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Abstract

Rework occurs commonly in software development.
This paper describes a simple rework example, namely
the code refactoring process. We show that contextual
information is central to supporting such rework, and we
present an artifact provenance support approach that can
help developers keep track of previous decisions to im-
prove their effectiveness in rework.

1 Introduction

Rework [5, 6] is a pervasive activity in creative processes
such as software development and scientific data analy-
sis. Our notion of rework is that it is the repeating of
activities in new contexts when new information indi-
cates that revising the work is desirable. Such situations
arise quite often in software development. For example,
a design that responds to a requirement specification may
suggest that the requirement specification was inconsis-
tent or incomplete, leading to revision of the requirement
specification. This reconsideration, elucidated by new
understandings derived from design considerations, is a
simple example of rework. Further, modifying the re-
quirement specification may then trigger further rework
to deal with the effects of the modifications on design and
perhaps code as well, possibly involving multiple rounds
of rework. Indeed it is widely believed that developers
typically spend much of their time doing rework. It is
important to note that rework is inevitable, since, as work
progresses, the problems being addressed become better
understood and actions taken with earlier, less complete
knowledge often need to be reviewed and revised. Since
rework is inevitable it is important to find ways to make
it more efficient and effective.

This paper uses articulate descriptions of artifact
provenance to create context information that can im-
prove the effectiveness of rework. Section 2 presents
an example based on refactoring of an Object-Oriented

(OO) program and discusses the role of software arti-
fact provenance in creating context information that sup-
ports rework. Section 3 describes how we capture and
use provenance through a structure that we call a Data
Derivation Graph (DDG). Section 4 describes some re-
lated work. Appendix A presents a second rework exam-
ple based on scientific processes.

2 Modeling Rework in Code Refactoring

Refactoring is an important activity that is carried out
frequently in the course of OO software development.
Refactoring an OO software product changes the prod-
uct’s internal structure without changing its external be-
haviors. Its goal is to improve such program characteris-
tics as efficiency, readability, or evolvability. While there
are many different kinds of refactoring (e.g. see [7]), in
this paper we use the refactoring technique called sepa-
rating query from modifier, that improves a badly de-
signed method that is supposed to be used to query an
object but has undesired side effects on the object state.
The technique splits the method into one query and one
modifier to eliminate the side effects, providing a query
that is safer. We will demonstrate how this refactoring
process incorporates multiple instances of rework, and
indicate how using appropriate provenance data can sup-
port the creation of context information that helps users
to be more effective with this kind of rework.

The separating query from modifier form of rework
is described in [7] as follows: To begin, the (human)
refactorer creates a query method that returns the same
value as the original method. Next, the refactorer modi-
fies the original method to return the result of a call to the
query. Then for each reference to the original method,
the refactorer replaces that reference with a call to the
query preceded by a call to the modified method. Finally,
the original method is assigned a void return type.

To accommodate the possibility of errors, compila-
tions and unit tests are interspersed between the ma-



jor phases of this refactoring process to check that each
phase has been done correctly. A more complete and
realistic refactoring process further indicates the rework
that must be done if a compilation or unit test fails. This
typically involves revisiting the work that has been done
using an understanding of why that work failed to come
up with another attempt that will hopefully succeed. The
process specification must also accommodate the possi-
bility that additional errors may be made in attempting
to fix earlier errors, requiring more rework which may
entail examining a lengthy history of previous attempts
to fix the error. In addition, multiple errors may need
to be addressed in parallel, etc. This brief explanation
should suggest how provenance data can be useful as the
source of relevant history, and how presentation of this
data could comprise context information that could help
guide the efforts of the refactorer.

We now provide a detailed specification of some key
parts of this refactoring process, indicating where and
how rework occurs, and how provenance data can facil-
itate these parts. We use Little-JIL, a process definition
language. The salient features of Little-JIL are described
in Appendix B and in [17, 18].

Figure 1 shows a high level Little-JIL definition of
the second step of separating query from modifier,
namely Modify Original Method. The step is decom-
posed into three substeps: making the change, compil-
ing the changed code and rerunning a regression test set.
Each of the last two steps throws a typed exception if
the step uncovers an error, with each exception handled
by a child of the Modify Original Method step. Yel-
low “post-it” notes document the flow of process artifacts
(e.g. sourcefilename, the source file being modified) be-
tween process steps. Thus, for example, Figure 1 shows
that after changes are made in Change return state-
ment, sourcefilecontent is sent to the parent step, which
passes it to the compile and unit test steps, which could
then throw either the CompilationFailureException or
UnitTestFailureException exception. Figure 2 shows
the UnitTestFailureException handler, which has pre-
viously performed substeps (e.g. Change return state-
ment and Compile) that can throw exceptions. These
will be exception instances that are different from those
thrown before, necessitating different rounds of rework
aimed at fixing different aspects of the artifacts. Because
of this refactorers have to make decisions in ever-deeper
contexts as these artifacts evolve, making their correc-
tion increasingly difficult to understand. For example,
Figure 2 shows how Change return statement could be
executed several times but each time in a different con-
text. The refactorer will then be faced with questions
like: How did I get here? Why did previous fixes not
work? How will my changes affect other artifacts? Ap-
propriate contextual information can help answer these
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questions and support better decision-making. For ex-
ample, the evolution history of the sourcefilecontent ar-
tifact could remind the refactorer of previous changes,
thus helping the refactorer to avoid repeating a previous
mistake, and suggesting a more suitable correction.

3 Provenance Support for Rework

We consider context to be the collection of all informa-
tion about previous and current process execution states.
We collect and store this information in a Data Deriva-
tion Graph (DDG) [9], which is an execution trace that
records the data-flows and control-flows in a Little-JIL
process as the process executes. Specifically, it records
the step by which each artifact instance (including excep-
tions) is produced and consumed, the sequence of steps
executed, the artifact values associated with each step ex-
ecution, and the scopes within which step instance was
executed. Figure 3 shows the DDG generated by execut-
ing a small portion of the refactoring process described in
Section 2. Ovals represent step instance execution stages
and rectangles represent artifact instances. A step’s start
and finish stages are separated to show how parent steps
create scopes for their descendants (if any). Exception
objects are shown in brown to distinguish them from
other data objects. There are three types of edges, de-
picting data derivation, control flow and artifact versions.
An arrow from an artifact instance to a step stage in-
stance represents the derivation of that artifact instance
from the execution of that step instance. An arrow from
a step stage instance to an artifact instance indicates that



Figure 3: A DDG Example

the step derived its output artifact(s) using the artifact in-
stance(s) being pointed to. For example, the fact that a
sourcefilecontent instance points to the Change return
statement step instance indicates that sourcefilecontent
is derived from the step that modifies the source method
to return a call to the created query method. Derivation
edges related to exceptions are shown in red to distin-
guish them more clearly. The DDG also contains control
flow edges, which represent the execution order between
two steps. Version edges indicate the update series for
some particular artifact. They can be traversed to pro-
vide a sense of the artifact’s derivation history. Version
edges are not generated in the DDG currently, but will be
incorporated in future work.

Figure 3 corresponds to part of the rework process
starting from the completion of the Handle Compila-
tion Failure step in Figure 1. This example illustrates
the result of running unit tests after the UnitTestFail-
ureException is thrown, and as defined in Figure 2, the
results from the refactorer’s reconsideration of previous
decisions and repeating of the Change return statement
and Create query method steps. In the scope of Handle
Unit Test Failure, compilation fails because the change
made most recently fails triggering the UnitTestCom-
pilationFailureException and causing another round of
rework. The process definition indicates how the excep-
tion handlers are nested and thus how the rework activ-
ities are as well, thereby providing the basis for an ac-
curate presentation of the histories of derivations of all
variables comprising current context.

Our provenance support for rework automatically gen-
erates and maintains the DDG dynamically, making it
accessible from all steps. Data objects in the DDG are
linked to their actual values. These links and values are
omitted from Figure 3 for simplicity. To suggest addi-
tional ways the DDG can aid rework, we incorporated a
text-diff tool that records differences between DDG arti-
facts, which is particularly useful for comparing different
versions of an artifact (found by traversing the version
edges in Figure 3).

Our experience in modeling and executing this simple
refactoring process suggests that the kind of provenance
support we propose here provides useful artifact manage-
ment and context information assistance to reworkers.
This assistance becomes increasingly useful as the re-
work activity and associated contextual information be-
come more complex, in particular in supporting rework
processes in which modifications result in conflicts with
each other, creating complex ripple effects that propagate
through the artifact space.

4 Related Work

Rework in the form of iterative artifact development is
central in the Spiral Model [1] and the Incremental Com-
mitment Model [2]. Cass et al. [6] proposed initial ap-
proaches to formalizing rework processes, and later char-
acterized a rework pattern [5] as being triggered by ex-
ception instances and fixed by revisiting previous steps.

Other technologies exist for capturing data provenance
during workflow execution. VisTrails[8] tracks changes
to data and constructs a history tree to capture prove-
nance. Callahan et al. [4] incorporated this approach in
a process setting and proposed a uniform environment.
Kepler [3] provides a mechanism for integrating a broad
range of supporting tools for specification, execution,
and visualization of scientific data processes, and builds
a provenance data store incrementally as is done by our



DDG. Some of the other approaches to provenance are
summarized in [16]. We argue that exception handling
and recursion are key features of Little-JIL that are miss-
ing from workflow languages and that enable creation of
data provenance structures with semantic features essen-
tial to the effective support of rework.

5 Future Work

We will continue to improve our provenance support for
the software refactoring processes. For example, we will
consider how to properly place and show the version
edges shown in Figure 3 in the actual DDG to help the
developers to better understand the derivation history of
the specific artifacts they are interested in. We are also
building an interface in the Little-JIL step definition to
invoke filter mechanisms for the DDG in order to pro-
vide more fine-grained contextual information per users’
queries, which at the same time could be used to deal
with the privacy issues related to the process by hiding
sensitive private data.
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A A Scientific Dataset Rework Example

A central aspect of science is the development of datasets
that represent current or previous states of the world.
Datasets include data collected by trained observers and
remote, unsupervised sensors, both of which have vary-
ing degrees of accuracy or precision. Datasets are more
than simply records of observations. Invariably, some
observations will appear to be anomalous; on further
inspection they may turn out to be accurate or inaccu-
rate. Other observations may be completely missing
due to such problems as sensor failure or communica-
tions difficulties. Inaccurate measurements may be ad-
justed based on auxiliary information or rejected outright
(and converted to missing values). Missing data, whether
screened as outliers or missing because of instrument or
observer error may be replaced by modeled values. In
sum, different values in a typical scientific dataset will
have been arrived at by different means: observed, ad-
justed, or modeled. Scientists who access and use such
datasets typically need to know the ways in which the
different values have been obtained; this information is
called provenance. Many other investigators have made
these observations and developed a wide variety of ap-
proaches to documenting provenance [3, 8, 12, 13].

Scientists typically regard the development of datasets
as an ongoing evolutionary process. Often there are ad-
ditional processes that are applied to datasets iteratively
and over longer time periods. For example, the ways
in which initial data values were screened and the mod-
eled values used to replace them were calculated may
be reviewed and reassessed many times, not only by the
originator of the dataset but also by other individuals or
groups. Such reassessment and reanalysis often result in
the replacement of an earlier version of the dataset with
a newer one. Revised datasets are common. Their asso-
ciated provenances may be large and complex, reflecting
not only variations in the ways in which initial data val-
ues were created but also the history of how individual
data values have evolved as a result of multiple revisions.

The replacement of one dataset by another is typically
determined, at least in part, by careful consideration of
the factors that drove the generation of previous versions
of the dataset. Here we explore the importance of making
available to dataset evolvers the provenance information
that documents how previous datasets have been gener-
ated and have been replaced by newer versions. We think
of provenance information as first-class data that is part
of the rework process undertaken by scientists who ex-
amine both the data and their provenance when making
decisions about rework. The result of the rework consists
of a new version of the dataset and also an extension to
the provenance reflecting the rework process itself.

Figure 4: Collecting Sensor Data

A.1 Modeling the Scientific Rework Pro-
cess

Figure 4 shows a simple scientific process written in
Little-JIL to collect data from a sensor. This process re-
peatedly gets sensor readings and saves the values in a
database. If a sensor reading is unavailable, an NA value
is written to the database.

The Get Data process is completely automated. Later,
the raw data are reviewed, either by a scientist or a soft-
ware system, who (which) replaces missing values (NAs)
or outliers with modeled values. Figure 5 shows these
activities as the Fill Gaps and Replace with Modeled
Value steps and their substeps. Of particular interest is
the Insert Modeled Value substep of the Fill Gaps step.
This step first evaluates the available models, noting what
has previously been tried, and selects a model to apply.
When applying the model, the scientist may determine
that the model yields unsatisfactory results, leading to
creation and application of new models.

Updating the Modeling Technique is the third substep
of Do Post-Processing in Figure 5. This step first finds
the values that were modeled with the technique the sci-
entist wishes to replace and then repeats the Insert Mod-
eled Value activity. This recursive use of Insert Modeled
Value and Update Modeling Technique captures the no-
tion of rework in the scientific process.

A.2 Provenance as First-Class Data
Figure 6 shows a portion of a DDG created during the
execution of the Fill Gaps process. In this example, the
Find Gaps step takes Sensor Data as input and produces
Gap Locations (values = NA) as output. The Analyze
History step takes the history of sensor values from the
DDG as input and finds the models that were used to
create the current version of the data. In this simplified
example, the database contains just sensor readings and



Figure 5: Scientific Rework Process

Figure 6: DDG of the Gap-Filling Process

NAs, so the output is that there are no previous models
applied to the data. Also note that we have used an alter-
native view that omits in the non-leaf nodes in order to
present a more compact representation.

Figure 7 shows how the DDG can be used and en-
hanced during rework. This DDG shows an Unsatis-
factory Result exception being thrown when the model
is applied. This leads to the rework step of Updating
Modeling Technique. The Find Values Modeled with Old

Technique and Analyze History both use the History of
Sensor Values extracted from the DDG as their input.
This history also includes the result of Apply Model that
just failed. As the process executes, the DDG is continu-
ously updated and immediately available for examination
within the process itself.

Figure 7 shows additional features associated with
DDGs that describe rework. In addition to the control
flow and data flow edges in Figure 6, edges also corre-
spond to versioning and object equivalence. Specifically,
the Sensor Data that is initially contained in the database
may be replaced with new values when the Apply Model
step is executed. One of the inputs of Apply Model is
a Sensor Data object; it outputs a modified Sensor Data
object. A version number on the node label distinguishes
these objects. In Figure 7, different versions of Sensor
Data are connected with double-headed edges; we can
follow an edge from Sensor Data v3 to v2 to v1. Mod-
els used to produce those values also are connected with
double-headed versioning edges.

Equivalence edges illustrate that multiple nodes can
correspond to the same data. Data can enter the process
either by being generated by the process directly or by
being looked up in a database. If a data value is cal-
culated during the execution of the process, it will ap-
pear as an output from the step that calculated it. If it is
passed as a parameter to another step, a data flow edge
represents that. If the value becomes persistent, either
because it is written to a database or becomes part of
the DDG, it can re-enter the process as the result of a



Figure 7: DDG of the Scientific Rework Process

database query or a DDG query. The DDG shows this by
connecting such nodes with an edge consisting of double
lines to indicate that the data values are equivalent, but
that the data did not flow directly from the step that out-
put them to the later step that uses them. In Figure 7 an
equivalence edge connects the Selected Model v1 node
that is retrieved from the persistent DDG by the Analyze
History step and the Selected Model v1 node that is the
output of the Select Model in the top of the DDG to indi-
cate that those represent the same model, even though the
model did not flow directly between the steps involved.

A.3 Related Work

Provenance has been an important feature of scientific
workflow systems for some time [3, 8, 11, 13] Our con-
tribution is the use of provenance data as first class data
available for examination by the scientist while carry-
ing out scientific work. This use of provenance data as
first-class data is beginning to appear in other aspects
of provenance research as well. Zeng et al. [19] mine
provenance data and event logs to create more complex
workflows. Missier [10] uses provenance data to learn

and guide automated decision making in workflows that
require thousands of iterations. Muniswamy-Reddy and
Seltzer [14] use provenance data to optimize cloud stor-
age.

While scientists generally acknowledge that the type
of rework we describe here is common, there has also
been little work in modeling the larger scientific process,
particularly including rework. Oliveira et al. [15] orga-
nize related, perhaps reworked, scientific processes us-
ing process families. In contrast, we keep the process
itself fairly high-level and think of some details, such as
the modeling technique being used as a parameter that is
evaluated during execution of the process.

B Little-JIL

Little-JIL is a graphical process definition language par-
ticularly suited for defining processes that require the co-
ordination of multiple human and computational agents.
Its semantics are precisely defined using finite-state au-
tomata. Among its distinguishing features are its use of
scoping to make clear the identity of input and output
datasets, its facilities for specifying parallel processing
and for defining the handling of exceptional conditions,
and the clarity with which iteration can be specified and
controlled. A process is defined in Little-JIL using hier-
archically decomposed steps.

A Little-JIL process definition consists of three main
components: artifact space, resource repository, and
coordination definitions. The coordination definitions
include a collection of steps or activities that different
agents are assigned to perform during process execution,
and describe the coordination among the artifacts, activ-
ities, resources, and agents (which are treated as spe-
cial kinds of resource). A Little-JIL coordination def-
inition has a visual representation that is comprised of
steps, which are hierarchically decomposed to the level
of details (leaf steps) as users desire. Figure 8 shows
the iconic representation of a single step. A Little-JIL
step represents a task to be done by an assigned agent,
and it can communicate with its parent steps and sub-
steps through copy-in and copy-out parameter bindings
of the artifacts. Each step has a sequencing badge to
represent the type of control flow among its substeps,
an interface to specify its input/output artifacts and re-
sources, a prerequesite to be checked against before the
step starts, a postrequesite to be checked against before
the step reaches successful completion, and handlers for
exceptions. A Little-JIL step also specifies how it should
respond to events that may occur during execution and
other features such as cardinality.

The rigorous and articulate data-flow and control-flow
specifications in Little-JIL set up the basis for our prove-
nance support. The complete specifications of Little-JIL



can be obtained in [17]; we highlight some important fea-
tures here.

• Step sequencing. Every non-leaf step has a se-
quencing badge (an icon embedded in the left por-
tion of the step bar), which defines the order in
which its sub-steps execute. Besides the sequential
step shown in Figure 8, Little-JIL also supports con-
currency, ordered choices, and unordered choices.

• Data artifacts and data flows. Each step declares
the data that it creates and uses, while annotations
on the edges (not shown in Figure 8) indicate how
the data flows from one activity to another. As is
shown in Figure 1, the Change return statement
step declares sourcefilename as the input parame-
ter and sourceefilecontent as the output parameter.
The sourcefilename will be passed into its scope
when the step is posted and ready to start, and the
sourcefilecontent will be copied out once the step
completes.

• Requisites. A Little-JIL step optionally can be
preceded and/or succeeded by a step executed be-
fore and/or after (respectively) the execution of the
step’s main body. Requisites enable the checking
of a specified condition either as a pre-condition for
step execution or as a post-condition to assure that
the execution has been acceptable. If a requisite
fails, an exception is triggered to allow the error to
be handled. The compilation and unit testing steps
can also be implemented as post-requisites in our
refactoring process definitions.

• Exception Handling. A step in Little-JIL can sig-
nal the occurrence of exceptional conditions when
there are aspects of its execution that fail (such as
violation of one of the step’s requisites). These are
important to allow for deviations in the execution of
the process due to errors or unusual conditions. Our
current process model treats the rework process as
being triggered by exception instances, and the ex-
ception handler, as is defined in Figure 2, elaborates

X
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Interface Badge

Sequencing Badge

Prerequisite Badge

Exception Handler Badge

Postrequisite Badge

+

Cardinality Continuation Badge

Sequencing Badge:

Continuation Badge:

Sequential

TryX
Choice

Parallel

Continue

Rethrow

Restart

Complete

Figure 8: Little-JIL Step

the rework process. In our refactoring process def-
initions after the exceptions are handled, the pro-
cess will resume execution from the point where it
was interrupted with continue semantics. Little-JIL
also offers other exception handling semantics such
as rethrowing the exception, restarting the step, and
completing the step.


