
TASK INTERACTION GRAPHS FOR CONCURRENCY ANALYSIS

Douglas L. Long
Department of Computer Science
Wellesley College
Wellesley, Massachusetts 02181

ABSTRACT

A representation for concurrent programs, called task inter-
action graphs, is presented. Task interaction graphs divide a
program into maximal sequential regions connected by edges rep-
resenting task interactions. This representation is illustrated and
it is shown how it can be used to create concurrency graph rep-
resentations that are much smaller than those created from con-
trol flow graph representations. Both task interaction graphs
and their corresponding concurrency graphs facilitate analysis of
concurrent programs. Some analyses and optimizations on these
representations are also described.

1 INTRODUCTION

Dealing with concurrent systems poses many interesting and chal-
lenging problems. Clearly, it is much harder for developers to
reason about concurrent behavior than sequential behavior, and
thus it is likely that more errors will be introduced into these
systems. Because of this added complexity as well as the dif-
ficulties with reproducing results and simulating realistic sce-
narios, it is important that analysis techniques be developed
to evaluate concurrent systems [Avru85,Bris79,Helm85,Morg87]
[Shat88,Tal85,Tay180,Tay183a,Tay183b]. In this paper we present
a representation for concurrent systems, called a task interaction
graph, that facilitates such analysis.

Our representation is an extension and improvement upon the
work of Taylor [Tay183a,Tay183b]. Using a reduced flow graph
representation of each task in a system, Taylor defines a concur-
rency graph that models the behavior of the total system. Since
concurrency graphs capture all the possible states of a concur-
rent system, they provide an interesting model upon which to
base a number of different analyses [Tay183b,Youn86]. Unfortu-
nately the number of states in a concurrency graph can be very
large, thereby limiting the programs that can be analyzed and
the types of analysis that can be performed.

We have been developing a model of interacting tasks that
considerably reduces the number of states in concurrency graph

This work was supported in part by National Science Fomdation grant
CCR-87-04476 in cooperation with the Defense Advanced Research Projects
Agency (ARPA Order No.6104) and by Office of Naval Research grant
N00014-85-K-0025.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice IS given that copying is by permission of the
Asso$ation for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

Lori A. Clarke
Software jDevelopment Laboratory
Department of Computer & Information Science

University of Massachusetts
Amherst, Massachusetts 01003

representations. We call this representation a Task Interaction
Concurrency Graph(TIcG), since it is derived from a Task Inter-
action Craph(TIG) instead of from a control flow graph represen-
tation. Using our model, we compared the resulting representa-
tions fos some of the common concurrency examples that appear
in the literature. For these examples the number of states were
reduced substantially, usually by well over fifty percent. Such
a reduction will have a major impact on the kinds of analysis
that, can be applied and on the kinds of programs that can be
analyzed. Moreover, this reduction comes with no loss of in-
formation. In fact, the resulting representation appears to be
even more amenable to analysis. This is because a TIG divides
a task, not based on control flow information, but based on task
interactions, the real focus of our concern. The other benefit of
this choice of representation is that the nodes in a TIG identify
maximal sequential regions in the task. Thus, sequential analysis
techniques could be applied to these regions and then inter-task
analysis techniques developed to evaluate the impact of task in-

teractions, in much the same way that inter-procedural analysis
is carried out for program optimization.

In this paper we describe task interaction graphs and some of
the ways they can be used as the basis for analysis of concurrent
systems. The next section describes this graph representation
and presents two examples. The third section describes how to
create a TICG from a TIG and, using a simple example, illustrates
this. Section 4 describes how the model can be extended to
nested tasks, some of the analysis that can be done based on this
model, and some refinements to the model that reduce the size
of the TIG still further. The conclusion summ arizes the benefits
of this representation and discusses directions of future work.
The TICG and TIG models have been designed to capture the
rendezvous-like interprocess communication mechanism found in
languages like Ada [Ada83], Distributed Processes [Brin78], and
CSP [Hoar’lS]. For this presentation we use an Ada-like language
to illustrate the approach.

2 Task Interaction Graphs

This section shows how a task interaction graph represents a task
as a set bf regions and a set of interactions between regions. A
formal definition of a TIG is given and two examples are shown
and discussed.

There are four restrictions on the kinds of tasking programs
we consider. The first two are for inherent problems with any
static analysis method and the last two are to simplify the dis-
cussion.. First, arrays of tasks are disallowed. In general, static
analysis can not distinguish between different members of a com-
pound object, such as different elements of an array. Second, it is

01989 ACM 0270-5257/89/0500/0044$oo.75 Recommended by: William Riddle

assumed that at most a fixed number of tasks are active simulta-
neously. This restriction is needed since certain kinds of dynamic
task creation can make static analysis intractable. Third, tasks
do not, share variables and, fourth, all tasks are activated at the
same time and terminate at the same time. Although not shown
in this paper, the third restriction can be relaxed with appropri-
ate modifications to the model. The fourth restriction is relaxed
in Section 4.1.

Formally, a task interaction graph is a tuple (N, E, S, T, L, C),
where N is the set of nodes, E is the set of edges, S is the start
node, T is a set of terminal nodes, L is a function- that assigns a
label to each edge, and C is a function that assigns pseudocode to
each node. Each node of this graph represents a task region and

each edge represents a task interaction. The start node represents
the region where the task starts execution. The terminal nodes
represent regions where the task may finish execution.

Each node in a TIG represents a different region of the task
and has associated with it an explicit representation of the code
for that region, referred to as pseudocode. In this paper, the
pseudocode for regions consists of the same Ada-like language
that is used to represent tasks with the addition of two kinds
of transition pseudostatements, one that marks the entry to a
region and the other to mark the exit(s). Note that regions may
overlap, i.e., portions of the pseudocode describing one region
may be duplicated in the pseudocode describing another region.

Each edge in a TIC represents a task interaction, indicating
a transition from one region to another. The boundary between
these regions is represented by the two transition pseudostate-
ments - one in each of the two regions connected by that in-
teraction. An EXIT(interaction,nezt) is used in the first region
to indicate a place where that region may be exited, where in-
teraction specifies the type of task interaction that causes the
transition and nert specifies the region that is entered after the
interaction. The pseudostatement ENTER(interaction) is used
in the second region to indicate the place where that region may
be entered, where again interaction specifies the type of interac-
tion. Thus in the representation of the TIG, for each edge between
two nodes there is a transition pseudostatement in one node rep-
resenting the head of the edge and a transition pseudostatement
in the other node representing the tail of the edge.

The result of the above discussion is that each entry call and
each accept statement is modeled using two interactions that
divide the task into three regions. Entry calls and accepts are
divided into two interactions each (e.g., starting an entry, ending
an entry, starting an accept, ending an accept) because when
a rendezvous is initiated, information can be passed from the
calling task to the accepting task via the parameters of the call
and accept statements. Th ‘s c an es h g the environment of the
accepting task, dividing it into two regions at this point. When
the rendezvous is ended, information can be passed in the other
direction, dividing the calling task into two regions at this point.
Special cases where a more compact representation can be used
are considered in Section 4.

Finally, each edge in a TIG is labeled with the type of inter-
action that is occurring along the edge and with instance infor-
mation such as task and entry names. In addition, edges may

be grouped together into edge groups. These groups are used to
model the Ada select statement and aid deadlock detection and
are discussed in Section 4.

2.1 A Simple Example

The task shown in Figure 1 is used to illustrate what is meant
by a TIG. In addition to several assignment statements, this task
makes an entry call to another task (S2.P) and has one entry
(accept 01.

task body Sl is
begin

w := 1;
if f(w) = 2 then

S2.P;
x := 2;

else

accept Q;
y := 3;

end if;
z := 4;

end Sl;

Figure 1: Task Sl

As shown in Figure 2 the TIG for this task contains five re-
gions. Region 1 consists of everything from the beginning of the
task up to some task interaction, in this case, either the start
of the entry call, S2.P, or the start of the acceEL-QZ Il.* 3 _

N = L2,3,4,5)
E = {(1,2),(2,3),(1,4),(4,5)}
S =
T = ;3,5)
L(1,2) = s2.f’~ L(2,3) = s2&

L(l,4) = &s L(4,5)= QE

C(1) =

C(2) =

C(3) =

C(4) =

C(5) =

ENTER(WAITEORACTIVATION);
task body Sl is
begin

w := 1;
if f(w) = 2 then

EXIT(CALL-START(SZ.P),2);
else

EXIT(ACCEPTSTART(Q),4);
end if;

ENTER(CALL-START(S2.P));
EXIT(CALL-END(SZ.P),3);

ENTER(CALL-END(S2.P));
x := 2;
z *= 4. . ,

end Sl;
EXIT(TERMINATE,d);

ENTER(ACCEPTSTART(Q));
EXIT(ACCEPTEND(Q),5);

ENTER(ACCEPTEND(Q));
y := 3;
z := 4;

end Sl;
EXIT(TERMINATE,d);

Figure 2: Task Interaction Graph for Task Sl

45

consists of everything that occurs after the end of the entry call,
S~.P, up to the next task interaction or, in this case, the end of
the task. Similarly, region 5 consists of everything that occurs
after the end of the accept, Q, up to the next task interaction or
the end of the task. Region 2 consists of everything between the
start of the entry call and the end of the entry call and region 4
consists of everything between the start of the accept and the end
of the accept. Note that the last statement in the task (z := 4;)
is part of both regions 3 and 5. This is because this statement
would be executed under different circumstances depending on
which of the two task interactions preceded it.

As can be seen, task interactions, and not control flow, cause
transitions from one region to another. Thus, it is the task in-
teraction (i.e., the start of the entry call) in the then-clause of

the conditional statement that causes the transition from region
1 to region 2. If the then-clause contained only nontasking state-
ments, then those statements would be a part of region 1 and
there would be no transition out of region 1 at this point. Simi-
larly, it is the start of the accept statement in the else-clause that
causes the transition from region 1 to region 4. The end of the
entry call causes the transition from region 2 to 3 and the end of
the accept causes the transition from region 4 to 5.

The graphical representation of a TIG is shown in Figure 3.
For the sake of brevity, the four task interactions represented in
this example are represented by the labels S2.Ps, S2.&, Qs,
QE, where the subscripts S and E stand for start and end. In
the following, a label containing a dot always represents an entry
call; the part before the dot is a reference to a particular task
and the part after the dot is a reference to a particular entry
in that task. A label without a dot represents an accept. The
arrow pointing to node 1 indicates that it is the start node and
the double circle around nodes 3 and 5 indicates that they are
terminal nodes. .

Figure 3: Graphical Representation of the TIG for task Sl
-

2.2 A More Complex Example

Next we consider the TIG for a task that contains a more com-
plicated control structure. Figure 4 shows a task based on an
example in (Tay183bl. The TIG for task Tl is shown in Figure 5
and the pseudocode for this graph is given in Figure 6.

The TIG for task Tl consists of five regions. The first region,
represented by node 1, corresponds to everything that could oc-
cur from the time the task is activated until it makes an accept.
Since the pseudocode for this region contains code that is exe-
cuted only once, prior to the start of the loop, the task will not
return to this region once it has left it.

The next two regions, represented by nodes 2 and 3, corre-
spond to the bodies of the accept statements. The ENTER state-
ment in each of these regions corresponds to an ACCEPT-START.
For node 2 it represents the start of the P accept and for node 3

the start of the Q accept. Finally, each of these regions contains
an EXIT statement that corresponds to the ACCEPTLEND of
the respective accepts.

The last two regions represent what happens after the cud of
the two accepts. The ENTER statement in each of these regions
is found in the middle of the pseudocode because each of these
regions is entered in the middle of a loop. After entering node
4, the loop is exited (note node 4 is a terminal node) or the

end of the loop is reached causing a return to the beginning of
the loop where the select statement is encountered. The select
statement chooses between starting accept P or starting accept
Q; thus, there is an edge from node 4 to node 2 and from node
4 to node 3 representing these transitions. Node 5 is similar to
node 4 except it is entered after the end of the Q accept instead
of the P accept.

task body Tl is
DONE: boolean;

begin
loop

select
accept P;

or
accept Q;

end select;
. . .
exit when DONE;

end loop;
end Tl;

Figure 4: Task Tl

F;&re 5: TIG for Task Tl

3 Task Interaction Concurrency Graphs

A TICG represents the behavior of an entire program and is con-
structed from the TIGS of the tasks that make up the program.

Here, the~r~ forTo&i is denoted Gi = (Ni,Ei,SiyTi,Li,Ci).
A vertex of a TICG, which is known as a &ate of the graph,’ is
a k-tupk, (nr,ns, . . . , TZJ.) where ni E Ni. States are connected
by edges that represent the beginning and ending of rendezvous

‘Not to be confused with the vertex of a task interaction graph, which%

referred to as a node.

46

C(1) =

C(2) =

C(3) =

C(4) =

C(5) =

ENTER(TASKACTIVATE);
task body Tl is

DONE: boolean;
begin

loop
select

EXlT(ACCEPTSTART(P),2);
01

EXIT(ACCEPTSTART(Q),3);
end select;

. .
end loop;

ENTER(ACCEPTSTART(P)));
EXIT(ACCEPT_END(P),4);

ENTER(ACCEPT-START(Q)));
EXIT(ACCEPT_END(Q),5);

loop
select

EXlT(ACCEPTSTART(P),2);
0*

EXIT(ACCEPTSTART(Q),3);
end select;
. .
ENTER(ACCEPT-END(P));
. . .
exit when DONE;

end loop;
end Tl;
EXIT(TASK-TERMINATE,@

loop
select

EXIT(ACCEPTSTART(P),2);
OI

EXIT(ACCEPTSTART(Q),S);
end select;
.
ENTER(ACCEPT-END(Q));
.
exit when DONE;

end loop;
end Tl;
EXIT(TASK-TERMINATE&;

Figure 6: Pseudocode for Task Tl

‘between tasks. There is an edge from state (ni, n2,. . . , nk) to
state (ml, mz, . ,mk) if there exists i and j such that for all
l#i,j,nl=mr,and

(i) (n;,m;) E Ei, and

(ii) (nj,mj) E Ej, and

(iii) Li(n;,mi) = Taskj.Es and Lj(nj,mj) = Es, ~r

Li(ni,mi) = Taslej.EE and Lj(nj,mj) = Ez.

The edge between these two states represents either the start or
the end of a rendezvous between Taski and Taskj. Two states
are said to be adjacent if they are connected by an edge that
satisfies the above rules.

The definition given here for a TICG is similar to that given
for control flow concurrency graphs [Tay183b] in that there is an
edge between two states only if that edge involves as few tasks

as possible, e.g., there are no edges corresponding to several in-
dependent events occurring simultaneously. This approach does
not overlook any possible states and includes all edges that corre-
spond to the occurrence of a single event at a time. In addition,
if more than one task makes an entry tail on the same entry of a
task there is an edge in the TICG corresponding to a rendezvous
for each of these entry calls. This is because a concurrency state

represents all possible orderings of the entries in the queue for
each entry.

As an example, consider a program consisting of the tasks
shown in Figures 4 and 7. The TIGS for these tasks are shown
in Figure 5 and 8 and the TICG for this program is given in
Figure 9. Each state in this graph is represented by a tuple
(MAIN,Tl,TZ). The starting state for this example is (l,l, 1).
There is an edge from state (1, 1,1) to state (1,2,2), representing
the start of a rendezvous between tasks T2 and Tl, because there
is an edge (1,2) in the TIG for task T2 and an edge (1,2) in the
TIG for task Tl. Similarly, there is an edge from (l,l., 1) to
(2,3,1) representing the start of a rendezvous between tasks Tl
and MAIN. The other edges in the TICG likewise represent the
start and end of rendezvous between pairs of tasks. Note that
only states that represent &id synchronization states ofthe tasks
are represented in the TICG. In general, the valid states are those
that are reachable from the starting state (~1, ss, . . , sk).

procedure MAIN is task body T2 is
begin begin

T1.Q; T1.P;
end MAIN; end T2;

Figure 7: Procedure MAIN and Task T2

(4

T1.p~ Tl.Ps
-@

(b)
Figure 8: TIGS for (a) MAIN and (b) T2

(3,5,10

5 (3,2,2D

(394339

Figure 9: A Task Interaction Concurrency Graph for (MAIN,
Tl, T2)

47

A ~ro~ for a program can be easily constructed by starting

with a single state (sr,sz,- . . , sh) and adding states and edges

until no more states and edges can be added to the graph. The
algorithm for constructing a TICG from a set Of TIGs is given in

Figure IO and is very similar to the algorithm for Constructing

concurrency graphs from reduced flow graphs described by in
[Tayl88b]. The time required to construct a TICG is comparable

TO-BE-CHECKED := {(ai, $2,. . . , Sk)};

while TO-BE-CHECKED # empty d0

STATE := next state from TO-BE-CHECKED;
for each state ASTATE adjacent to STATE do

add edge (STATE,ASTATE) to EDGES;
if ASTATE # OLD-STATES then

add ASTATE to TOEE-CHECKED;
end if;

end ioop;
if deadlock occurs at STATE then

output warning message;
delete STATE from TO-BE-CHECKED;
add STATE to OLD-STATES;

end loop;

Figure 10: Concurrency Graph Construction Algorithm

to the time required by the flow graph based algorithm.
The basic algorithm is quite simple. Each state of the par-

tially constructed TICG is checked to find its adjacent states. For
each adjacent state, a new edge is added to the set of edges and

the adjacent state is compared to a list of states that have al-
ready been found. If this state is a new state, i.e., it is not on the
list of states that have already been found, then it is added to
the list of states to be checked. After all the adjacent states of a
state have been checked, then the state is added to the list of old

states and deleted from the list of states to be check. The process
is repeated using the next state in the list of states to be checked.
The algorithm terminates when there are no more states to be
checked. This algorithm uses three sets: TOBE..CHECKED is
the set of states to be checked, OLD-STATES is the set of states
that have already been checked, and EDGES is the set of edges
of the TICG. When the algorithm terminates, the TICG will con-

sist of the states in the set OLD-STATES and edges in the set
EDGES.

Using task interaction graphs to form a TICG instead of the
reduced flow graphs results in a representation of a program’s
concurrency states that is usually substantially smaller than, and

no larger than, the corresponding control flow concurrency graph,
without any loss in power or applicability. Section 4.1 contains
a direct comparison to a control flow concurrency graph and the
corresponding TICG.

4 Analysis and Refinements

This section presents a flavor of some of the ways the task inter-
action mosdel can be used to analyze concurrent systems and to
represent realistic concurrent systems concisely. First, the model
is extended to handle task activation and termination in Ada
and then a deadlock detection analysis technique is described.
Finally, an optimization that reduces the number of nodes in
a concurrency graph is presented. Some more extensive analy-
sis techniques have been explored along with several other re-
finements to the model, such as concise ways of capturing and
evaluating shared variable usage and compact representations of
procedure calls [Long88].

4.1 Tacrk Activation and Termination

Up to this point it has been assumed that tasks all become ac-
tive at the same time and terminate when the program stops ex-
ecution. This ignores situations where tasks become active and
terminate in the course of execution of a program. For example,
the Ada model of task activation and termination allows tasks
that are declared within a task, subprogram, or block to become
active just prior to the start of execution of the first statement in
that task, subprogram, or block. Using Ada rules, the task, sub-
program, or block is known as the master of the activated task.
Tasks can terminate (I)- when they have finished execution and
all their subordinate tasks have finished execution or (2) when
the task is waiting at a terminate alternative, the task’s master
has terminated, and all other tasks activated by the task’s master
have either terminated or are waiting at a terminate alternative.

To include this hierarchical view of task activation and termi-
nation in the TIG model, interactions for representing these ac-
tivities are needed. It is our view that the interactions involved
in task activation and termination are of a different nature than
those described earlier in the paper for rendezvous and, thus,
are referred to as implicit interactions to distinguish them from
the explicit interactions associated with the rendezvous. Just as
explicit interactions separate tasks into regions, implicit interac-
tions separate regions into subregions. It is important to note
that adding extra nodes and edges to a task representation could
have a substantial impact on the size of the concurrency graphs
built from. that representation. Implicit edges are used to con-
struct concurrency graphs in a manner that will minimize their
effect on the size of the resulting graph.

The implicit interactions used to model task activation and
termination are illustrated in Figure 11. The four interactions
illustrated here are WaitForActivation (WA), ActivateDepen-
dents (AD), WaitForDepsToTerminate (WT), and Terminate
(T). Each master task will have an AD edge that corresponds
to a point at which it activates dependent tasks and a WT edge
that corresponds to the point at which all these dependents have
terminated. Each dependent task will have a WA edge that cor-
responds to the point at which it becomes active and a T edge
that corresponds to the point at which it terminates. Another
implicit interaction, WaitSelectTerminate (ST), which is not il-
lustrated here, is used to model the terminate alternative of the
select statement.

WA AD

o-

WT T ------

Figure 11: Implicit Interactions in a Task

48

The use of implicit edges is illustrated with the following ex-
ample. Suppose that the tasks of Figure 4 and Figure 7 are
reorganized as shown in Figure 12. In this example, the tasks
Tl and T2 are placed inside a procedure SUBR, which is called
by the procedure MAIN. The TIGS for these tasks are shown in
Figure 13. In these TIGS, regions are denoted by numbers and
subregions are denoted by letters (i.e., the nodes la and lb repre-
sent two subregions of region 1). Note that tasks without masters
do not have WA and T edges and that tasks without dependents
do not have AD and WT edges. .--.

procedure MAIN is
procedure SUBR is

task body Tl is . . .end Tl;
task body T2 is . . .end T2;

begin
T1.Q;

end SUBR;
begin

SUBR;
end MAIN;

Figure 12: A Nested Concurrent Program

(cl

Figure 13: TIGS for (a) MAIN (b) Tl and (c) T2

The TICG for the TIGS in Figure 13 is given in Figure 14.
This example illustrates several ways that implicit edges can be
optimized during the construction of a TICG. For exampIe, con-
sider the edge between states (la,la,la) and (lb,lb,lb) that
represents the activation of the two dependent tasks by the main
procedure. If a concurrency state were to be constructed for each
intermediate step in this process, it would require five states to
represent this activation as shown in Figure 15. Of course, the
situation will be much worse when there are more than two de-
pendent tasks. However, the unoptimized version provides no
more information about the tasks than was already known, i.e.,
that there is more than one order in which the tasks can become

activated. By advancing the master task along its AD edge at
the same time as each of its dependents advance along their WA
edges, these intermediate states can be eliminated without loss of
any information. Similar optimizations are possible for other im-
plicit edges. For example, in some situations tasks can advance
along their T edges at the same time as their siblings and their
masters. This occurs in Figure 14, in the transition from (3a, 5a,
3a) to state (3b, 5b, 3b). However, care must be exercised for

(la,la,la)

I
(lb,lb,lb)

(lb,24 (23,lb)

Figure 14: A TICG With Implicit Interactions

(la,la,la)

I

(lb,la,la)

(lb,lb,la) (lb,la,lb)

jilb,lb,lb>

Figure 15: Unoptimized Task Activation

those tasks, such as Tl, that have T edges and some other edge
leaving the same node. When this occurs, each edge must be
considered independently. For this example, this results in two
successor states to state (lb, 4a, 3a) and state (3a, 5a, lb).

The approach outlined here compares favorably with that
found in [Tayl63b]. For example, in that paper the concurrency
graph for a program similar to the one in Figure 12 contains
36 states and 54 edges as compared to the TICG representation,
which has only 14 states and 13 edges. Moreover, this does not
appear to be an unrepresentative example. Other programs we
have examined have resulted in considerable reductions. For ex-
ample, the TICGS for the 2,3, and 4 philosopher versions of dining

49

philosophers problem contain 40, 268, and 1792 states, respec-
tively. The concurrency graphs contained in [Wamp85] for these
examples contained 51, 470, and 4176 states, respectively.

The interactions described here are sullicient to model nested
tasks, procedures, and blocks in Ada if there are no task interac-
tions in the declarative regions of tasks. Such task interactions

might occur, for example, if a declaration called a function that
made an entry call. This restriction could be easily eliminated
by the addition of an implicit edge type for TIGS that would force
the elaboration of the declarations of all the dependents to com-
plete before the execution of the body of the master task was
allowed to begin. The cost of such a TIG edge, however, would
be quite high in that it would require a large number of states

in the associated TICG in order to represent all the possible ways
the dependent tasks could complete the elaboration of their dec-
larations and begin execution. As one might suspect from the
resulting size of a concurrency graphs, allowing declarative task
interactions is an unwise progra mming practice. Thus we decided
not allowing task interaction in declarative regions is a reasonable
restriction. On the other hand, using the TIG approach we have
been able to remove most of the restrictions usually imposed by
concurrency analysis techniques (e.g., [Dill88,Kemm88]). Such
restrictions tend to make concurrency analysis inapplicable to
realistic programs.

4.2 Deadlock Detection

Deadlock occurs when a task waits for a rendezvous that can
never occur. To detect deadlock, a check can be applied during
the construction of each state in the TICG. This check depends,
in part, on the concept of edge groups. Groups are used to model
Ada select statements where a task can select from among one of
several different alternatives. A task will remain blockeduntil one
of the alternatives can be chosen. A select statement is modeled
in a TIG by placing all the edges representing its alternatives in
the same edge group. Deadlock occurs at a state (nr, ns, _ . , nk)
if there exists an i and an edge (ui,mi) E Ei such that one of
the following four conditions hold and no other tasks are able to
rendezvous.

(i) h(ni,mi) = Taakj.Ps and

(1) for no edge (nj, mj) E Ej does Lj(nj, mj) = Ps, or

(2) for some edge (nj,mj) E Ej, Lj(nj,mj) = Q, where
Q # P.y and (nj, mj) is not in the same edge group as
any edge labeled Ps.

(ii) Li(ni,mi) = Taskj.PE and

(1) for no edge (uj,mj) E Ej does Lj(nj,mj) = PE, or

(2) for some edge (nj,mj) E Ej, Lj(nj,mj) = Q, where

Q # PJJ and (uj, mj) is not in the same edge group as
any edge labeled PE.

(iii) Li(ni,mi) = Ps and for all j # i

(1) there is no edge (nj,mj) E Ej such that Lj(nj,mj) =
Taski.Ps, or

(2) there is an edge (nj,mj) E Ej such that Lj(nj,mj) =
Q, where Q # Taski.PS and (nj,mj) is not in the
same edge group as any edge labeled Taski.Ps.

(;u) Li(ni,mi) = PE and for all j # i

(1) there is no edge (nj,mj) E Ej such that Lj(nj,mj) =
Taski.PE, or

(2) there is an edge (nj,mj) E Ej such that Lj(nj,mj) =
Q, where Q # TUSki.PE and (uj,mj) is not in the
same edge group as any edge labeled TaSki.PE.

The first two conditions have to do with entry calls. Taski
might be waiting to start (or end) a call to entry P of Taski
and Taskj may not be at a node from which it could start (or
end) the corresponding accept. This can occur in two ways. For
the first case, it might be that Taskj is in a region that does
not cont:ain the start (or end) of an accept P. In this case, there
is no edge leaving node nj of Taskj that corresponds to this
interaction. Even if TaJkj is in a region that contains the start
(or end) of an accept P, there is no guarantee that the task will
get to it, leading to case two. For case two, it might be that
Taskj executes a path through its current region that leads to a
different task interaction, in which case it would end up waiting
for some other task interaction to occur. In either of these cases,
if no other tasks are able to rendezvous then this situation will
never change and the program is deadlocked.

The I.ast two conditions have to do with accepts. Task; might
be waiting to start (or end) an accept P and there may be no task
that is able to start (or end) a corresponding entry call. This can
occur if for each other task either of the following two conditions
hold: it is not in a region that contains a start (or end) of an
entry ca!ll to accept P of Taski, or it is waiting for some other
interaction to occur.

In summary, deadlock occurs if Taski is waiting for a ren-
dezvous and no other tasks are able to rendezvous at this point.
Note that deadlock occurs even if Taaki is able to rendezvous
along some other edge (ni, m:) E Ei if this edge is not in the
same edge group as (n;, mi). Thus, for task interaction concur-
rency graphs, deadlock can occur at states that have edges lead-
ing out of them as well as at states that have no edges leading out
of them. For the example of Section 4.1, these rules would detect
the two places where there is the potential for deadlock. In Fig-
ure 14 it can be seen that deadlock can occur at states (lb,4b,3b)
and (3a,5b,lb) because Tl can terminate leaving either MAIN or
T2 with no task with which to rendezvous.

4.3 A Reduction in the Number of Nodes

Concurrency graphs are very sensitive to small changes in the
task interaction graphs used to create them. Any time the num-
ber of nodes in a TIG can be reduced, the corresponding TICG
will be smaller. One place that one might try to make task in-
teraction graphs smaller is by reducing the number of nodes that
are needed to model entry calls and accepts. Unfortunately, at
least three nodes are needed to model the general case of an entry
call or an accept. However, in the special case where the accept
statement has no body, two nodes are satisfactory.

To see why this can be done, consider an entry call statement
that is currently modeled using three nodes. The pseudocode
for the center node contains an ENTER pseudostatement and an
EXIT pseudostatement and nothing else. This node represents
the suspension of execution of the calling task while the accepting
task is executing the body of the accept statement. When the ac-
cept statement has no body, it is also modeled with three nodes.
The pseudocode for the center node contains an ENTER pseu-
dostatement and an EXIT pseudostatement and nothing else.

50

When these tasks start the rendezvous, they each advance to
their middle nodes. From here they can immediately end the
rendezvous. Since this rendezvous is being used purely for syn-
chronization, there is no loss in replacing this two step process
by a single step.

The example in Section 3 is used to illustrate this reduction.
Since neither of the accepts have bodies, the edges representing
the start and end of the entry calls or accepts can be replaced
with a single edge representing the entire entry call or accept,
respectively. (The subscript SE is used in the label on such an
edge.) Thus, for task MAIN and Tl, node 2 can be eliminated
and, for task T2, nodes 2 and 3 can be removed. The pseudocode
for the remaining nodes is almost the same as in the original
example except that the interactions CALL-STARTEND and
ACCEPT-STARTEND are used to indicate the entire call or
accept.

The new concurrency graph for this example is given in Fig-
ure 16 and is almost half the size of the original concurrency
graph.

Figure 16: A Simplified Concurrency Graph

5 Conclusion

The TIG model of concurrent systems provides an interesting
representation of concurrency that facilitates analysis. The ap-
proach recognizes maximal sections of noninteracting code sec-
tions and represents each such region as a node in the task in-
teraction graph. The edges of this graph capture the task inter-
actions. We have shown that using the TIG model can result in
concurrency graph representations that are substantially smaller
than models based on control flow. Moreover, because it is easy
to identify the code associated with a state in the concurrency
graph, it appears that certain kinds of analysis, such as sym-
bolic execution [Youn86], can be more easily supported using
this model.

To date we have developed rules for translating most of the
constructs supported by Ada into the appropriate TIG represen-
tation. In this translation, we attempt to lInd rules that will
reduce, or at least not increase, the number of nodes in the TIG,

since any reduction in the number of nodes in the TIG results in
a significant reduction in the associated TICG. Such a reduction
will also have a corresponding reduction in the cost of any associ-
ated analysis. Thus, it is worthwhile to carefully consider further
optimizations that can be performed on the TIG representation.
For example, we have been investigating optimizations for pro-
cedure calls that activate tasks, shared variable references, and
some others situations. It is important to note that we have
been able to define rules for concisely representing most reason-
able concurrency constructs that occur in Ada. Unlike many

concurrency analysis approaches that must severely restrict the
types of programs they can consider, the TIG approach can be
applied to realistic concurrent systems.

For the programs we have examined so far, the number of
states in the TICG have been quite reasonable. Furthermore,
each resulting TICG has been substantially smaller than the cor-
responding control flow concurrency graph. Our hypothesis is
that the complexity of the TICG for the typical system will be
quite reasonable, although worse case analysis clearly shows it is
an intractable problem [Tay183a,DeMi79]. We feel it is imper-
ative to conduct some experimental studies so we can evaluate
typical performance for realistic systems. We are currently build-
ing a prototype system that can automatically create the TIG and
TICG for actual, production programs. We intend to use the pro-
totype to do experimental studies on the size and complexity of
the generated graphs.

We have been investigating several kinds of analysis tech-
niques that can be applied to the TIG and TICG models. Some of
these techniques are relatively simple to apply and can be car-
ried out during the creation of the graphs; others require post
processing, which might even be directed by information gath-
ered during the creation of the graphs. An example of one kind
of analysis that can be done during the creation of the TICG is
deadlock detection, as is shown in Section 4. An example of the
kind of analysis that requires post processing is “dangerous” par-
allelism. This occurs when a shared variable can be assigned and
referenced in various orders. The possibility of such situations
can be detected during TICG construction and then analyzed af-
terwards.

Deadlock detection and dangerous parallelism are just two
examples of the kinds of analysis that can be performed using a
TICG representation. We are currently investigating more power-
ful analysis techniques. Because sequential processing is carefully
separated from task interactions, it appears that some sequential
analysis techniques could be applied to task regions and the re-
sults incorporated into inter-region analysis, similar to the tech-
niques currently used for inter-procedural analysis.

ACKNOWLEDGMENT

The authors wish to acknowledge Joe Fialli, who has provided
many helpful suggestions on the development of the TIG model
and this paper.

[Ada831

References

Reference Manual for the Ada Programming
Language (ANSI/MIL-STD-iSiSA), United
States Department of Defense, Washington, D.C., Jan-
uary 1983.

[Avru85] George S. Avrunin, Laura K. Dillon, Jack C. Wile-
den, and WiIliam E. Riddle. Constrained Expressions:
Adding Analysis Capabilities to Design Methods for
Concurrent Software Systems. Dept. of Comp. and Info.
Science, University of Massachusetts, Amherst, Techni-
cal Report 85-13, May 1985.

[B&78] Per Brinch Hansen. Distributed Processes: A Concur-
rent Programming Concept. Communications of the

ACM, 21(11):934-941, November 1978.

51

[Bris79] G. Bristow, C. Drey, B. Edwards and W. Riddle.
Anomaly Detection in Concurrent Programs. Proceed-

ings of the 4th International Conference on Software
Engineering, 265-273, 1979.

[DeMi79] Richard DeMiIIo and Raymond Miller. Implicit Com-
-putation of Synchronization Primitives. Information
Processing Letters, 9(1):35-38, July 1979.

[DiUSS] Laura K. Dillon. Symbolic Execution-Based Verifi-
cation of Ada Tasking Programs. Proceedings of the
Third International IEEE Conference on Ada Applica-
tions and Environments, 3-13, May 1988.

[Helm851 David Helmbold and David Luckham. Debugging Ada
Tasking Programs. IEEE Software, 2(2):47-57, March
1985.

[Hoar781 C. A. Il. Hoare. Communicating Sequential Processes.
Communications of the ACM, 21(8):666-677, August
1978.

[Kemm88] L.J. Harrison and R.A. Kemmerer. An Interleaving
Symbolic Execution Approach for the Formal Verifica-
tion of Ada Programs with Tasking. Proceedings of the
Third International IEEE Conference on Ada Applica-
tions and Environments, 3-13, May 1988.

[Long881 Douglas L. Long and Lori A. Clarke. Task Interaction
Graphs: A Representation For Concurrency Analysis.
Department of Computer & Information Science, Uni-
versity of Massachusetts, Amherst, March 1988.

[Morg87] E. Timothy Morgan and Rami Il. Razouk. Interac-
tive State-Space Analysis of Concurrent Systems. IEEE
Transactions on Soflware Engineering, SE-13(10):1080-
1091, October 1987.

[Shat88]

[TaiES]

[Tayl80]

S. M. Shatz and W. K. Cheng. A Petri Net Framework
for Automated Static Analysis of Ada Tasking Behavior.
Journd of Systems and Software, 8(5):343-359.

K.C. Tai. On Testing Concurrent Programs. Proceed-
ings of COMPSAC 85, 310-317, October 1985.

Richard N. Taylor and Leon J. Osterweil. Anomaly De-
tection In Concurrent Software By Static Data Flow
Analysis. IEEE Transactions on Software Engineering,
SE-6(3):265-278, May 1980.

[Tay183a] Richard N. Taylor. Complexity of Analyzing the Syn-
chronization Structure of Concurrent Programs. Acta
Inform&x, 19:57-84, 1983.

[Tay183b] Richard N. Taylor. A General-Purpose Algorithm For
Analyzing Concurrent Programs. Communications of
the ACM, 26(5):362-376, May 1983.

[Wamp85] Gordon K. Wampler. A Static Concurrency Analysis
Tool for Ada (SCA). Master’s Dissertation, University
of California, Irvine, 1985.

[Youn86] MichaI Young and Richard N. Taylor. Combining
Static Concurrency Analysis With Symbolic Execu-
tion. In Proceedings of the Workshop on Software
Testing:170-178, IEEE Computer Society Press, July
1986.

52

