Modeling and Analyzing Faults to Improve Election Process Robustness

Borislava I. Simidchieva (UMass Amherst),
Sophie J. Engle (UC Davis),
Michael Clifford (UC Davis),
Alicia Clay Jones (Booz Allen),
Sean Peisert (UC Davis, LBNL),
Matt Bishop (UC Davis),
Lori A. Clarke (UMass Amherst), and
Leon J. Osterweil (UMass Amherst)
Motivation

• Elections are more than machines
 – A process

• Problems arise in the process
 – Sometimes manifest as machine problems
 – Sometimes not . . .

• Plans for known and anticipated problems
 – But unexpected problems still arise
Example Problem

- Election procedures for validating number of ballots
 - Count them at polling station
 - Count them at Election Central
 - A discrepancy: the two ballot counts are different, or the vote counts disagree with the ballot counts
 - What happened?
Our Approach: Continuous Process Improvement

- Create a precise, accurate model of the real-world election process
- Use formal analysis methods to automatically identify potential problems in the model
 - Here, we focus on *single points of failure (SPFs)*
- Modify process model to ameliorate problems
 - Verify the modification makes things better
- Deploy improvements in real-world process
- Repeat
Election Process in Little-JIL

• Graphical process definition language with formal semantics; process represented as a hierarchical decomposition of steps

![Diagram showing the process with nodes labeled: conduct election, Precinct+, prec-polling activities, Precinct+, prepare for and conduct election at precinct, count votes, do recount, with an exception path for Vote Count Inconsistent Exception.]
Election Process in Little-JIL (2)

1. Count votes
2. Perform ballot count
3. Count votes from all precincts
4. Add vote count to vote total
5. Perform random audit
6. Handle discrepancy at precinct
7. Rescan
8. Override software
9. Scan votes
10. Reconciliation of total ballots and counted ballots

Vote Count Inconsistent Exception
Fault Tree Analysis (FTA)

- Fault trees show how problems could arise
 - Like attack trees but intent is irrelevant
- FTA can automatically generate fault trees from Little-JIL process model and a hazard
- Single Points of Failure (SPFs) can be automatically identified from fault trees
Fault Tree Generated from Model

Artifact "tallies" from "confirm tallies match" is wrong

Artifact "tallies" from step "confirm tallies match" is wrong

Step "confirm tallies match" produces wrong "tallies"

Artifact "tallies" from step "scan votes" is wrong

Artifact "tallies" from step "scan votes" is posted

Artifact "ballotCounts" is wrong when step "scan votes" is posted

Artifact "ballotCounts" is wrong when step "scan votes" is posted

Artifact "ballotCounts" is wrong when step "handle discrepancy at precinct" is completed

Artifact "ballotCounts" is wrong when step "reconciliation of total ballots and counted ballots" is completed

Artifact "repository" is wrong when step "handle discrepancy at precinct" is completed

Artifact "repository" is wrong when step "reconciliation of total ballots and counted ballots" is completed

Artifact "repository" is wrong when step "scan votes" is posted
Cut Sets Computed from Fault Tree

- Combination of events such that, if all events in the cut set occur, the hazard occurs
 - *Minimal* if removal of any event causes the resulting set not to be a cut set
- Can be computed automatically from the fault tree
Our Original Process Model MCSs

• MCS #1 (SPF): Step scan votes produces wrong tallies
• MCS #2 (SPF): Step confirm tallies match produces wrong tallies
• Total 16 MCSs
 – 10 of size 2 or less
Add Exception Declaration to Model
And the Resulting Fault Tree

Artifact "tallies" from
"confirm tallies match" is wrong

Artifact "tallies" is wrong when step
"confirm tallies match" is completed

Exception "Vote Count
Inconsistent Exception"
is not thrown by step
"confirm tallies match"

Exception "Vote Count
Inconsistent Exception"
is thrown by step
"confirm tallies match"

Artifact "ballotCounts"is wrong when step
"scan votes" is posted

Step "confirm tallies match"
produces wrong "tallies"

Step "scan votes"
produces wrong "tallies"

Artifact "tallies" from step
"confirm tallies match" is wrong

Artifact "tallies" from step
"scan votes" is wrong

Artifact "repository" is wrong when step
"scan votes" is posted
Our Revised Process Model MCSs

- MCS #1': Step scan votes produces wrong tallies; Vote Count Inconsistent Exception is NOT thrown by step confirm tallies match
- MCS #2': Step confirm tallies match produces wrong tallies; Vote Count Inconsistent Exception is NOT thrown by step confirm tallies match
- Total 16 MCSs (same as before)
 - Only 2 of size 2 or less (compared to 10 before), no SPF
General Thoughts

• Yolo County, CA, election process modeled
 – Should work similarly for other jurisdictions
• Using fault tree analysis seems effective
 – Automatic generation of fault trees a big plus!
• One model covers many hazards
Conclusion

- *Continuous Process Improvement* can be successfully applied to elections
- Defects in the model can guide improvements in the real-world process
- Modifications can be evaluated in advance through formal analysis
Future Work

• Apply other forms of analysis such as Failure Mode and Effects Analysis (FMEA)
• Apply to other jurisdictions’ processes
• Derive requirements for components used in the process - specifically, e-voting components
• Work with election officials to translate results into something they can use directly, i.e. without us!
Related Work

• Direct Recording Electronic (DRE) machines
 - Research: Compuware; UConn VoTeR Center; ACCURATE; Brennan Center for Justice; RABA; EVEREST; Caltech/MIT Voting Technology Project; Proebstel et al; Yasinsac et al
 - Statewide reports: CA, MD, OH, ...

• Verification of Elections
 - Mercuri & Neumann; Saltman

• Requirements for elections
 - Mitrou; Lambrinoudakis et al
Related Work (continued)

• Election Process Modeling
 – Election Assessment Hearing; Raunak et al; Simidchieva et al; Curtis et al; Antonyan et al; Hall et al

• Fault Tree Analysis
 – Helmer et al; Zhang et al; Rushdi, Ba-Rukab; Yee; Peisert et al; Nai Fovino et al
Thanks!

- Artifacts and full fault trees available at http://laser.cs.umass.edu/elections/
- Thanks to NSF for sponsoring work
 – Especially grant CCF-0905530; any opinions, etc. are ours, and may or may not be those of NSF
- Thanks to Yolo County, CA election officials, especially Tom Stanionis and Freddie Oakley