
An Integrated Collection of Tools for Continuously Improving the Processes by
Which Health Care is Delivered: A Tool Report

Leon J. Osterweil, Lori A. Clarke, George S. Avrunin

Department of Computer Science
University of Massachusetts, Amherst, MA 01003

{ljo | clarke |avrunin@cs.umass.edu}

Abstract: This report will present a collection of tools that supports the precise
definition, careful analysis, and execution of processes that coordinate the actions of
humans, automated devices, and software systems for the delivery of health care. The
tools have been developed over the past several years and are currently being evaluated
through their application to four health care processes, blood transfusion, chemotherapy,
emergency department operations, and identity verification. The tools are integrated with
each other using the Eclipse framework or through the sharing of artifacts so that the
internal representations generated by one might be used to expedite the actions of others.
This integrated collection of tools is intended to support the continuous improvement of
health care delivery processes. The process definitions developed through this framework
are executable and are intended for eventual use in helping to guide actual health care
workers in the performance of their activities, including the utilization of medical devices
and information systems.

1. Introduction. Many reports (e.g., IOM reports) have suggested that manifest
shortcomings in the delivery of health care could be addressed by the application of
appropriate information technologies. Because health care is often delivered through
complex processes, involving the coordination of several different types of agents,
process technologies should be particularly useful in addressing some of these
shortcomings. Our interest in the application of process technology to various domains is
longstanding and has resulted in the creation of a growing collection of tools that seem to
be of value in addressing problems in such diverse areas as software development, labor-
management dispute resolution, and digital government, as well as health care. Our
preliminary results have been encouraging.

2. Our approach. Broadly speaking our approach entails attempting to apply the notion
of Continuous Process Improvement (CPI) [1] to human-centric processes, such as those
that often arise in health care. For such processes, our approach to CPI requires 1)
defining a process precisely, 2) analyzing the process definition to determine the presence
or absence of defects or vulnerabilities, 3) modifying the process definition in response to
that feedback until the defects and vulnerabilities have been addressed as best they can
be, and 4) observing the execution of the process to determine whether past defects have
indeed been removed or whether new defects are revealed. The last three steps may be
repeatedly revisited.

This view has led us to develop process technologies that address needs in the areas of
 • Process elicitation and definition
 • Requirements specification and process analysis

 • Process execution, simulation, and monitoring

3. Our toolset. This section briefly describes the tools in each of the three categories
listed above.

3.1. Process elicitation and definition. The tools in this category revolve around the
Little-JIL process definition language. Space does not permit a full description of this
language (details can be found in [2]), but the language is rigorously defined by means of
finite-state machine semantics, is supported by a visual interface, and has been used
extensively to support the definition of processes in diverse domains, including health
care [3-5]. The development of health care processes will be demonstrated with the
support of the Visual-JIL screen editor, which facilitates the creation and editing of
Little-JIL process definitions. In recognition of the value of complementary forms of
these process definitions, our toolset also includes facilities for displaying these
definitions as linear trees and as natural language hypertext, both of which will be shown
along with other tools in our toolset that support the creation and display of various cross-
reference reports and summaries.

This collection of process definition tools has been used to support the elicitation of
process definitions in the health care domain. Our experience in doing this, however, has
also sharpened our awareness of the continuing uncertainty about how precisely process
definitions actually reflect the details of real processes. In very recent work, we are
comparing observed traces of actual process executions to Little-JIL process definitions
[6]. We will also demonstrate some preliminary results of our efforts to quantify the
closeness of these traces to these definitions. The intention of this work is to facilitate the
systematization and sharpening of our process elicitation efforts.

3.2. Analysis: Our motivation for defining Little-JIL’s semantics rigorously has been
primarily aimed at assuring that the language could be used effectively to support the
rigorous analysis of processes defined in Little-JIL. This has resulted in the development
of a two main types of static analysis tools that will also to be demonstrated.

3.2.1. Finite-state Verification. We will demonstrate how our FLAVERS finite-state
verification tool [7] can be used to determine the presence or absence of defects in Little-
JIL process definitions(at least up to a certain bound on the loops) [8]. FLAVERS
compares all possible execution traces through a Little-JIL process definition to a Finite-
state Automaton (FSA) definition of a property. When the FSA defines a desirable
property (e.g. a safety property), then the FLAVERS analysis determines whether it is
possible for there to be an execution of the process that violates the desirable property.
When such a violation occurs, FLAVERS provides a counter example trace that
demonstrates how the property can be violated.

We will also demonstrate how our PROPEL tool [9] can be used to define FSAs that are
then suitable for use by FLAVERS. PROPEL supports the specification of FSAs in three
formats, disciplined natural language, question trees, and FSA depictions. The user can
work with any one of the formats and have the results displayed in the others, or can

work with the three formats simultaneously. We have used PROPEL to create collections
of properties for our medical case studies [4].

3.2.2. Fault Tree Analysis. We will also demonstrate how Fault Trees can be generated
from Little-JIL process definitions [10], and show how their analysis can be used to
complement the finite-state verifications generated using FLAVERS. Finite-state
verification can be used to identify defects in a process definition that result from the
occurrence of undesired sequences of process events (e.g. beginning a transfusion before
patient consent has been obtained). But these analyses assume that all process steps have
been carried out correctly. We will demonstrate two types of analyses, Fault Tree
Analysis (FTA) and Failure Mode and Effects Analysis (FMEA), that are centered on
Fault Trees, and that explore the ramifications of incorrect performance of process steps.

We will demonstrate the generation of an FTA from a Little-JIL process definition and a
specification of a specific hazard (e.g. the delivery of an incorrect type of blood to the
patient bedside). We will also demonstrate how our tools can then be used to generate the
minimal cut sets (MCSs) of such an FTA and how these MCSs can indicate
vulnerabilities such as single points of failure, namely single steps whose incorrect
performance can lead directly to specified hazards. We will also demonstrate our support
for FMEA. For a single potential failure, such as a step being performed incorrectly, the
potential resulting hazards can be shown. Thus, FTA and FMEA are complementary
analyzes; one shows the possible clusters of failures that could lead to a hazard and the
other shows the hazards that could result from a particular failure.

3.3. Execution, simulation, and monitoring. We will also demonstrate some of the
dynamic analysis capabilities in our toolset, including tools that support the actual
execution of processes and tools that support simulations of process executions.

3.3.1. Process Execution tools. Little-JIL processes are defined hierarchically. Each
step can be thought of as an instance of a procedure to which arguments and resources are
bound at runtime. Child steps of a parent step should be thought of as subprocedures that
can be invoked by the parent. When a leaf step is invoked, the actions associated with
that step are to be performed by agents in any way that the agent may desire. Thus, in an
important sense, the Little-JIL process definition is a specification of the order in which
steps are to be executed, the assignment of specific agents to the execution of steps, and
the flow of artifacts between agents as steps are assigned and executed. Our toolset
contains a variety of tools needed to support such process execution. These tools include
a manager of the resources that are to be used to perform process steps, an agenda
manager that supports the distribution of tasks to (and back from) agents, and a
subsystem that maintains effective communication between human participants and the
other components of a running process. These tools and their coordination will be
demonstrated.

3.3.2. Process discrete event simulation tools. We will also demonstrate how a Little-
JIL process definition can be used to drive a discrete event simulation [11]. Many of the
tools needed to support such simulations are already used to support process execution.

But discrete event simulation also requires the creation of simulators of the behaviors of
the agents that perform the various process steps. We will demonstrate the tools needed
to simulate various agents. Perhaps of greatest interest are those tools that simulate the
performance of humans in processes. Our demonstration will show how such human
performance can be simulated at relatively basic levels, but still be sufficient to
demonstrate the effects of varying resources. We have used this capability to begin
explorations of how to vary the mix of human resources in a hospital Emergency
Department in order to reduce patient waiting time, while keeping costs low.

4. Process-centered environment. Figure 1 is a conceptual view of how the capabilities
of these tools can complement each other while supporting the overall goal of Continuous
Process Improvement.

Creating a detailed, accurate process model involves considerable effort. It usually takes
us several dozen meetings with domain experts before a reasonable process definition
emerges. For each iteration, the appropriate domain experts review the process definition
for accuracy and the computer scientists prepare questions to flesh out incomplete,
inconsistent, or erroneous aspects of that model. It is unrealistic to expect domain experts
to make such a large investment in time unless there will be considerable return on that
investment. Thus, we use that single representation to drive a number of different
analyzes, hopefully providing valuable feedback and justifying the modeling costs.

Multiple views of the process definition can be provided, including the natural language
hypertext view and linear tree view mentioned above. Moreover, as shown in Figure 1,
the Little-JIL process definition can be used to drive a number of different analyzes. We

have found that these analyzes find many subtle errors and provide valuable information
for CPI activities.

4. Evaluation. As noted in section 3, Little-JIL and its toolset have undergone
evaluation through their application to the definition and analysis of a range of health
care processes. The language and tools have also been evaluated through their application
to processes in such other domains as labor-management dispute resolution, elections
[12], and scientific data processing [13]. These evaluations have resulted in modifications
to Little-JIL, such as the creation of facilities to support preemption of tasks currently
being executed. The evaluations have also led to changes to our analysis toolset. Our
evaluations in these various domains are continuing and they will certainly lead to
continued language and toolset enhancements.

5. Status. The Little-JIL language has evolved through a series of modifications. Little-
JIL version 1.5 is described in a generally available document [2]. The Visual-JIL screen
editor is currently available for distribution, although some features of the 1.5 language
version are not yet implemented. The FLAVERS finite-state verification system and
PROPEL property elicitation system are both available for distribution. Thus it is
possible to use publicly available tools to carry out finite-state verification of processes
defined in Little-JIL against properties defined using PROPEL.

The tools for supporting Fault Tree analysis, the execution system, and discrete event
simulation are not yet available for distribution.

Acknowledgements: The Little-JIL language and the suite of support tools described
above are the products of a great deal of work by dozens of participants who are too
numerous to be listed here.

This work has been supported by numerous grants, including by the National Science
Foundation under Award(s) CCF-0427071, CCF-0820198, and IIS-0705772. Any
opinions, findings, and conclusions or recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

References:

1. Deming, W.E., Out Of The Crisis. M.I.T. PRESS (2000).
2. Wise, A., Little-JIL 1.5 Language Report. Department of Computer Science,

University of Massachusetts, Amherst (2006) UM-CS-2006-51.
3. Clarke, L.A., Avrunin, G.S., Osterweil, L.J., Using Software Engineering

Technology to Improve the Quality of Medical Processes. In Proceedings of the
Thirtieth International Conference on Software Engineering. Leipzig, Germany
(2008) Invited Keynote, 889-898.

4. Henneman, E.A., Avrunin, G.S., Clarke, L.A., Osterweil, L.J., Andrzejewski, C.J.,
Merrigan, K., Cobleigh, R., Frederick, K., Katz-Basset, E., Henneman, P.L.,

Increasing Patient Safety and Efficiency in Transfusion Therapy Using Formal
Process Definitions. Transfusion Medicine Reviews 21 (2007) 49-57.

5. Christov, S., Chen, B., Avrunin, G.S., Clarke, L.A., Osterweil, L.J., Brown, D.,
Cassells, L., Mertens, W., Formally Defining Medical Processes. Methods of
Information in Medicine. Special Topic on Model-Based Design of Trustworthy
Health Information Systems 47 (2008) 392-398.

6. Christof, S., Avrunin, G.S., Clarke, L.A., Henneman, P.L., Marquard, J.L.,
Osterweil, L.J., Using Event Streams to Validate Process Definitions. University of
Massachusetts, Amherst (2009) UM-CS-2009-004.

7. Dwyer, M.B., Clarke, L.A., Cobleigh, J.M., Naumovich, G., Flow Analysis for
Verifying Properties of Concurrent Software Systems. ACM Transactions on
Software Engineering and Methodology 13 (2004) 359-430.

8. Chen, B., Avrunin, G.S., Henneman, E.A., Clarke, L.A., Osterweil, L.J.,
Henneman, P.L., Analyzing Medical Processes. In Proceedings of the Thirtieth
International Conference on Software Engineering. Leipzig, Germany (2008) to
appear.

9. Cobleigh, R.L., Avrunin, G.S., Clarke, L.A., User Guidance for Creating Precise
and Accessible Property Specifications. In Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering.
ACM Press, Portland, OR (2006) 208-218.

10. Chen, B., Avrunin, G.S., Clarke, L.A., Osterweil, L.J., Automatic Fault Tree
Derivation from Little-JIL Process Definitions. In Proceedings of the Software
Process Workshop and Process Simulation Workshop. Springer-Verlag LNCS,
Shanghai, China (2006) 150-158.

11. Raunak, M.S., Osterweil, L.J., Wise, A., Clarke, L.A., Henneman, P.L., Simulating
Patient Flow through an Emergency Department Using Process-Driven Discrete
Event Simulation. In Proceedings of the 31st International Conference in Software
Engineering Workshop on Software Engineering and Health Care. Vancouver,
Canada (2009) to appear.

12. Simidchieva, B.I., Marzilli, M.S., Clarke, L.A., Osterweil, L.J., Specifying and
Verifying Requirements for Election Processes. In Proceedings of the 9th Annual
International Conference on Digital Government Research. Montreal, Canada
(2008) to appear.

13. Osterweil, L.J., Clarke, L.A., Podorozhny, R., Wise, A., Boose, E., Ellison, A.M.,
Hadley, J., Experience in Using a Process Language to Define Scientific Workflow
and Generate Dataset Provenance. In Proceedings of the ACM SIGSOFT 16th
International Symposium on Foundations of Software Engineering. Georgia,
Atlanta (2008) 319-329.

