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ABSTRACT

Software products are rarely developed without providing different
sets of features to better meet varying user needs, whether through
tiered products as part of a product line or different subscription
levels for software as a service (SaaS). Software product line ap-
proaches for generating and maintaining a family of different vari-
ants of software products address such needs for variation quite
well. Real-world human-intensive systems (HISs) display similar
needs for families of variants. A key contribution of this paper is
to show how many of these needs can be rigorously and system-
atically addressed by adapting established techniques from system
and software product line engineering (SPLE).

In this paper, we present an approach for creating such families
by explicitly modeling variation in HISs. We focus on two kinds of
variation we have previously described in other work—functional
detail variation and service variation. We describe a prototype sys-
tem that is able to meet the need for these kinds of variation within
an existing modeling framework and present a case study of the
application of our prototype system to generate a family in an HIS
from the domain of elections. Our approach also demonstrates how
to perform model-checking of this family to discover whether any
variants in the family may violate specified system requirements.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Software Management—variation;
D.2.4 [Software/Program Verification]: Model Checking

Keywords

process families, system variation, software product lines

1. INTRODUCTION

The desiderata for software have changed tremendously as the
industry has become pervasive and ubiquitous; most software re-
leased today is evaluated not only with respect to its functionality,
but also with respect to its quality of service, usability, and other
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quantitative and qualitative metrics. The past approach of build-
ing a monolithic product to satisfy fixed and stringent requirements
elicited from a limited number of users is no longer a viable busi-
ness strategy. Today, different user bases expect different products
that are customized to better solve their problems, run on their hard-
ware, and accommodate their level of expertise. Operating systems
only provide the features supported by the underlying hardware and
enabled by the license the user purchased. Subscription and SaaS
products provide tiered membership depending on the target demo-
graphic, and additional products are offered in several configura-
tions from which buyers can make further choices.

Such differing needs are typically met by building variants of
the software to meet different combinations of these needs. In-
creasingly complex and demanding requirements can be expected
to cause the creation of ever larger sets of variants, but it is im-
portant, nevertheless, that these variants retain well-understood re-
lations to each other. If such well-understood relations exist, the
maintenance and further development of these variants and their
encompassing software family or product line become much easier.

Complex, highly-distributed Human-Intensive Systems (HISs)
exhibit similar needs for variation, but they also seem to require
still further kinds of variation. HISs are similar to complex soft-
ware in that they are large distributed systems, and like some soft-
ware systems they can be safety-critical, but they present additional
challenges in that they coordinate the actions of humans whose
behaviors, nevertheless, reside within the system boundary. This
adds complexity and suggests the need to adapt standard product
line techniques in order for them to accommodate human variation.
We refer to requirements specifications that mandate these various
kinds of variation in HISs as problem-level variation. In previous
work we have identified several kinds of problem-level variation
[29] and suggested how each might be addressed and implemented
by different kinds of solution-level variation techniques [27]. We
continue to study this dichotomy, but in this paper, we focus only
on solution-level variation. We demonstrate an approach to imple-
menting two kinds of variation, and suggest requirements that these
solution-level variation techniques seem useful in addressing. We
demonstrate and evaluate these techniques through their application
to an example HIS process drawn from the domain of elections. We
use the term system process, or simply process, to refer to an HIS
that coordinates the actions and activities of a set of human users
and automated hardware and software components—under normal
as well as exceptional situations—and the resources and artifacts
they use. We make the case that the generation and analysis of
HIS families, in which the users and their behaviors reside within
the system boundary instead of outside of it (as is the case in most
software systems), can benefit from the systematic application of



approaches adapted from software engineering in general, and from
SPLE in particular.

The two techniques for solution-level variation that we focus on
in this paper are functional detail variation and service variation.
Functional detail variation refers to variability within the imple-
mentation or elaboration of a certain part of a process in order to
provide different functionality. This kind of variation is analogous
to creating a family by providing different implementations of a
given module within a system. Service variation refers to variabil-
ity within the exhibited behavior of a single service. Within an HIS
such as an election process, any agent can be considered to be a
service provider. Thus, hardware or software components such as
optical scanners or DRE (Direct-Recording Electronic) machines,
and, more importantly, human agents performing their responsibili-
ties as election officials, or voters themselves, all can be considered
to be agents. This definition of service variation is an important
distinguishing characteristic of our approach and allows us to con-
sider variation in human behavior explicitly, yet within the bound-
aries of the system, which in turn allows for formal analysis. In our
case study, we take the variation actually observed in real-world
elections as a specification of required problem-level variation and
show how we represent this variation at the solution level. We also
show how the resulting solution-level process family can be for-
mally analyzed to provide assurances about which variants in the
family conform to which of various specified properties.

The rest of this paper is organized as follows. Section 2 de-
scribes functional detail variation and service variation as solution-
level techniques, and indicates why they seem especially effective
in addressing needs for problem-level variation in HISs. Section
3 revisits these two kinds of variation, and details how each may
be best managed and implemented, presenting a real-world case
study from the election domain. Section 4 shows how adaptations
of software engineering analysis approaches can be applied to a
process family presented in the previous section to identify vari-
ants that do and do not satisfy specified requirements. Section 5
discusses the applicability of the approach for generating process
families and their subsequent analysis. Sections 6 and 7 contain
a brief discussion of future directions and an overview of related
work, respectively. Finally, Section 8 presents some conclusions.

2. APPROACH

Our approach supports the generation and analysis of solution-
level process families that successfully address problem-level vari-
ation requirements. The approach entails creating a process family
specification through elaborations at (potentially multiple) varia-
tion points in a common core process. We define a variation point
to be a place where one or more different subprocesses or proce-
dures can be invoked, specifying different ways this variation point
can be elaborated. Once these variation points and their different
elaborations have been identified, a process family can be created
and leveraged to achieve a variety of goals; two we emphasize in
this paper are 1) generation and 2) analysis. In the former, a process
family specification can be used to generate a single process variant
where each variation point has been resolved to exactly one elab-
oration, presumably based on some specific criteria. In the latter,
a complete family definition is generated by elaborating all of the
different subprocesses and procedures simultaneously while pre-
serving well-formedness. Once generated this family can be nav-
igated to facilitate selection of a specific variant, and analyzed to
determine the extent to which all members of the family adhere to
specified properties or constraints. All of this is greatly facilitated
if, as in our work, this family specification is an actual executable
definition of the system whose translation to an analyzable model is

completely automated and hidden from the developer, eliminating
the need for error-prone, time-consuming manual transcriptions of
a system model into analyzable representations.

Meeting the need for such an executable language for speci-
fying HIS families is challenging, but seems to be facilitated by
languages with strong support for hierarchical elaboration. There
are a number of process definition languages that support hierar-
chical decomposition and also provide facilities for specifying ac-
tivity sequencing as well as artifact flow. In previous work, we
have discussed how some problem-level variation requirements are
nicely addressed by solution-level variation approaches that ex-
ploit hierarchy by building upon a common core [29]. We have
also described some suggested mappings [27] that make it easier to
identify what solution-level techniques can meet different problem-
level needs. In this paper, we focus on solution-level support for
functional detail variation and service variation, as they have been
found to successfully address a multitude of needs for problem-
level variation that arise in the election process domain, as well as
in the domains of online dispute resolution and healthcare. We note
that real-world processes exhibit diverse requirements for variation.
Meeting these requirements is often best done by using solution-
level variation approaches sharing a common core that incorporate
a number of different variation points. These variation points may
need to be hierarchically nested. If this is the case, variation points
can be resolved hierarchically, starting with the initial variation
points in the original common core and then resolving variation
points that arise further down in the hierarchy. Thus, the original
common core becomes augmented with higher-level family vari-
ants, and this newly-generated process family becomes the com-
mon core for the nested subfamilies. Strong support for specifying
hierarchical decomposition clearly facilitates such composition.

To illustrate how solution-level definitions of functional detail
variation can meet the needs for certain kinds of problem-level
variation in real-world election processes, we focus on two dif-
ferent scenarios for voting—one using a paper ballot and another
employing an electronic ballot supplied by a DRE machine. This
functional detail variation is implemented using a common core
with one variation point and two explicitly defined variants, one ad-
dressing the need for a voter to fill out and a cast a paper ballot and
the other specifying how this interaction is done with touch screens.
Such functional detail variation addresses functional concerns well,
but other aspects, such as variation in how different agents perform
activities, are not as well addressed.

Because humans are specified as agents within the system bound-
ary in HISs, it is both useful and important to support specifica-
tion of variation in human behavior (our work suggests this is no
less important for non-human agents such as software subsystems).
This has important implications for non-functional concerns such
as privacy, security, and system interaction with the human. We il-
lustrate how our approach supports the implementation of this kind
of problem-level variation by constructing an example service vari-
ation process family comprising four variant behaviors of a DRE-
machine in providing the “submit e-ballot” service.

Since functional detail variation points can result in variants that
exhibit further functional detail or service variation' as noted above,
we could generate a process family composed of several families
nested within each other, causing a multiplicative effect. The com-
binatorial nature of these variants may quickly result in a large and
unwieldy family (e.g., if two variants contain a functional detail

"Note: service variants specify agent behaviors for a single agent
performing a task and therefore cannot contain variation points;
functional detail variants can contain an arbitrary number of nested
variation points and be composed with the resulting families.



variation point with four variants each, there are eight ways to se-
lect a single composed variant but 255 ways in which to compose
a family containing one or more variant at each variation point, al-
though some might be syntactically or semantically incorrect).

The multiplicative effect can also slow or impede analysis, but
there are clear benefits to being able to reason about all variants at
once (e.g. being able to assure that all variants conform to a spec-
ified constraint). Therefore, we allow for the explicit generation
of an entire family in addition to just specific variants. Generat-
ing a specification for an entire family is somewhat similar to some
annotation (tag-and-prune) approaches in SPLE where a conglom-
erate product can be built and the unnecessary features can then
be pruned away [17]. Generating the entire process family allows
a process developer to navigate the variation points to learn about
different options, and allows the analyst to scan the entire family
simultaneously, looking for variants that may have desirable (or
undesirable) properties. We demonstrate an example of this kind of
analysis in more detail in Section 4 of this paper.

By combining functional detail and service variation points, we
can also explore multiple agent behaviors, both human and soft-
ware, within multiple points in the process. Our case study illus-
trates service variation for a software agent but human agent be-
haviors can be similarly specified and used. Examining multiple
service variants simultaneously, moreover, can also help identify
malicious behaviors that can compromise the system.

3. CASE STUDY

In this section we present an example process family demon-
strating both functional detail and service variation. We choose the
Little-JIL process definition language [6,35] to demonstrate our ap-
proach because it meets the language requirements we outlined in
the previous section, and other requirements (e.g. for strong sup-
port of exception management specification) whose importance be-
came increasingly clear as we pursued the case study. Moreover,
Little-JIL has been successfully used to specify several kinds of
solution-level variations in a number of different domains. A Little-
JIL process consists of three principal parts, namely specifications
of: process activities, the artifacts that they use and produce, and
the resources (including agents) that the activities require in order
to be performed. A Little-JIL activity specification is a hierarchical
structure of steps, with a parent step specifying the order in which
its children are to execute. The steps create scopes that are used
to support exception handling, with each step being able to specify
how to handle exceptions of various types arising within the step’s
scope. A step may specify the types of artifacts it takes as inputs
and produces as outputs, as well as the types of resources it requires
in order to be performed.

Every step has one unique resource, called its agent, which is re-
sponsible for the performance of the step. Artifacts and resources
are defined independently from the activity specification, providing
excellent separation of concerns and allowing for different variation
needs to be contained well. Steps, including their decomposition,
and artifact and resource requirements, can be reinstantiated in dif-
ferent scopes providing a form of procedural abstraction. Little-
JIL activity decompositions are usually depicted diagrammatically.
The semantics of Little-JIL are defined rigorously by means of fi-
nite state machines, which can also be used to support the execution
and formal verification of Little-JIL process definitions.

3.1 An election process in Little-JIL

Elections are a cornerstone of the democratic process in coun-
tries such as the United States. Every citizen of the US above the
age of 18 is entitled to vote. Although all elections held in the

US must satisfy many general requirements (e.g. no voter may
vote more than once, only eligible voters may vote), there are addi-
tional requirements that may vary between different districts. For
example, all voters must always identify themselves to an election
official, but different districts handle voter identification very dif-
ferently. Additionally, some districts employ DRE machines, while
in other districts voting is done by marking paper ballots, which are
then read either by election officials or by automated scanners. This
suggests how US election processes can be partitioned into fami-
lies. We now present a case study that shows how our approach
supports the solution-level representation of a small election pro-
cess family, using Little-JIL as a vehicle for this demonstration.

3.2 Functional detail variation

Figure 1 shows a process family addressing the functional detail
variation need we discussed earlier, specifying that voting can be
carried out with either paper or electronic ballots. The process dia-
gram in Figure 1(a) specifies that the root step is to be executed by
executing its children in sequential order, as indicated by the arrow
badge in the parent step bar. Hence, a voter will first FILL OUT PAPER
BALLOT, and then susmIT BALLOT. The agent and artifact specifi-
cations, and the details of what exceptions steps can throw, are not
shown in the diagram to avoid visual clutter, but they are an integral
part of a Little-JIL specification, as with any well-formed process
defined in a language with rigorous semantics. For example, the
step FILL OUT PAPER BALLOT produces as an output a PAPERBALLOT
artifact, which is passed as input to the SUBMIT BALLOT step. We
have observed the need to allow for variation in other aspects of
a process apart from its activity structure, for example within the
structure of, and access to, certain artifacts. For example, the same
election process can specify problem-level variation needs for em-
ploying, within different scopes and contexts, provisional and reg-
ular, paper or electronic ballots, all of which may be accessible to
different agents at different times. To maintain well-formedness at
the solution level, a process family would have to accommodate
this variability. In Little-JIL, artifacts are specified as JavaBeans,
allowing the full flexibility of Java for their backend implementa-
tion. Thus, for example, all of the aforementioned types of ballots
could be specified to extend a basic BALLOT.JAVA class.

We have previously described process families based on the need
to achieve different levels of robustness [27,29], which we defined
as variation in the extent to which different variants are able to
recover from different kinds and different degrees of incorrect or
abusive use. Although we do not discuss robustness variation in
detail here, we note that robustness variation at the implementation
level can often be effected by varying the exception management
of a process, especially if that is possible to achieve without dis-
turbing the nominal control flow of the process. Little-JIL has rich
semantics supporting the specification of sophisticated exception
handling scenarios. Thus, for example in Figure 1(a), the HANDLE
SPOILED PAPER BALLOT step is an exception handler, being specified
as such by its connection to its parent’s exception anchor badge
via a dashed edge. Little-JIL exceptions are typed as they are in
most programming languages, and this handler catches exceptions
of the type VOTERSPOILEDBALLOTEXGEPTION. Exception handlers
can be arbitrarily complex and include references (or invocations)
of steps and subprocesses specified elsewhere in the process, pro-
viding good support for variation. In this case the handler is a try
step (as denoted by the crossed arrow in the left section of the step
bar), which is defined to mean that its substeps will be attempted in
sequential order from left to right until one executes successfully.
In simple terms, this exception handling pattern implements the re-
quirement that a voter who spoils a ballot must be provided with a
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Figure 1: Paper and e-ballot voting subprocesses for RECORD VOTER PREFERENCE.

new ballot, but no voter should be provided more than three ballots.

Note also that the parent step is titled RECORD VOTER PREFER-
ENCE, ELB 0, indicating that this is one of several possible vari-
ant elaborations of RECORD VOTER PREFERENCE. In fact, Figure
1(b) presents a different variant elaboration, RECORD VOTER PREFER-
ENCE, ELB 1. In this variant, the voter performs FILL OUT ELECTRONIC
BALLOT (further decomposed into first MAKE SELECTIONS, followed
by conFIRM SELECTIONS). This time a different artifact, namely an
EBALLOT, is passed out of FILL OUT ELECTRONIC BALLOT and into SuB-
MIT E-BALLOT. As before, the CONFIRM SELECTIONS step can throw a
VOTERSPOILEDBALLOTEXCEPTION. The details of HANDLE SPOILED
ELECTRONIC BALLOT are elided from Figure 1(b), but they are anal-
ogous to the paper ballot case. Figure 1(b) also specifies excep-
tion handlers for two more exception types, namely WRONGCAN-
DIDATESELECTEDEXCGEPTION, and FAULTYVOTINGMACHINEEXCEPTION,
allowing for two more exceptional scenarios, and a larger, more
elaborate process family, when a DRE machine is used.

The hierarchical structure of Little-JIL makes it quite easy to cre-
ate variation points by specifying a step instance and a set of dif-
ferent functional detail elaborations for that step instance. We have
extended the Little-JIL language and its supporting Visual-JIL en-
vironment to generate these family members as well as entire pro-
cess family specifications. Similarly, service variation families are
created quite straightforwardly by modifying the specification of
the agent and/or resources that are specified within the declarations
of a step. Indeed, Little-JIL agent and resource specifications list
the characteristics and capabilities of the agent or resources needed
by a step, rather than any single explicitly-specified agent or re-
source, and thus already incorporate specifications needed to create
service variation families. The service variants themselves can be

specified using any of a number of technologies, such as Little-JIL
processes, Java code, and web service APIs.

Note that the two variants presented in Figure 1 specify a very
small part of the complete election process, which begins with
specification of voter qualifications, proceeds through voter regis-
tration, casting of ballots, and completes with vote tallying, audit-
ing, and possible recounts. We elide the details of the higher-level
process within which these subprocesses are invoked for space con-
siderations. We now consider how and why the two variants just
described can form a functional detail variation family. These two
variants of the system provide different levels of functionality for
RECORD VOTER PREFERENCE; moreover, they share the same com-
mon core, namely the top-level election process (not shown here)
within which RECORD VOTER PREFERENCE is executed. This seems
reasonable, as functional detail variation families are intended to re-
spond to high-level functional variation requirement specifications.
In this case, the system requirement specifies the need for elections
in which either paper or electronic ballots, or both, are used to vote.
A key advantage of this functional detail variation family is that the
common core can be exploited as the basis for formal reasoning,
which can lead to assurances about the entire family, as we will
demonstrate in the following section.

We now show how one of the variants of the functional detail
variation family presented in Figure 1 can be further augmented
with its own service variation subfamily by focusing on one of
the substeps of the second variant of RECORD VOTER PREFERENCE,
namely the step suBmIT E-BALLOT in Figure 1(b).

3.3 Service variation

We previously noted that service variation family members dif-



fer from each other in the service providers they utilize for dif-
ferent services. For example, different variants of a system may
need to provide different quality of service (QoS) based on the
requirements for variation in the service-level agreements of dif-
ferent variants. Services for synchronizing the files on multiple
computers over a network, or backing up documents to a secure re-
mote server can often be composed and choreographed as part of
a system designed and built using the service-oriented architecture
(SOA) paradigm. Each service can then be switched in and out as
the system evolves or new services can be added to provide addi-
tional capabilities, thereby building service variation families. Par-
allels can be drawn between components and services in traditional
systems, as components in such systems are only responsible for
providing some kind of service with variations in this service being
accommodated accordingly.

Within the election domain, requirements to incorporate the use
of different devices for the recording of votes creates a clear need
for service variation process families. Specifically, recall that the
SUBMIT E-BALLOT step invoked in Figure 1(b) is to be performed by
an agent of type DRE MACHINE. The set of all process definitions
that differ only in the specific agent that performs the step susmIT
E-BALLOT (different behaviors of different DRE MACHINES) forms
a service variation subfamily within the RECORD VOTER PREFER-
ENCE, ELB 1 functional detail variation family. Figure 2 specifies
four such different DRE machine behaviors for executing the suB-
MIT E-BALLOT step. For the sake of clarity, in this paper we present
the agent behaviors implemented as Little-JIL process fragments.
This allows us to consider them as a special case of functional de-
tail variation where every step within a variation elaboration must
be performed by the same agent. Reducing service variation to
functional detail variation significantly improves family-wide ana-
lyzability as demonstrated in the following section.

In Figure 2(a), the DRE machine will first coMmIT TO REPOSI-
TORY the E-BALLOT artifact, then ISSUE UNIQUE ID for the E-BALLOT,
and then PRINT RECEIPT, perhaps in order to comply with election
VVPAT (voter-verifiable paper audit trail) requirements. Figures
2(b) and 2(c) are two more variants that only execute a subset of
these steps, as shown. Figure 2(d), however, shows a variant that
is not at all typical. It consists of the DRE Machine first execut-
ing FAKE BALLOT, then non-deterministically choosing (denoted by
the slashed circle step badge) whether to commit to the repository
the new FAKEEBALLOT created in the eponymous step, or the voter’s
own EBALLOT acquired from FILL OUT ELECTRONIC BALLOT in Figure
1(b) Here, we specifically add a variant that defines a malicious
agent behavior. We model such behaviors to show how analysis of
process families can enable detecting how and when malicious be-
haviors can cause problems. Even if no one behavior can be shown
to be dangerous on its own, appropriate analysis techniques can de-
duce when agents, who appear to be “safe”, might potentially col-
lude to jeopardize process integrity. This kind of variation can also
be useful when applied to software systems that use external service
providers as well. For example, consider if OpenSSL were modeled
as a service provider within an authentication system and proper
analysis had been performed as our approach advocates. In the
cases where the Heartbleed bug® manifested, those variants could
have been detected as malicious behaviors. Of course continuous
improvement through the removal of faults is achieved through iter-
atively analyzing a family, identifying and implementing improve-
ments, re-analyzing to ensure there has indeed been improvement,
then deploying and iterating. We next demonstrate a full cycle of
analysis-driven process improvement.

http://heartbleed.com/
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Figure 2: Service variation specifications for suBmiT E-BALLOT
containing different behavior description for DRE machines.

4. ANALYSIS

We indicated that our main goals in applying family-based ap-
proaches to HISs are to facilitate the generation of families, and
to enable automated reasoning about some or all of the variants
within a family. In this section, we discuss how we can apply a
standard model checking approach to the nested election family we
presented, consisting of two functional detail variation variants, and
a service variation subfamily of four variants.

There are many requirements that a real-world election process,
and therefore all variants within our process family, must satisfy.
These requirements are usually specified at a high level of abstrac-
tion in an attempt to keep them independent from the specifics of
how an election is carried out, partly because every jurisdiction in
the US is free to define how it will carry out an election, as long as
it does not violate federal requirements, such as the Help America
Vote Act (HAVA). Some states such as California have fairly exten-
sive election codes® including both procedures and requirements,

*http://leginfo.legislature.ca.gov



but many jurisdictions do not. These high-level requirements of-
ten do not cover specific technologies or protocols for recovering
from exceptional situations. For example, consider the following
requirements: 1) Only eligible voters can vote; 2) No one can vote
more than once; and 3) The ballot the voter casts must match the
voter’s intent. These comprise a useful starting point for specify-
ing election intent; however, to formally verify that all variants in a
process family satisfy all of these (and perhaps other) requirements,
the requirements must first be refined into lower-level, observable
properties.

4.1 Requirement specification

We use PROPEL (PROPerty ELucidator [31]), a software tool
that helps users formalize all the details associated with a certain
high-level requirement, to precisely define the property that a ballot
should correctly record the voter’s intent. Voter “intent” is a very
controversial term among election researchers; therefore for this
paper we define “intent” simply to mean that if the voter made a
selection on the ballot and then cast it, then the selection actually
made by the voter is the voterOs “intent”. It is vital that no changes
can then be made to that ballot before it is counted. We represent
this as a property specified as the Finite State Automaton (FSA)
shown in Figure 3, that defines the acceptable order in which events
can occur for any trace through the process model.

voter marks ballot

Legend:
A Dt

—>

Transition -

on event A Accepting state

OO,

Start state Rejecting state

Figure 3: FSA for the property “After a voter marks ballot
event, no insider marks ballot event can occur until
count ballots occurs.”

Each of the nodes in this figure represents a state in the FSA.
Double circles indicate accepting states, and a single circle indi-
cates a non-accepting state. Arrows between states are state transi-
tions, and each is annotated with a corresponding “event” that trig-
gers it. When a transition is triggered, the current state is updated
to the target state of that transition. There are many different events
that may occur in an election, but each property is typically only
concerned with a small subset of them (the property alphabet). In
this example the property alphabet consists of voter marks ballot,
corresponding to a voter marking a ballot, insider marks ballot,
indicating that a mark was made by an insider to the election pro-
cess (someone other than the voter, such as a rogue election official
or a compromised voting or counting machine), and count ballots,
corresponding to the counting of votes. An FSA used for verifi-
cation must be deterministic and total, meaning that for each state
every event in the property alphabet must occur on exactly one tran-
sition leaving the state. If an event occurs that causes the sequence
of events to be unacceptable, then the current state is updated to a
non-accepting state, called the violation state from which all tran-
sitions are self-loops, causing the FSA to remain in that state until
the process terminates. To keep the FSA representation in Figure

3 uncluttered, the violation state and all the transitions to it are not
shown.

In Figure 3, the leftmost state is the starting state, denoted with
an arrowhead. If the event voter marks ballot occurs, the current
state is updated to the middle state on the top. From there, the voter
may remark the ballot (HAVA requires that the voter be given at
least one replacement if a ballot is spoiled, California mandates ex-
actly three tries) as indicated by the self-loop marked with the voter
marks ballot event, or the count ballots event might occur, mov-
ing to the right-most state and indicating that the property has now
been satisfied. On the other hand, if the current state is the middle
state on the top and the event insider marks ballot occurs, the cur-
rent state is updated to the bottom, non-accepting state. From there,
if count ballots occurs the property is violated (because the transi-
tion, not shown here, leads to the violation state), or, if voter marks
ballot occurs again, we return to the state above (indicating that the
voter might have the chance to fix the discrepancy before the ballot
is cast). This FSA therefore specifies the requirement that the event
insider marks ballot should never be allowed to occur between
any pair of voter marks ballot and count ballots events.

For the system we have been discussing, a sequence of events
that would drive this automaton to the violation state would indicate
a malicious agent behavior on one or more variants of the service
variation subfamily compromising the system. Because we can
generate entire families simultaneously, and we can nest service
variation families within functional detail families, we can consider
the multitude of combinations of agent behaviors simultaneously,
using analysis techniques such as model checking. Although in
this example it is obvious that the malicious actions of one of the
DRE machines modeled in Figure 2 can cause of violation of the
property, it is not hard to conceive of more complicated processes
in which different kinds of double-checking might be implemented
to attempt to identify and defeat such behaviors. Dynamic testing
approaches, usually black-box for election systems, would be com-
plicated if, for example, the machine only occasionally replaces the
voter’s ballot, Thus, we advocate using model checking to formally
verify that all variants of such a system satisfy a stated property. To
do so, we must determine the correspondence between the events
comprising the property’s alphabet in Figure 3 and specific steps
in specific variants within the election process family. This corre-
spondence is explicitly defined through a binding between process
steps and property events.

4.2 Model checking

Table 1 lists the bindings between the property alphabet events
and steps in the process family. The event voter marks ballot is
bound to two process steps, FILL OUT PAPER BALLOT and FILL OUT
ELECTRONIC BALLOT. This means that when either of these steps
completes successfully (depending on which variant is chosen),
the event voter marks ballot occurs. Similarly the event insider
marks ballot is bound to the step FAKE E-BALLOT and count bal-
lots is bound to the SCAN VOTES step that occurs much later during
the counting phase of the election process and is not shown in this
paper. We now describe our model checking approach, in which
automata representing process properties are driven through states
as traversals of a process model encounter steps whose execution
generates events in the automaton alphabet.

Because we have a formally specified property, formally defined
process family, and corresponding bindings, we can apply formal
model checking approaches such as Finite-State Verification (FSV)
to determine if all variants in the process family satisfy the property.
FSV first constructs a finite model reflecting all the sequences of the
events in the property alphabet that could occur for all the possible



Property Event
voter marks ballot
voter marks ballot

insider marks ballot
count ballots

Step Name
FILL OUT PAPER BALLOT
FILL OUT ELECTRONIC BALLOT
FAKE E-BALLOT
SCAN VOTES

Table 1: Bindings between steps in the Little-JIL process family
definition and events in the property alphabet.

traces through all of the variants in the process family (which in
this case consists of all of the variants in the two nested process
families presented in the previous section). FSV then checks if all
the traces through all of the members of this family are consistent
with the property specification [10,15,21]. We use the FLAVERS
FSV engine [12], which was originally developed to verify Ada and
then Java programs, but has been extended to include support for
verifying Little-JIL process definitions. If the model satisfies the
property (i.e., the FSA is in an accepting state when the verification
completes), then all possible traces are consistent with the prop-
erty. Since the set of all possible traces includes each possible trace
through each process variant, we have thus proven that each variant
satisfies the property. If the model violates the property (i.e. the
FSA is left in a non-accepting state), the violation could indicate
error or imprecision in the model, an incorrectly defined property,
or it could indicate that some execution of one or more of the pro-
cess variants indeed violates the property. FLAVERS produces a
counter example trace through the model that demonstrates how
the FSA can enter its violation state, and careful inspection of the
FLAVERS counter example trace can help to identify the cause of
the violation. Once the source is identified, appropriate corrections
can be made and verification repeated until the property is satis-
fied by all variants. Although this paper focuses on one property, a
given process family is usually expected to adhere to large suites of
properties representing a variety of high-level requirements, and a
tool such as FLAVERS is used to verify them all. Typically, if the
error detected is a manifestation of an error in the real-world pro-
cess, then the process definition is modified in consultation with
domain experts. However, since we generate whole families of re-
lated process variants, we can also use FLAVERS as an exploratory
tool to identify which variants are safe to use (at least with respect
to the properties being verified), and which variants might cause
problems and under what circumstances.

4.3 Results

Running FLAVERS on our election process family with the prop-
erty from Figure 3 and bindings from Table 1 resulted in a viola-
tion. As noted before, when a property is violated, FLAVERS gen-
erates a counter example trace. In this case, the counter example
is a trace through the process that contains the voter completing
the FILL OUT ELECTRONIC BALLOT step (note, this is a substep of the
RECORD VOTER PREFERENCE, ELB 1 step) and triggering the voter
marks ballot event, then the DRE machine performing the FAKE
E-BALLOT step, triggering insider marks ballot, and then the scan
VOTES step being performed leading to the count votes event, which
puts the property automaton in the violation state.

Having identified one specific variant that led to a violation, we
then removed that variant from the service variation subfamily, gen-
erated a new subfamily only containing the behaviors from Figures
2(a), 2(b), and 2(c), and reran the verification. When we did that,
the property indeed held for all possible traces through the fam-
ily, indicating that all variants specified are safe with respect to
this property. These results may seem straightforward, but consider
what might happen when there are many more variants to consider,

with only some of them being malicious. For example, looking
back at Figure 1(a), note that we did not specify how suBmIT BAL-
LOT is to be executed. If we define a second service variation family
specifying that suBmIT BALLOT gets executed by an election official,
we can then specify some honest and some dishonest behaviors for
this human agent (for example where the election official replaces
the voter’s ballot with a pre-marked ballot). We leave out the details
here for space considerations, but when we defined malicious be-
haviors for both susmIT E-BALLOT and suBMIT BALLOT (and specified
the additional bindings for the new variants analogously), FSV pro-
vided a new counter example trace. Having identified the violation
and trace, election officials can then take steps (such as inserting
double-checking by a second election official) to prevent the elec-
tion official’s dishonest behavior from causing a fraudulent ballot
to be cast. Other offending variants can likewise be detected and
dealt with until the entire family satisfies the property. We are then
left with an election process family that is guaranteed to be safe for
the property shown in Figure 3, which in turn guarantees that any
process variant generated from that family is safe by construction.

S. DISCUSSION

So far we have presented a limited application of our approach
to a composed process family comprising functional detail and ser-
vice variation, and we have demonstrated how such families can
be analyzed using a single analysis technique, finite-state verifica-
tion. In this section we discuss and evaluate the suitability of the
approach in supporting these as well as other endeavors.

5.1 Implementation

We outlined two distinct goals for generation, depending on the
desired outcome—whether we want to generate a single variant or
the whole family. The first goal was to support the instant genera-
tion of a specific process variant when the desiderata were clear and
the process developer could make reasonable choices at all elabo-
ration points. The second goal was to support the generation of an
entire family of variants in order to facilitate navigation (the pro-
cess developer stepping through the process model and being able
to view different variants at different variation points in order to
make a selection). Importantly, the latter generation goal also im-
plied the ability to subject the whole family to a battery of analyses
to determine which variants best meet various system requirements.
Since we defined functional detail variants to share a common core
and vary in the ways a certain step is elaborated, a hierarchical
process specification, such as the one Little-JIL provides, seemed
particularly useful in supporting the generation of such variants.

To support these generation scenarios, we extended the Little-JIL
language to make variation a first-class construct, and then devel-
oped the Little-JIL Elaborator system, which provides additional
capabilities to the Visual-JIL editor for dealing with variation. The
elaboration step, a new step kind equivalent to a variation point,
is a special case of a reference step in Little-JIL. A reference step
is a placeholder indicating an invocation of a subprocess defined
elsewhere. Reference steps must “resolve” to a single specifica-
tion of such a subprocess to maintain well-formedness. When a
single variant is generated, for every elaboration step in Little-JIL
we only need to attach one specification of a functional detail vari-
ant. Since this is equivalent to a normal reference, after confirm-
ing that an elaboration step resolves to a single specification, the
Little-JIL Elaborator handles it by resolving to the single elabora-
tion. The second scenario, when an entire family is generated, must
be handled more carefully and contains the main extension of the
semantics of the Little-JIL language to allow for variation. In that
case, multiple elaborations share the name of the elaboration step,



which would result in a process that is not well-formed (and there-
fore not suitable for analysis) without some additional transforma-
tions. In this case, the Little-JIL Elaborator automatically generates
a choice step whose name is the same as the original elaboration
step, renames all elaborations by appending a ““, ELB N”” (Where N is
an integer assigned in sequence as the elaborations are being pro-
cessed) to the original step name, makes all elaborations children
of the newly created choice step, and copies the union of the in-
terface declarations to the new parent (to ensure artifacts are still
being passed as expected). The elaboration step then “resolves” to
the newly generated choice step which has all elaborations as its
children. An example of this newly generated step is shown in Fig-
ure 2(e); an analogous parent was created for the two variants in
Figure 1, but it is not shown here for space considerations.

The success of the Little-JIL Elaborator in meeting complex vari-
ation implementation needs was greatly facilitated by the orthogo-
nal specification in Little-JIL of artifacts and agents with respect to
activities. This provides excellent separation of concerns that fa-
cilitates variation specification along either orthogonal dimension,
which proved to be helpful in addressing different problem-level
variation needs. In this paper, we reduced service variation to a
special case of functional detail variation by demonstrating agent
behavior variants as Little-JIL suprocesses for clarity and improved
analyzability. But, as noted, agents in Little-JIL can be human or
automated, and agent behaviors can be specified in a variety of
ways (e.g. as code snippets in Java). Little-JIL steps specify agents
and resources as abstract requests of needed capabilities, and spe-
cific agents and resources are selected at runtime. This approach
to returning sets of agents or resources in response to variation
requests from steps can create service variation families. Family-
level analysis is complicated when some members are implemented
in different languages, but this difficulty can be addressed if the be-
haviors of these family members have been pre-analyzed and anno-
tated. Artifact structures could also be varied to a reasonable extent
by using Java’s polymorphism capabilities, as was illustrated ear-
lier with two subtypes of the BALLOT.JAVA declaration.

5.2 Experience

Once a variant or process family is generated using the Little-JIL
Elaborator, various analyses can be performed on it. Similarly to
generation, if a single variant is created then analysis is no different
than it is for a normal Little-JIL process. When we are analyzing a
family of related processes, analysis becomes more expensive, but
some of the costs are also amortized by commonalities among fam-
ily members. The properties are defined as usual because they are
representation-independent, and can now be applied to even more
process definitions because sometimes entire families need to sat-
isfy the same requirements (as in the case of the aforementioned
Yolo and Marin County election processes—both must meet all the
California requirements in addition to the HAVA requirements).

Our experience has shown that an analysis engine can be used
as an aid for variant exploration. If we represent agent behavior
variation, we can analyze the variants to explore different ways to
compromise the system, including insider attacks, agent collusion,
or simply incompetent or out-of-sequence performance of critical
steps. Seemingly small changes to behaviors can have large or
long-lasting ramifications, as demonstrated by the property in Fig-
ure 3, where the same ballot is carried through the whole process
until it is time for the ballot to be counted. It is not far-fetched to
imagine how a DRE could be programmed to "malfunction" only
part of the time; when tested as a black box, this behavior may
well go unnoticed. The prior act of having a human bind steps to
property events can make such problems clear without the need to

carry out FSV. But the binding activity could be automated to add
bindings for steps that modify (as opposed to just read) certain ar-
tifacts, or steps that request certain agents, in which case the prob-
lems would then be surfaced by FSV, as the output of a completely
automated analysis.

Since process improvements can be quickly identified and de-
ployed, a new process family can be regenerated and reanalyzed
to see if it conforms better. The process developer can also prune
away violating variants one by one until the property holds, iden-
tifying a safe subset of variants. This additionally encourages reuse
because a collection of preverified elaborations could be safely com-
posed if they meet certain requirements. Once a process developer
has a selection of safe variants, this enables the selection of variants
based on other attributes, facilitating the generation of process fam-
ilies based on robustness or performance variation, for example.

6. FUTURE WORK

There are many promising directions for future work, both within
the generation and the analysis of process families. In terms of
generation, since Little-JIL is a fully-executable language, the in-
terpreter could be modified to support executing process lines to
potentially support real-time deployments of self-adapting fami-
lies. This would be especially helpful for process guidance sys-
tems, which could then self-optimize depending on the context or
self-heal if exceptional situations arise that require the switch to
a different robustness variant within the family. Additionally, our
approach allows for the specifications of reusable process modules
and components; the domain of elections is rich in process mod-
ules that are shared among jurisdictions. A library of standard pro-
cedures could support the generation of process variants through
composing pre-specified (and pre-verified) modules for voter reg-
istration, ballot counting, and so on. Thus far, we have considered
the election processes in Yolo and Marin counties in California,
which are very different, but employ similar procedures for certain
subprocesses.

Process families can be leveraged for other kinds of analysis be-
sides FSV. Extending previous work [28], we have successfully ap-
plied fault tree analysis (FTA) to very large families of election pro-
cesses; analyzing the resulting fault trees to aid in detecting fraud-
ulent or colluding agents, as well as specific variants within which
the misperformances of steps can have disastrous consequences.
Using FSV and FTA as complementary approaches and finding a
way to combine the analysis results would be especially helpful.
Finally, process families can be used to evaluate different agent be-
haviors along multiple different aspects, such as performance met-
rics or expertise assignments, by running simulations. Addition-
ally, simulations with random agent assignments can help to derive
the impact of certain steps being executed by a rogue agent, or the
likelihood that two steps can be executed by the same agent or mul-
tiple colluding agents for attack prevention.

7. RELATED WORK

The generation and management of software product lines have
been extensively studied [9, 25]. For brevity, we only discuss ap-
proaches that provide support for variation at the solution level.
At the design stage, some approaches support the modeling and
configuration of variants based on composing features. Feature
diagrams (e.g. [26]) employ variation points where different pre-
defined constraints can be applied to combine features. Similarly,
decision models such as KobrA [4] and FAST [34] support choos-
ing features at decision points to generate variants. Our approach
for nesting process families at the solution-level is similar to fea-



ture diagrams and decision models, however it results in a process
family instead of a feature specification. At the implementation
level, approaches for supporting variability management and prod-
uct line generation tend to focus on composition and parameteri-
zation of components following a configuration specification, such
as demonstrated in [11, 13,20]. There are also techniques support-
ing code transformation, such as implementing product lines with
feature-oriented programming and related modeling approaches [5,
18], aspect-oriented programming [1, 13, 19], or annotation and
pruning approaches [17]. Although such techniques facilitate the
generation of the source code implementing specific variants within
a software family, the code is only one facet of a software prod-
uct. Our approach supports the specification of a system archi-
tecture as a hierarchical decomposition into increasingly detailed
modules and components. Maintaining this kind of pre-code ar-
tifact throughout system evolution can facilitate formal reasoning
and the evolution itself.

Other approaches focus on supporting variability modeling and
management throughout different stages of the software develop-
ment lifecycle through combining problem-level modeling of vari-
ation with solution-level product derivation. The COVAMOF vari-
ability modeling framework [30] promotes carefully modeling vari-
ation points and dependencies that may exist among variants, ad-
dressing different aspects of generation, navigation, and analysis.
The pure::variants tool* similarly provides support for the genera-
tion and navigation of new variants by supporting a configuration
specification including different constraints at the domain engineer-
ing level (similar to problem-level variation not discussed here),
and consequently derived configuration specifications for the im-
plementation of variants at the application engineering level (simi-
lar to solution-level variation). Our approach builds upon our ear-
lier work, which similarly aims to support the specification of vari-
ation at the problem-level, and provide clear guidance on how best
to achieve that variation at the solution level. Little-JIL seems to
be an especially appropriate vehicle for studying variation from re-
quirements through analysis because of its rigorous semantics that
support its use as an architecture specification language, but also al-
low for it to be executed and formally analyzed. Some of these pre-
vious approaches map closely to both the problem-level functional
detail variation not discussed in detail in this paper (which most
closely resembles features), as well as the solution-level process
fragment elaborations illustrated in the case study presented. Con-
sidering features as the defining difference between variants may be
necessary to address functional detail variation but may not be suf-
ficient for the other dimensions we would like to support; service
variation in particular as we define it to encompass human behavior
variation is not well addressed in traditional software product line
approaches.

Within system processes, there are also several approaches that
support generating variants. Some approaches extend existing no-
tations such as SPEM; [33] proposes an extension to support the
specification of a process line architecture, and later derivation of
project-specific process variants. The SPRINTT approach [22],
provides a comprehensive framework for specifying and generat-
ing a process core and variants in VSPEM. Similarly, [2] presents
an approach for software process line generation through scoping,
by first analyzing existing organizational processes for common-
alities and then organizing them within a decision model to allow
for future instantiations of customized variants. As a recent lit-
erature review [23] notes, most existing approaches have serious
limitations because they either only address one aspect of varia-

*http://www.pure-systems.com/

tion (most often what we describe here as functional detail varia-
tion), or, when including data-flow and role-based variation these
are usually not varied orthogonally to the activity specification. We
provide a framework that can address several of these aspects or-
thogonally, allowing for the composition and nesting of families
based on different variation relations.

Additionally, we support formal analysis and verification. In
most process line and process family approaches, the term anal-
ysis refers to commonality or context analysis, and verification
often means little more than checking syntactic compliance and
well-formedness to assure that all members of a family are “pre-
verified” to be syntactically correct or otherwise well-formed. Our
work has greater ambitions aiming to show that all family mem-
bers are “pre-verified” to adhere to properties encoding desired be-
havior with respect to safety or other requirements, defined, for
example, by FSAs. Others in software product line community
share these ambitions. In this other work, a product line speci-
fication is typically manually translated into some formal notation
amenable to analysis, and the model is then checked against a spec-
ified set of constraints. Our work differs in that our process fami-
lies are immediately analyzable, being specified in a well-defined,
executable language, thus eliminating the need to first manually
translate them into another representation, which is time consum-
ing and error prone. Some techniques focus on placing restric-
tions on the creation of new variants, thus impeding generation,
but providing well-formedness assurances for all variants that can
be generated (e.g., [16, 30, 32]). Others focus on the traceabil-
ity of features to subsets of components from the core assets and
can reason about those relationships using QSAT (a SAT solver
modified to handle quantified Boolean formulae) [24], or, for more
sophisticated analysis capabilities the system can first be modeled
in product line CCS and then checked against multi-valued modal
Kripke structures to determine legal configurations that satisfy the
requirements [14]. Although the goals of such approaches are con-
sistent with the goals of our analyses, their analyses usually address
only well-formedness constraints, and not other types of properties,
such as safety, performance or robustness properties. Service vari-
ation is addressed in [3] where a family is first represented using a
modal transition system and then verified with respect to require-
ments specified in vaCTL. Asirelli et al. define service variation to
be different web service providers (in this case, websites for flight
and hotel bookings), whereas service variation in our approach en-
compasses those kinds of variation but also allows for variation in
human behavior modeled within the system boundary of an HIS.
In [8], transition systems are extended with features to describe
the behavior of a family of systems and support model checking,
thus providing important support for analysis, though generation
and navigation are not a central focus of this work. This work
is extended in [7] where further functional specifications of the
system are written in the Text-based Variability Language (TVL)
and fPromela (a featured extension of Promela) and then model-
checked against fLTL properties to determine what products satisfy
the properties.

8. CONCLUSION

In this paper, we present two specific kinds of problem-level vari-
ation we have observed in the real world and have subsequently
modeled and analyzed at the solution level using the Little-JIL pro-
cess definition language and the FLAVERS model checking engine.
We discuss the benefits of considering variation within real-world
HISs and demonstrate how we can adapt and extend existing ap-
proaches for managing software and system product lines to ad-
dress variation needs within a new domain. We then focus on ser-



vice variation—variations of the behavior of humans or automated
agents—which is largely ignored in software systems. We show
how we can bring these agents within the system boundary by pre-
senting a case study based on a real-world election process and give
the reader intuition about how we can use our approach to make
assurances about what agent behaviors are safe and what others
may compromise the integrity of the system. Although we focus
on human-intensive processes, we draw clear parallels addressing
how this approach can be extended to apply to software and system
product lines in the future.
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