Online Deviation Detection for Medical Processes

Stefan Christov1, George Avrunin2, Lori Clarke2

November 17, 2014
AMIA 2014

© 2014, Stefan Christov, George Avrunin, Lori Clarke
Disclosure

- No conflicts of interest
- Work supported by the National Science Foundation under awards IIS-1239334 and CMMI-1234070
Human Errors Are a Major Concern in Medical Processes

It is estimated that between 98,000 and 400,000 people die each year in the U.S. due to preventable medical errors.
Deviation Detection to Catch Errors Before Harm Is Done

Approach targets *sequencing errors*—the use of a wrong sequence of steps
Outside of scope for now:

- Performing the right step, but doing it poorly/incorrectly
- Real-time errors
Deviation Detection

Process model

Performed: a
Deviation Detection

Process model

Performed: a

- **a**: VPID
- **b**: ...
- **c**: test patient
- **d**: ...
- **e**: administer drug
- **f**: ...
- **g**:...

Performed: a
Deviation Detection

Process model

- VPID
- test patient
- administer drug
- administer drug

Performed: a\(\rightarrow\)d

Deviation detected
Deviation Detection

Error can be caught before harm is done
Deviation Detection

Issues

- Often do not know intent of process performers
Deviation Detection

Issues

• Often do not know intent of process performers
• Errors might occur before the deviation is detected (delayed deviation detection)
• Harm could be done before deviation is even detected
Research Questions

• **Characteristics of deviation detection delays**
 – How often do deviation detection delays occur?
 – How long are deviation detection delays?
 – How often do deviation detection delays result in harm?

• **Performance of deviation detection approach**
 – What is the running time?
 – What is the memory usage?
Applying the Deviation Detection Approach to Realistic Medical Scenarios

- **Used realistic models of two medical processes**
 - Chemotherapy preparation and administration
 - Blood transfusion

- **Created process executions**
 - Domain experts proposed likely step sequences with errors based on their experience and medical literature
 - Automatically generated step sequences with seeded errors using the process models
 - Seeded errors:
 - omission, insertion, substitution of a single step
 - omission of a subprocess

- **Identified sets of potentially harmful steps**

- **Applied deviation detection approach to each sequence**
 - Measured detection delay, harm, computation time and space
Results

• Characteristics of deviation detection delays
 – How often do deviation detection delays occur?
 • Infrequently (observed delay in less than 1% of sequences with errors)
 – How long are deviation detection delays?
 • Short (observed delays were close to 1 step on average)
 – How harmful are such deviation detection delays?
 • Not harmful (did not observe cases where delay could result in harm)
Results

• Performance of the deviation detection approach
 – What is the running time?
 • “Fast enough” (0.5 sec. per step on average)
 – What is the memory usage?
 • Reasonable (laptop memory sufficient)
Threats to Validity

• Synthetic experimental evaluation
• Only two medical processes
• Limited set of errors
Limitations of the Deviation Detection Approach

• Need to be able to accurately monitor process execution
• Need an adequate process model
Future Work

• Explore analytic approaches for determining deviation detection delays
• Investigate approaches for deviation explanation
• Investigate approaches for proactive guidance – smart checklist
Conclusion

• Investigated an approach for online deviation detection—catch errors before harm is done

• Identified important issues and evaluated approach on medical processes

• Approach was effective on our examples
 – Observed deviation detection delays were short, infrequent, not harmful
 – Reasonable computation time and memory usage

• Need a more thorough evaluation