.PE, or 

(2) there is an edge (nj,mj) E Ej such that Lj(nj,mj) = 
Q, where Q # TUSki.PE and (uj,mj) is not in the 
same edge group as any edge labeled TaSki.PE. 

The first two conditions have to do with entry calls. Taski 
might be waiting to start (or end) a call to entry P of Taski 
and Taskj may not be at a node from which it could start (or 
end) the corresponding accept. This can occur in two ways. For 
the first case, it might be that Taskj is in a region that does 
not cont:ain the start (or end) of an accept P. In this case, there 
is no edge leaving node nj of Taskj that corresponds to this 
interaction. Even if TaJkj is in a region that contains the start 
(or end) of an accept P, there is no guarantee that the task will 
get to it, leading to case two. For case two, it might be that 
Taskj executes a path through its current region that leads to a 
different task interaction, in which case it would end up waiting 
for some other task interaction to occur. In either of these cases, 
if no other tasks are able to rendezvous then this situation will 
never change and the program is deadlocked. 

The I.ast two conditions have to do with accepts. Task; might 
be waiting to start (or end) an accept P and there may be no task 
that is able to start (or end) a corresponding entry call. This can 
occur if for each other task either of the following two conditions 
hold: it is not in a region that contains a start (or end) of an 
entry ca!ll to accept P of Taski, or it is waiting for some other 
interaction to occur. 

In summary, deadlock occurs if Taski is waiting for a ren- 
dezvous and no other tasks are able to rendezvous at this point. 
Note that deadlock occurs even if Taaki is able to rendezvous 
along some other edge (ni, m:) E Ei if this edge is not in the 
same edge group as (n;, mi). Thus, for task interaction concur- 
rency graphs, deadlock can occur at states that have edges lead- 
ing out of them as well as at states that have no edges leading out 
of them. For the example of Section 4.1, these rules would detect 
the two places where there is the potential for deadlock. In Fig- 
ure 14 it can be seen that deadlock can occur at states (lb,4b,3b) 
and (3a,5b,lb) because Tl can terminate leaving either MAIN or 
T2 with no task with which to rendezvous. 

4.3 A Reduction in the Number of Nodes 

Concurrency graphs are very sensitive to small changes in the 
task interaction graphs used to create them. Any time the num- 
ber of nodes in a TIG can be reduced, the corresponding TICG 
will be smaller. One place that one might try to make task in- 
teraction graphs smaller is by reducing the number of nodes that 
are needed to model entry calls and accepts. Unfortunately, at 
least three nodes are needed to model the general case of an entry 
call or an accept. However, in the special case where the accept 
statement has no body, two nodes are satisfactory. 

To see why this can be done, consider an entry call statement 
that is currently modeled using three nodes. The pseudocode 
for the center node contains an ENTER pseudostatement and an 
EXIT pseudostatement and nothing else. This node represents 
the suspension of execution of the calling task while the accepting 
task is executing the body of the accept statement. When the ac- 
cept statement has no body, it is also modeled with three nodes. 
The pseudocode for the center node contains an ENTER pseu- 
dostatement and an EXIT pseudostatement and nothing else. 
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When these tasks start the rendezvous, they each advance to 
their middle nodes. From here they can immediately end the 
rendezvous. Since this rendezvous is being used purely for syn- 
chronization, there is no loss in replacing this two step process 
by a single step. 

The example in Section 3 is used to illustrate this reduction. 
Since neither of the accepts have bodies, the edges representing 
the start and end of the entry calls or accepts can be replaced 
with a single edge representing the entire entry call or accept, 
respectively. (The subscript SE is used in the label on such an 
edge.) Thus, for task MAIN and Tl, node 2 can be eliminated 
and, for task T2, nodes 2 and 3 can be removed. The pseudocode 
for the remaining nodes is almost the same as in the original 
example except that the interactions CALL-STARTEND and 
ACCEPT-STARTEND are used to indicate the entire call or 
accept. 

The new concurrency graph for this example is given in Fig- 
ure 16 and is almost half the size of the original concurrency 
graph. 

Figure 16: A Simplified Concurrency Graph 

5 Conclusion 

The TIG model of concurrent systems provides an interesting 
representation of concurrency that facilitates analysis. The ap- 
proach recognizes maximal sections of noninteracting code sec- 
tions and represents each such region as a node in the task in- 
teraction graph. The edges of this graph capture the task inter- 
actions. We have shown that using the TIG model can result in 
concurrency graph representations that are substantially smaller 
than models based on control flow. Moreover, because it is easy 
to identify the code associated with a state in the concurrency 
graph, it appears that certain kinds of analysis, such as sym- 
bolic execution [Youn86], can be more easily supported using 
this model. 

To date we have developed rules for translating most of the 
constructs supported by Ada into the appropriate TIG represen- 
tation. In this translation, we attempt to lInd rules that will 
reduce, or at least not increase, the number of nodes in the TIG, 

since any reduction in the number of nodes in the TIG results in 
a significant reduction in the associated TICG. Such a reduction 
will also have a corresponding reduction in the cost of any associ- 
ated analysis. Thus, it is worthwhile to carefully consider further 
optimizations that can be performed on the TIG representation. 
For example, we have been investigating optimizations for pro- 
cedure calls that activate tasks, shared variable references, and 
some others situations. It is important to note that we have 
been able to define rules for concisely representing most reason- 
able concurrency constructs that occur in Ada. Unlike many 

concurrency analysis approaches that must severely restrict the 
types of programs they can consider, the TIG approach can be 
applied to realistic concurrent systems. 

For the programs we have examined so far, the number of 
states in the TICG have been quite reasonable. Furthermore, 
each resulting TICG has been substantially smaller than the cor- 
responding control flow concurrency graph. Our hypothesis is 
that the complexity of the TICG for the typical system will be 
quite reasonable, although worse case analysis clearly shows it is 
an intractable problem [Tay183a,DeMi79]. We feel it is imper- 
ative to conduct some experimental studies so we can evaluate 
typical performance for realistic systems. We are currently build- 
ing a prototype system that can automatically create the TIG and 
TICG for actual, production programs. We intend to use the pro- 
totype to do experimental studies on the size and complexity of 
the generated graphs. 

We have been investigating several kinds of analysis tech- 
niques that can be applied to the TIG and TICG models. Some of 
these techniques are relatively simple to apply and can be car- 
ried out during the creation of the graphs; others require post 
processing, which might even be directed by information gath- 
ered during the creation of the graphs. An example of one kind 
of analysis that can be done during the creation of the TICG is 
deadlock detection, as is shown in Section 4. An example of the 
kind of analysis that requires post processing is “dangerous” par- 
allelism. This occurs when a shared variable can be assigned and 
referenced in various orders. The possibility of such situations 
can be detected during TICG construction and then analyzed af- 
terwards. 

Deadlock detection and dangerous parallelism are just two 
examples of the kinds of analysis that can be performed using a 
TICG representation. We are currently investigating more power- 
ful analysis techniques. Because sequential processing is carefully 
separated from task interactions, it appears that some sequential 
analysis techniques could be applied to task regions and the re- 
sults incorporated into inter-region analysis, similar to the tech- 
niques currently used for inter-procedural analysis. 
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