
Analyzing Medical Processes∗

Bin Chen
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
chenbin@cs.umass.edu

George S. Avrunin
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
avrunin@cs.umass.edu

Elizabeth A. Henneman
School of Nursing

University of Massaschusetts
Amherst, MA 01003

henneman@nursing.umass.edu
Lori A. Clarke

Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
clarke@cs.umass.edu

Leon J. Osterweil
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
ljo@cs.umass.edu

Philip L. Henneman
Tufts-Baystate Medical Center

Springfield, MA 01199
philip.henneman@bhs.org

ABSTRACT
This paper shows how software engineering technologies used
to define and analyze complex software systems can also be
effective in detecting defects in human-intensive processes
used to administer healthcare. The work described here
builds upon earlier work demonstrating that healthcare pro-
cesses can be defined precisely. This paper describes how
finite-state verification can be used to help find defects in
such processes as well as find errors in the process defi-
nitions and property specifications. The paper includes a
detailed example, based upon a real-world process for trans-
fusing blood, where the process defects that were found led
to improvements in the process.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; J.3 [Life and Medical Sciences]: Health

Keywords
finite-state verification, model checking, medical processes,
property specifications

1. INTRODUCTION
This paper describes how software engineering techniques

that have been successfully applied in analyzing software
systems can be effectively employed to detect problems in
medical processes. This paper builds upon earlier work

∗Research partially supported by the National Science
Foundation under awards CCF-0427071, CCR-0205575,
and CCF-0541035, and by the U.S. Department of De-
fense/Army Research Office under awards DAAD19-01-1-
0564 and DAAD19-03-1-0133.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

demonstrating that healthcare processes can be defined pre-
cisely using the Little-JIL process definition language [28].
Here, we describe our experiences in applying finite-state
verification to precisely defined medical processes to iden-
tify process defects and then to confirm the effectiveness of
corrections to those processes. Although described with re-
spect to human-intensive, safety-critical medical processes,
this work also suggests the applicability of these and related
technologies to processes in other problem domains.

Medical errors are a major cause of death in our society.
A 1999 report from the Institute of Medicine (IOM) [31] es-
timated that approximately 100,000 people die each year in
US hospitals from preventable medical errors. There is am-
ple anecdotal evidence that the complexity of the processes
used to administer healthcare is a significant source of the
problem. The healthcare literature is replete with docu-
mented evidence of such errors as administration of blood of
the wrong type, misidentification of patients, and incorrect
dosages of potentially lethal medications.

The medical community is aware of these problems and
has approached them in a number of ways. One principal
approach has been to devise mandated procedures for car-
rying out many healthcare activities, especially those iden-
tified as being particularly high-risk. Mandated procedures
are generally described in considerable detail, sometimes in
documents that are dozens of pages long. These documents
consist largely of natural language text, often supplemented
by diagrams. These documents are the basis for both the
training of medical professionals and the actual processes
performed in hospitals. Despite the care that went into the
creation of such documents, as well as other safety measures,
a subsequent IOM study [39] revealed that error rates in hos-
pitals had not declined significantly in the five-year period
following the initial IOM report.

Examination of documents used to describe medical pro-
cesses suggest several reasons why such documents have
proven to be inadequate. Documents describing such pro-
cesses as blood transfusion (e.g., [50], [51]) provide good ex-
amples of the problem. Despite attempts to be complete,
they contain terms that are poorly defined and inconsis-
tently used, and important details are often missing, es-
pecially details for handling special cases that might arise.
Recognizing such limitations, the medical community has
tried to employ a number of modeling representations, but
these are usually based upon such formalisms as data flow

graphs that make it relatively cumbersome to represent the
handling of exceptional cases or complicated concurrency
and synchronization. As a result, these representations gen-
erally fail to represent the full complexity of these processes.

Indeed, the many diverse circumstances under which ac-
tivities like blood transfusions must take place require pro-
cesses of considerable complexity. Moreover, blood trans-
fusion, like many other medical activities, requires coordi-
nating the efforts of many different parties, often performing
their activities in parallel. The complexity of a process, such
as this one, increases the risk of defects. Software engineers
will readily note that the software development community
already deals with the creation of complex procedures (e.g.,
complex software systems) that present a range of difficul-
ties analogous to those found in medical processes. This
suggests that the approaches used in software engineering
to build and analyze complex, distributed systems might be
effective in defining and analyzing medical processes.

This paper describes our work on using finite-state verifi-
cation to identify defects in actual medical processes. The
example described in this paper is based on a blood trans-
fusion process being studied by the nursing community and
commonly used in hospitals. In our project, software en-
gineers collaborated with healthcare professionals to define
key parts of the processes and their desired properties in
rigorous formalisms, and then applied finite-state verifica-
tion to determine whether the process definition satisfied
the properties. In doing so, process defects were detected
and subsequently repaired. The verification also uncovered
inaccuracies in our process definition and our property spec-
ifications. Since we use, or intend to use, these artifacts in a
wide range of evaluation activities, detecting and correcting
these problems is also vitally important.

In a broad sense, this work demonstrates the feasibility of
medical process improvement, carried out in ways that are
strongly analogous to software improvement approaches. It
suggests the applicability of this approach to other domains
as well as consideration of other software engineering tools.

In the next section of this paper, we provide a high-level
description of the technologies that we employed, and Sec-
tion 3 presents a detailed example. Section 4 discusses obser-
vations about this approach, and Section 5 outlines related
work. The conclusion summarizes the contributions of this
work and describes some areas of future research.

2. AN OVERVIEW OF THE TECHNIQUES
AND METHODOLOGY USED

To evaluate the applicability of software engineering tech-
nologies to medical process definitions and analysis, we have
used the Little-JIL process definition language [10], the Pro-
pel property elucidation system [17], and two finite-state
verification systems, FLAVERS [22] and SPIN [29].

Modeling Processes Using Little-JIL: To analyze
medical processes, it is important to develop precise, rigor-
ous definitions of those medical processes first. The process
definitions need to capture not only the standard cases, but
also the exceptional situations. They also need to precisely
specify the communication and coordination between med-
ical professionals. In our approach, we use the Little-JIL
language to define processes.

Little-JIL was originally developed to define software de-
velopment and maintenance processes. A Little-JIL process

Figure 1: Little-JIL steps

definition consists of three components, an artifact specifi-
cation, a resource specification, and a coordination specifica-
tion. The artifact specification contains the items that are
the focus of the activities carried out by the process. The
resource specification specifies the agents and capabilities
that support performing the activities. The coordination
specification ties these together by specifying which agents
and supplementary capabilities perform which activities on
which artifacts at which time(s). A Little-JIL coordination
specification has a visual representation, but is precisely de-
fined using finite-state automata, which makes it amenable
to definitive analyses. Among the features of Little-JIL that
distinguish it from most process languages are its 1) use
of abstraction to support scalability and clarity, 2) use of
scoping to make step parameterization clear, 3) facilities for
specifying parallelism, 4) capabilities for dealing with excep-
tional conditions, and 5) clarity in specifying iteration.

A Little-JIL coordination specification consists of hierar-
chically decomposed steps (see Figure 1), where a step rep-
resents a task to be done by an assigned agent. Each step
has a name and a set of badges to represent control flow
among its sub-steps, its interface (a specification of its in-
put/output artifacts and the resources it requires), the ex-
ceptions it handles, etc. A step with no sub-steps is called
a leaf step and represents an activity to be performed by an
agent, without any guidance from the process.

Little-JIL steps may be decomposed into two kinds of sub-
steps, ordinary substeps and exception handlers. Ordinary
substeps define how the step is to be executed and are con-
nected to their parent by edges that may be annotated by
specifications of the artifacts that flow between parent and
substep and also by cardinality specifications. Cardinality
specifications define the number of times the substep is in-
stantiated, and may be a fixed number, a Kleene *, a Kleene
+, or a Boolean expression (indicating whether the substep
is to be instantiated). Exception handlers define how ex-
ceptions thrown by the step’s descendants are handled.

A non-leaf step has a sequencing badge (an icon on the left
of the step bar; e.g., the right arrow in Figure 1) that defines
the order of substep execution. For example, a sequential
step (right arrow) indicates that substeps execute from left
to right. A parallel step (equal sign) indicates that substeps
execute in any (possibly interleaved) order, although the or-
der may be constrained by such factors as the lack of needed
inputs. A choice step (circle slashed with a horizontal line)
indicates a choice among alternative substeps. A try step
(right arrow with an X on its tail) indicates the sequence in
which substeps are to be tried as alternatives.

A Little-JIL step can be optionally preceded or succeeded
by a pre-requisite, represented by a down arrowhead to the

left of the step bar, or a post-requisite, represented by an up
arrowhead to the right of the step bar. Pre-requisites check
if the step execution context is appropriate before starting
execution of the step, and post-requisites check if the com-
pleted step execution satisfied its goals. The failure of a
requisite triggers an exception.

Channels are message passing buffers, directly connecting
specified source step(s) with specified destination step(s).
Channels are used to synchronize and pass artifacts among
concurrently executing steps.

Specifying Properties Using Propel: A property is a
specification of the requirements for some aspect of the be-
havior of a process. In the medical domain, properties are
often specified as policies in natural language so that they
can be easily understood by the medical professionals. Such
informal descriptions, however, are often vague and ambigu-
ous and need to be translated into rigorous mathematical
formalisms such as automata or temporal logics that can be
used as the basis for verification. This is a surprisingly diffi-
cult task. Even experienced developers may overlook subtle,
but important, details. In our approach, we use Propel to
support specifying formal properties.

Propel guides users through the process of creating prop-
erties that are both accessible and mathematically precise.
Propel provides users with a set of property templates,
each of which can be viewed as an extended Finite-State
Automaton representation, a Disciplined Natural Language
representation, or a Question Tree. Each representation con-
tains options (or questions) that explicitly indicate the vari-
ations that must be considered, thereby ensuring that users
do not overlook important subtle details. In addition, the
Question Tree can be used to guide the user in selecting the
appropriate template. All three representations are views of
a single underlying representation so that a change in any
representation is reflected automatically in the others.

Verifying Processes Using FLAVERS and SPIN:
Finite-state verification (FSV) techniques, such as model
checking [15], involve the construction of a finite model that
represents all possible relevant executions of a system with
respect to the property to be evaluated. Then algorithmic
methods are employed to determine whether the particular
property holds for the model. A number of FSV tools have
been proposed; for this work, we have used FLAVERS and
SPIN. We chose these tools because we were familiar with
them (FLAVERS was developed in our laboratory), they
represent distinct modeling and checking approaches, and
we could build on existing technology to construct models
for them.

To construct models of Little-JIL processes, we first trans-
late the Little-JIL into the Bandera Intermediate Repre-
sentation (BIR) [30]. BIR is a guarded-command language
for describing state-transition systems and was intended to
support translation into the input languages of a variety of
model checkers. A translator from BIR to the Promela lan-
guage used by SPIN was constructed by the Bandera team,
and we have built a translator for FLAVERS. Medical pro-
cesses entail substantial amounts of concurrency and excep-
tion handling. This leads to very large state spaces, making
scaling an important issue. Therefore, we use several opti-
mizations and abstractions to reduce the size of the gener-
ated model. Most of these are performed during the Little-
JIL to BIR translation to take advantage of the scoping and
hierarchy in Little-JIL. All the transformations are conser-

vative for the property and process definition. This means
that a process will not be reported to be consistent with a
property unless that is indeed the case. Spurious violations,
property violations in the model that do not correspond to
any real trace through the process, could be introduced by
these optimizations, but this problem arises rarely, and when
it does can often be dealt with by using various model re-
finement techniques.

Methodology: To evaluate the effectiveness of this ap-
proach, we are engaged in three case studies, the blood trans-
fusion case study described in more detail here, as well as a
case study on emergency room patient flow and one on an
outpatient chemotherapy process for treating breast cancer.

For each case study, a small team of computer scientists
meets regularly with a group of medical professionals to elicit
the process definition and the properties. The medical pro-
fessionals are responsible for describing the processes and
their requirements and for reviewing the material created by
the computer scientists. The computer scientists are respon-
sible for defining the process in Little-JIL, the properties in
Propel, and for doing the analysis, as well as enhancing
the tools as needed. The procedure that we follow is to first
focus on the process definition. The benefits of capturing
the blood transfusion process formally from the perspective
of the nursing profession is described in [28].

While the process is being defined, it is not unusual for
goals or high-level requirements to be mentioned, and these
are recorded by the computer scientists. After the process
definition has begun to stabilize, meetings are then held to
elicit a more complete set of requirements. The require-
ments are first stated informally in natural language. The
computer scientists then work with the medical professionals
to agree on a glossary of terms that are used to more system-
atically describe the requirements, still in natural language.
After agreement is reached on these statements, computer
scientists work closely with the medical professionals to de-
velop the detailed property specifications using Propel.

It is after this point that the computer scientists apply
the FSV tools to evaluate whether the process definition is
consistent with the stated formal properties. As with pro-
grams, it is often the case that the FSV tools find problems
in the process definition and in the property specifications as
well as in the process. Our long-range plans include using
the process definitions to support fault tree analysis, sim-
ulations, and even process-guidance in the clinical setting.
Thus, it is extremely important that the process definition
accurately reflects the process and, of course, it is impor-
tant that the process does not violate correctly formulated
properties.

3. AN EXAMPLE
Blood transfusion, although a common procedure, involves

considerable risk to the patient, and experts believe that
adverse events involving transfusion are significantly under-
reported. Indeed, transfusion medicine professionals were
among the first to develop classification schemes for medical
errors, but most of the work in this area has focused on the
handling of blood products in the laboratory rather than at
the point of care where the actual transfusion occurs [28].

One of us (E. Henneman) is involved in the development
of guidelines regarding the safe administration of blood and
blood products. As part of this work, she identified a check-
list [51] from a standard nursing reference [50] as a good

Figure 2: Root of the transfusion process

example of a description of the standard transfusion process
from the standpoint of the nurse administering the transfu-
sion. This checklist has 40 items (some of which have a num-
ber of sub-items) ranging from “Administers pretransfusion
medication as prescribed” and “Obtains IV fluid containing
normal saline solution and a blood transfusion administra-
tion set” to “Compares the patient name and hospital identi-
fication number on the patient’s identification bracelet with
the patient name and hospital identification number on the
blood bank form attached to the blood product” and “Using
aseptic technique, attaches the distal end of the adminstra-
tion set to the IV catheter.” To support her evaluation of
such descriptions of the clinical transfusion process, we mod-
eled the process described by the checklist in Little-JIL, and
composed it with a model of the process that the hospital
blood bank performs. The process model focuses particu-
larly on representing the blood bank’s interactions with the
nurse, and abstracts away most of the details of the com-
plex activity that the blood bank performs to prepare blood
products for administration to patients.

In our Little-JIL model, shown in Figure 2, the root of the
transfusion process is a parallel step (note the equal sign in
the lefthand side of the step bar), “perform in-patient blood
transfusion,” whose children are the steps “nurse carries out
physician order for transfusion” and “blood bank prepares
blood.” This root step begins after a physician orders a
transfusion, and each of its substeps is further elaborated in
separate Little-JIL diagrams, shown in Figures 3 and 4.

The substeps of the root step in Figure 3, which are num-
bered to show the correspondence with the items in the
checklist, are carried out in order from left to right (note
the right arrow in the lefthand side of the step bar). Al-
though its interface specification is elided from the figure to
reduce clutter, the step “verify informed consent has been
obtained” may throw the exception “NoPatientConsent” if
the nurse cannot verify that consent has been obtained.

The root step has an exception handler whose purpose is
to obtain this consent. Similarly, “verify physician’s order”
may throw an exception if the order is incomplete. The step
“notify blood bank to prepare blood”puts a message with the
order into the “order blood” channel (here, too, the actual
specification of this use of the channel has been elided; a yel-
low documentation annotation serves as a visual reminder),
from which it is to be retrieved by a step performed by the
blood bank. The steps “obtain infusion materials,” “obtain
blood product from blood bank,” and “perform transfusion”
are themselves elaborated in additional diagrams that are
not included here. In the “obtain blood product from blood
bank” diagram the nurse repeatedly checks the “blood bank
status” channel for a “blood product ready” message, mod-
eling the behavior of the nurse who calls the blood bank
repeatedly to see if the blood product is ready yet, and then

picks up the blood product once it is ready.
As shown in Figure 4, the blood bank’s process begins

with execution of the “receives notification from nurse” step,
whose execution begins by taking an order from the “order
blood”channel and then continues by putting a“blood prod-
uct not ready”message into the“blood bank status channel.”
The blood bank process continues by executing the “obtain
blood type and screen” step, which is performed by check-
ing the lab for a current type and screen for this patient,
normally obtained from a blood specimen drawn earlier in
the hospitalization. If current type and screen are not avail-
able, the process indicates that an exception is thrown. In
that case, the blood bank puts a “blood type and screen un-
known” message into the “blood bank status” channel and
waits for the specimen. Once the blood bank has prepared
the blood (represented by the “prepares blood” step), the
process specifies that the blood bank replace the “blood
product not ready”message in the“blood bank status”chan-
nel with a “blood product ready” message. The process con-
cludes with execution of the “gives blood to nurse” step.

Although we have elicited and formalized more than 60
properties that should be satisfied by a safe blood transfu-
sion process, we focus here only on the property that, once
the nurse notifies the blood bank to prepare the blood prod-
uct, the nurse will eventually pick up the blood product.
When we attempt to verify that our process satisfies this
property, the verification tool reports a violation and pro-
duces as a counterexample a path through the process in
which the patient’s type and screen are not available and
the blood bank is then unable to prepare the blood. Indeed,
our model of the nursing process reflects the assumption in
the checklist that the type and screen have been obtained
prior to the transfusion order, an assumption that usually,
but not always, holds. This analysis has thus identified a
problem with the process specified by the checklist, namely
that it has failed to deal with this exceptional situation. Our
experience has indicated that such problems are often found
in existing natural language process descriptions. It is par-
ticularly interesting that, as we noted earlier, this checklist
is unusually detailed and complete, and yet it does not care-
fully specify the required behavior of the nurse in a number
of exceptional cases, such as this one.

Upon discovering this process defect, medical profession-
als suggested improving the process by inserting a step man-
dating that the nurse respond to the “blood type and screen
unknown” message by drawing a blood specimen for deter-
mining type and screen. Verification of the modified process
then showed that blood would always be prepared, though
the sample for type and screen might not be drawn until
after all of the other preparations for the transfusion have
taken place and the nurse has called the blood bank (rep-
resented in the process by reading from the ”blood bank
status” channel) to see if the blood is ready for pickup. This
can involve significant delay and risk to the patient, and such
errors are not uncommon in clinical practice. To address this
process defect, we next modified the nursing process to have
the nurse check for the availability of the type and screen be-
fore notifying the blood bank of the transfusion order and, if
necessary, drawing the specimen for type and screen at that
time. By making this process modification, the possibility
of this delay is eliminated.

For those hospitals using electronic order entry, another
concern is whether the nurse will see a transfusion order

Figure 3: Elaboration of ”nurse carries out physician order for transfusion”

Figure 4: Elaboration of ”blood bank prepares blood”

promptly. In about 10% of US hospitals, orders for trans-
fusions are entered at a computer terminal by the physician
and sent electronically to the blood bank and nurse. In such
situations the nurse will see the transfusion order only when
viewing a particular “task list” page in the patient’s elec-
tronic record. To evaluate whether the nurse will respond
to such an order promptly, we adapted the corrected version
of the nursing and blood bank processes and introduced an
abstract model of the physician’s activities. In this model,
the processes performed by the physician, the nurse, and
the blood bank are defined to execute in parallel with each
other and the nurse’s process is defined to repeatedly make
a choice between performing other nursing tasks or checking
for a transfusion order. The resulting process specifies that
if the nurse checks for a transfusion order and finds that one
has been issued by the physician, the nurse then follows a
process that is similar to the one previously described, but
modified to indicate that the blood bank has received the
order electronically from the physician rather than from the
nurse. Figure 5 shows the top-level diagram of this process.

We then tried to verify the property that, if a physician
orders a transfusion and certain exceptions (such as the pa-
tient refusing consent) do not occur, then the nurse will see
the order. The verifier reported that the property does not
hold in the case where the nurse never checks for the transfu-
sion order. We understand that, in actual practice, the press
of other urgent tasks may indeed cause a nurse to consult
the task list only at the start and end of a shift, when the
nurse going off duty reviews cases with the nurse coming on.
Unlike other pages in the electronic patient record, such as

those to order and record the administration of medication,
the task list page is not frequently referenced during typical
nursing procedures. A few large research hospitals or groups
of hospitals with the resources to write their own systems
have modified those systems so that the nurse sees an alert
indicating that the transfusion has been ordered whenever
the patient’s record is accessed, and the alert remains visi-
ble until it is acknowledged. Hospitals that use commercial
electronic order systems are often unable to get such changes
made. (Some hospitals have resorted to entering transfusion
orders on the medication page of the record since that page
is consulted frequently by the nurse, even though this causes
other difficulties with the electronic order system.)

We modified the process to reflect such an alert by explic-
itly distinguishing nursing activities that use the computer
from those that do not and adding a pre-requisite to the
steps representing activities involving the computer. That
pre-requisite is a check for the existence of a transfusion
order, representing an alert that informs the nurse of the
existence of the order. We then tried to verify the property
under the assumption that at least one activity involving
use of the computer occurs after the physician orders the
transfusion. With this assumption, which, as noted above,
reflects the fact that many nursing activities in hospitals
with electronic order systems do involve interaction with
the computer system, the property holds. The important
point is that the original problem with the process could be
detected using FSV and the effectiveness of the modification
could be subsequently evaluated, including the assumptions
that were needed to make it valid.

Figure 5: Process model for hospitals with electronic transfusion orders

Verification of each of the properties we have examined
for the blood transfusion process takes about 10 seconds or
less on a 1.86 GHz Pentium M processor and uses a few
megabytes of memory.

4. DISCUSSION
This project has helped the medical professionals under-

stand and improve their processes in a variety of ways. In
this section we discuss the impact of FSV on process under-
standing and improvement and some of the issues that have
arisen in applying FSV techniques to medical processes.

Impact of Verification on Process Definition: Spec-
ifying properties for verification and attempting to verify
them identified a number of problems in our process defini-
tions. In some cases, simply trying to formulate the proper-
ties precisely pointed out gaps in the formal process defini-
tions, for instance because there simply were no steps that
could be bound to the events used to specify those proper-
ties. In some cases, this was because the part of the process
intended to address the issue being captured by a property
was simply missing and had to be added. In other cases,
the problem was that certain steps needed to be further de-
composed in order to identify the substeps that should be
bound to the property events.

Verification efforts also helped us to find several subtle
errors in the formal process definitions that had remained
undiscovered despite careful inspection by both software en-
gineers and domain experts. For example, the blood trans-
fusion process definition specified that if discrepancies occur
during the “verify blood product” step, then “verify blood
product” is to be terminated and a “Failed Blood Product
Check”exception is to be thrown. The handler“handle failed
blood product check”, which refers to a step defined in other
diagrams (not shown here due to lack of space), requires the
nurse to send the blood product back to the blood bank and
obtain a replacement blood product. The exception contin-
uation badge of this handler was specified to be “continue”,
which implied that, after this exception has been handled in
this way, the process continues with the nurse signing the
blood bank form after obtaining the replacement product.
This process thus violated the property“The nurse must ver-
ify the blood product before it is transfused to the patient”,
where the event “verify the blood product” is bound to com-
pletion of the step “verify blood product”. It is clear that
this would introduce the potential for serious medical error,
and in the actual process the nurse verifies the patient identi-

fication and the product identification again after obtaining
the replacement product. Thus, attempting to verify this
property indicated that the exception’s continuation badge
was wrong and needed to be changed to “restart”.

The accuracy of the formal process definitions is, of course,
critical to the utility of the analysis—verifying properties of
a model that does not reflect the real process provides no
information about the real process and may in fact lead to
dangerous overconfidence in the safety of the process. Fur-
thermore, our process models are also intended to be used
for other types of analysis, simulation, and possibly even
guidance in the clinical setting, so detecting and correcting
errors in the models is important for other reasons as well.

Impact of Verification on Processes: The analysis of
the processes described in this paper identified problematic
defects in the processes, helped determine the causes of the
problems, and subsequently provided some assurance that
the modified processes were indeed improvements. This was
the case with other processes from our case studies as well.

Perhaps the greatest direct benefit of verification, how-
ever, is the assurance it provides that the revised process
satisfies the previously violated property as well as other
previously verified properties. In practice, modifications to
the processes are usually made incrementally, with changes
introduced to address some perceived problem. Sometimes
this problem is a “sentinel event,” an occurrence in the exe-
cution of the existing process where a patient has been put at
risk, and thus changes are introduced to prevent the recur-
rence of that event. In other cases, changes are introduced
to increase efficiency or make the process more convenient
for the medical professionals or more comfortable for pa-
tients. But the medical professionals have very few methods
for assessing the impact of such changes, and it is hard for
them to determine whether the changes really do address the
intended problem and do not introduce new problems. For
example, our analysis of a chemotherapy process detected a
deadlock that was introduced by a change that was intended
to prevent ill patients from having to make an extra trip to
the chemotherapy site. When this deadlock arose in prac-
tice, the medical professionals involved in the process broke
the deadlock by ad hoc means. It took some additional pro-
cess modifications and further analysis to be sure that this
would not lead to any reductions in the number of safety
checks in the process. For life-critical processes, the ability
to evaluate proposed changes in the process without having
to first put them in place is very significant.

Issues in Applying FSV to Medical Processes: There
are a number of obstacles to applying FSV techniques to
complex, human-intensive processes. First, it is hard to get
the formal definitions of the processes right. The amount
of effort invested by both the medical professionals and the
computer scientists involved in our project is considerable.
The computer scientists have to learn enough of the medical
terminology and context to understand what the medical
professionals are saying and the medical professionals have
to think very hard about the details of their processes and
the possible exceptions. This is itself a complex, human-
intensive activity. As we have described above, aspects of
the modeling and verification process help detect errors in
the formal definitions, but getting the right formal defini-
tions at a suitable level of detail for verification of the prop-
erties related to medical safety is not easy.

A second obstacle is that specifying properties for verifi-
cation is also hard. Domain experts often had problems be-
ing precise about the high-level properties that they wanted
their processes to obey. In addition, these high-level state-
ments were often incorrect. This frequently occurred be-
cause the domain experts did not consider possible excep-
tional situations that could impact the property. For exam-
ple, the property “The nurse must verify patient’s identifica-
tion bracelet matches patient’s stated name and birth date
before infusing blood product” requires that the event “ver-
ify patient’s identification bracelet matches patient’s stated
name and birth date” must occur on every execution of the
process. In attempting to verify this property, however, the
verifier reported a violation, identifying the possibility that
if the patient refuses to sign the consent form, the process
cannot proceed, and hence the event “verify patient’s iden-
tification bracelet matches patient’s stated name and birth
date” will not occur. The actual property should have taken
this constraint into consideration and instead have stated
that “After the patient signs the consent form, verify pa-
tient’s identification bracelet matches patient’s stated name
and birth date.”

Once the abstract statements of the desired properties
have been chosen, the events in those statements must be
bound to specific events in the formal process definitions for
verification. It can be quite difficult to determine which step
or steps should be bound to which events. We encountered
problems with this because the sources for the property spec-
ifications (i.e., medical guidelines) were sometimes different
from the sources for the process definition or because the
two descriptions were at very different levels of abstraction;
sometimes both problems arose. The property specifications
frequently had to be broken down from a high, abstract level
(e.g., “the right drug to the right patient at the right time”)
to lower-level specifications that could be mapped to the
process step names (e.g., the patient’s name and date of
birth as given by the patient match the name and date of
birth in the chart). Sometimes high-level abstract specifi-
cations were mapped to several low-level properties, stated
in the terminology of the step names, and sometimes prop-
erty events needed to be represented by more than one pro-
cess step name. Similar problems occur for software systems
when high-level system requirements need to be mapped to
lower level properties stated with respect to the details in
the system design or implementation.

Because errors in the formal process definitions and prop-
erty specifications were often not detected until the first

rounds of verification, the verification process could be very
lengthy. This, of course, is also the case with verification of
software systems—much of the early effort of verification is
devoted to finding problems in the model and the properties.
For human-intensive processes, like many medical processes,
however, this may be even more significant since the initial
artifacts from which process definitions and properties are
derived are less concrete and precise than, say, source code.

Finally, one expects problems of scale in FSV. For the
sorts of processes that we have analyzed so far, these have
not been serious. In particular, some of our optimizations
are able to take advantage of aspects of the structure of
Little-JIL process definitions to reduce the size of the mod-
els. But our examples have largely been restricted to very
small configurations, such as one nurse performing one trans-
fusion on one patient. As we extend this work to consider
processes involving many medical professionals carrying out
many activities to treat many patients, we expect that the
time and memory resources required for verification may be-
gin to limit the applicability of our methods. As for verifica-
tion of software systems, we will look for new abstractions to
reduce the size of the models and new domain-specific ver-
ification techniques that take advantage of special features
of these processes.

5. RELATED WORK
Process Definition: Many languages and diagrammatic

notations have been evaluated as vehicles for defining pro-
cesses. For example, APPL/A [44] used a procedural lan-
guage, MARVEL/Oz [8] used a rule-based language and
SLANG [5] used modified Petri Nets to define processes.
More recently, the workflow [36] and electronic commerce
[27] communities have pursued similar research. In the med-
ical domain, several languages, such as Asbru [41], GLARE
[33], and PROforma [43], have been especially designed for
representing clinical protocols and guidelines using an AI-
based linguistic paradigm. Noumeir has also pursued similar
goals, but using a notation like UML to define processes [34].
Others (e.g., [40]), view medical processes as workflows and
use a workflow-like language to define processes and drive
their execution. None of these process definition approaches,
however, seems able to support process definitions that are
both sufficiently clear and sufficiently broad and precise to
support analysis of the sort described in this paper. The
main problems with these approaches include inadequate
specification of exception handling, weak facilities for con-
trolling concurrency, lack of resource management, and in-
adequate specification of artifact flows. We believe that the
Little-JIL language addresses these problems relatively more
successfully, although it still has inadequacies, such as the
lack of good support for specifying timing constraints and
transactions.

Property Specification: There are many property
specification approaches that aim to provide both accessibil-
ity and precision. The Attempto Controlled English (ACE)
project [24] uses a natural language processing technique to
translate natural language (NL) property specifications into
first-order logic. It also provides annotated NL templates for
non-expert users. Ambriola and Gervasi [1] have developed
the CARL and CICO/CIRCE tools to translate NL property
specifications into propositional logic and back again. One
limitation of these approaches is that the translator and the
user may have different interpretations of NL specifications

due to the ambiguity in those NL specifications. Interpre-
tation alternatives like the options in Propel might help in
improving the accuracy of the resulting formal property rep-
resentations. Unlike these approaches, Propel does not at-
tempt to understand NL, even in restricted domains. Some
other approaches, including the Dwyer et al. property pat-
terns work [21], and Drusinsky’s (N)TLCharts [20], simply
annotate the formal model with NL comments. Unlike the
DNL representation in Propel, the NL comments are not in
themselves intended to function as property specifications,
but instead are just a means of conveying the basic gist of
what the property is meant to express.

FSV: There has been a great deal of work on the analysis
of software artifacts. Most of this work has been focused on
analysis of code or models of systems. Finite-state verifi-
cation, or model checking, techniques (e.g., [15], [13], [29]),
work by constructing a finite model that represents all pos-
sible relevant executions of the system and then analyze
that model algorithmically to detect executions that vio-
late the particular property. Our team has been involved
in the analysis and evaluation of various finite-state ver-
ification approaches [3], and the development of verifiers
such as FLAVERS [22] and INCA [18]. Our work seems
to be among the first that has applied FSV approaches to
process definitions [16], [12], [32]. As noted above, one of
the major concerns of these techniques is controlling the
size of the state space, while maintaining precision in the
analysis result. Many abstraction and reduction techniques
(e.g., [19], [14], [26]) have been used to tackle this problem.
The optimization and abstraction approaches we have taken
in this work are not new. They are however, effective, since
they can take advantage of Little-JIL’s scoping and hierar-
chy to achieve important reductions.

Improving Medical Processes: To our knowledge, there
has been very little work on using formal methods to improve
medical procedures. In [45], a medical protocol is modeled
in the Asbru [41] language. To analyze the protocol, the
model is automatically translated to a formal representation
for the interactive theorem prover KIV [4]. This approach
was applied to two real-life medical protocols, a jaundice
protocol and a diabetes mellitus protocol. In [7], the As-
bru model is translated into the input language of the SMV
model checker and a simple abstraction is used to reduce
the model. This work also used the jaundice protocol as
an example and found errors in it. The blood transfusion
process that we analyzed seems to be notably more com-
plex than the protocols analyzed in these two papers. The
Little-JIL model of the blood transfusion process consists
of about 120 steps (some of which are essentially invoca-
tions of previously defined steps) while the Asbru model of
the jaundice protocol has only about 40 plans (a plan is
the counterpart of a step in Little-JIL). And unlike the As-
bru model, which only defines the normal procedure, our
blood transfusion process models specify real-world excep-
tion handling that could greatly change the control-flow of
the normal process. Our blood transfusion processes also
define the interactions among various medical profession-
als, making the models even more complex. In [46], the
clinical guideline defined in GLARE [33] is translated to a
Promela [29] representation and verified by SPIN. However,
no details of the evaluation are presented in the paper.

There have been other approaches to improving medical
safety, as well, but much of the emphasis of this work has

been targeted towards quality control measures [49], [23],
error reporting systems [6], and process automation in labo-
ratory settings [25], such as those where blood products are
prepared. In other work, Bayesian belief networks have been
used as the basis for discrete event simulations of medical
scenarios and to guide treatment planning (e.g., [47]).

6. CONCLUSIONS AND FUTURE WORK
This project has demonstrated some of the benefits of ap-

plying selected software technologies to improve healthcare
processes. We found, for instance, that the very act of using
technologies that support process and property elicitation
was effective in identifying defects in medical processes. For
example, Little-JIL’s facilities for exception management in-
vite process eliciters to inquire about exceptional behavior
as a routine part of their interviewing of domain experts. In
doing so exception management issues are brought forward.
Similarly Propel’s interactive questioning about the details
of properties has also proven to be effective in causing do-
main experts to confront property details that otherwise are
typically overlooked.

It is true that addressing all of these details carefully, as in-
vited by these technologies, causes the process and property
elicitation processes to be lengthy. Typically the process and
property elicitations and reviews took place through weekly
meetings over a period of several months. While this cost is
admittedly high, we believe that it is more than repaid by
the quality of the processes and properties obtained and by
the improvements achieved.

Indeed, we believe that these costs will be further amor-
tized as we use these process definitions and property spec-
ifications as the basis for further types of analysis. In pre-
liminary work we outlined how our process definitions can
be used to automatically generate Fault Trees [11] that can
then be used as the basis for Fault Tree Analysis (FTA) and
Failure Mode and Effects Analysis (FMEA) [42, 48]. Such
analyses seem likely to be effective in supporting such di-
agnoses as the presence of single points of failure and how
faulty performance of a process step may impact subsequent
process executions. We have also begun working on the au-
tomatic generation of simulations from Little-JIL process
definitions. As these process analysis efforts proceed, we
hope to discover that they are mutually supportive, and that
the combined value of such analyses richly repays the costs
of elicitation of processes and properties.

The processes studied in the project have all been human
intensive. As noted, the underlying technologies were first
developed for software systems and have been considered for
combined hardware/software systems. We envision expand-
ing the scope of this project to include medical devices and
the human processes involved in employing those devices.
We believe that it is important to not only verify the device
but to evaluate it in the context in which it will be employed.
We have shown in preliminary work [2] that the properties
can be quite different in different contexts.

Ultimately we envisage the development of a process envi-
ronment in which process definition tools are smoothly inte-
grated with a spectrum of process analysis capabilities. Such
a support environment would hopefully lead to a system-
atic and well-reasoned approach to process improvement.
Our primary focus is on processes in the healthcare com-
munity, but in other work we are also exploring processes
in use in such other diverse domains as labor-management

dispute resolution [35], ecological data processing [9], and
elections [37].

Finally we would like to emphasize that the benefits of this
work are not restricted to effecting improvements only in the
application domains. Our work has also resulted in improve-
ments to our process definition language and in our require-
ments engineering and analysis capabilities. Little-JIL’s se-
mantic capabilities, for example, have been broadened and
sharpened in response to needs that became manifest as
we defined processes in the healthcare domain. Our under-
standing of the difficulty of defining resources and the ways
in which processes specify needs for them was also sharp-
ened considerably by our work on healthcare processes. This
is leading to challenging new directions in resource specifi-
cation and management [38]. Other needs are continually
being recognized, leading to a range of research challenges,
most of which have direct relevance to software engineering.

We regard the project described in this paper as only an
early indication of the many possible ways in which software
engineering technologies can be applied to new domains. Do-
ing so offers the strong prospect of benefit to those domains
and also to the further development of the software tech-
nologies themselves.

7. ACKNOWLEDGEMENTS
The authors gratefully acknowledge the work of Sandy

Wise, Barbara Lerner, and Aaron Cass, who made major
contributions to the development of Little-JIL, to Heather
Conboy and Jamieson Cobleigh, who made major contribu-
tions to the development of FLAVERS, to Rachel Cobleigh,
who developed Propel, and to Houng Phan, who helped to
elicit the blood transfusion process and properties.

8. REFERENCES
[1] V. Ambriola and V. Gervasi. On the systematic

analysis of natural language requirements with circe.
Automated Software Eng., 13(1):107–167, 2006.

[2] G. S. Avrunin, L. A. Clarke, E. A. Henneman, and
L. J. Osterweil. Complex medical processes as context
for embedded systems. ACM SIGBED Rev., 3(4):9–14,
2006.

[3] G. S. Avrunin, J. C. Corbett, and M. B. Dwyer.
Benchmarking finite-state verifiers. Software Tools for
Technology Transfer, 2(4):317–320, 2000.

[4] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and
A. Thums. Formal system development with kiv. In
T. Maibaum, editor, Fundamental Approaches to
Software Engineering, volume 1783 of LNCS, pages
363–366, 2000.

[5] S. C. Bandinelli, A. Fugetta, and C. Ghezzi. Software
process model evolution in the SPADE environment.
IEEE Trans. on Softw. Eng., 19(12), December 1993.

[6] J. Battles, H. Kaplan, T. van der Schaaf, and C. Shea.
The attributes of medical event-reporting systems:
experience with a prototype medical event-reporting
system for transfusion medicine. Arch. Pathology
Laboratory Medicine, 122:231–238, 1998.

[7] S. Bäumler, M. Balser, A. Dunets, W. Reif, and
J. Schmitt. Verification of medical guidelines by model
checking - a case study. In A. Valmari, editor, SPIN,
volume 3925 of LNCS, pages 219–233, 2006.

[8] I. Z. Ben-Shaul and G. E. Kaiser. A paradigm for
decentralized process modeling and its realization in
the oz environment. In 16th international conference
on Software Engineering, pages 179–188, 1994.

[9] E. R. Boose, A. M. Ellison, L. J. Osterweil, L. Clarke,
R. Podorozhny, J. L. Hadley, A. Wise, and D. R.
Foster. Ensuring reliable datasets for environmental
models and forecasts. In Ecological Informatics,
volume 2, pages 237–247, 2007.

[10] A. G. Cass, B. S. Lerner, E. K. McCall, L. J.
Osterweil, J. Stanley M. Sutton, and A. Wise.
Little-jil/juliette: A process definition language and
interpreter. In 22nd Int. Conf. on Softw. Eng., pages
754–757, Limerick, Ireland, 2000.

[11] B. Chen, G. S. Avrunin, L. A. Clarke, and L. J.
Osterweil. Automatic fault tree derivation from
little-jil process definitions. In SPW/ProSim, volume
3966 of LNCS, pages 150–158, Shanghai, May 2006.

[12] S. Christov, B. Chen, G. S. Avrunin, L. A. Clarke,
and L. J. Osterweil. Rigorously defining and analyzing
medical processes: An experience report. In 1st
International Workshop on Model-Based Trustworthy
Health Information Systems, September 2007.

[13] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. NuSMV version 2: An opensource tool
for symbolic model checking. In Proc. Int. Conf. on
Computer-Aided Verification, volume 2404 of LNCS,
Copenhagen, Denmark, July 2002. Springer.

[14] E. M. Clarke, O. Grumberg, and D. E. Long. Model
checking and abstraction. ACM Trans. on Prog. Lang.
and Syst., 16(5):1512–1542, September 1994.

[15] E. M. Clarke, O. G. Jr., and D. A. Peled. Model
Checking. MIT Press, 2000.

[16] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil.
Verifying properties of process definitions. In ACM
SIGSOFT Int. Symp. on Software Testing and
Analysis, pages 96–101, Portland, OR, August 2000.

[17] R. L. Cobleigh, G. S. Avrunin, and L. A. Clarke. User
guidance for creating precise and accessible property
specifications. In 14th ACM SIGSOFT Int. Symp. on
Foundations of Software Eng., pages 208–218,
Portland, OR, November 2006.

[18] J. C. Corbett and G. S. Avrunin. Using integer
programming to verify general safety and liveness
properties. Formal Methods System Design,
6(1):97–123, 1995.

[19] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In 4th
ACM Symposium on Principles of Programming
Languages, pages 238–252, Los Angeles, 1977.

[20] D. Drusinsky. Visual formal specification using
(n)tlcharts: Statechart automata with temporal logic
and natural language conditioned transitions. In
International Workshop on Parallel and Distributed
Systems: Testing and Debugging, April 2004.

[21] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Patterns in property specifications for finite-state
verification. In 21st Int. Conf. on Softw. Eng., pages
411–420, Los Angeles, May 1999.

[22] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, and

G. Naumovich. Flow analysis for verifying properties
of concurrent software systems. ACM Trans. Softw.
Eng. Methodol., 13(4):359–430, October 2004.

[23] M. Foss and S. Moore. Evolution of quality
management: integration of quality assurance
functions into operations, or ”quality is everyone’s
responsibility”. Transfusion, 43(9):1330–1336,
September 2003.

[24] N. E. Fuchs, U. Schwertel, and R. Schwitter.
Attempto controlled english - not just another logic
specification language. In P. Flener, editor, 8th
International Workshop on Logic Programming
Synthesis and Transformation, number 1559 in LNCS,
pages 1–20, 1998.

[25] S. Galel and C. Richards. Practical approaches to
improve laboratory performance and transfusion
safety. American Journal of Clinical Pathology,
107(4):S43–S49, 1997.

[26] S. Graf and H. Säıdi. Construction of abstract state
graphs with pvs. In 9th Int. Conf. on Computer Aided
Verification, number 1254 in LNCS, pages 72–83, 1997.

[27] B. N. Grosof, Y. Labrou, and H. Y. Chan. A
declarative approach to business rules in contracts:
courteous logic programs in XML. In ACM Conf. on
Electronic Commerce, pages 68–77, Denver, CO, 1999.

[28] E. A. Henneman, G. S. Avrunin, L. A. Clarke, L. J.
Osterweil, C. Andrzejewski, Jr., K. Merrigan,
R. Cobleigh, K. Frederick, E. Katz-Bassett, and P. L.
Henneman. Increasing patient safety and efficiency in
transfusion therapy using formal process definitions.
In Transfusion Medicine Review, volume 21, pages
49–57, January 2007.

[29] G. J. Holzmann. The SPIN Model Checker.
Addison-Wesley, 2004.

[30] R. Iosif, M. B. Dwyer, and J. Hatcliff. Translating java
for multiple model checkers: The bandera back-end.
Formal Methods in System Design, 26(2):137–180,
March 2005.

[31] L. T. Kohn, J. M. Corrigan, and M. S. Donaldson,
editors. To Err Is Human: Building a Safer Health
System. National Academy Press, Washington, D.C.,
1999.

[32] B. S. Lerner. Verifying process models built using
parameterized state machines. In ACM SIGSOFT Int.
Symp. on Software Testing and Analysis, pages
274–284, New York, USA, 2004.

[33] G. Molino, P. Terenziani, S. Montani, A.Bottrighi,
and M. Torchio. Glare: a domain-independent system
for acquiring, representing and executing clinical
guidelines. In J. of the Amer. Medical Informatics
Association (JAMIA) Symposium supplement, 2006.

[34] R. Noumeir. Radiology interpretation process
modeling. J. of Biomedical Informatics, 39(2):103–114,
2006.

[35] L. J. Osterweil, N. K. Sondheimer, L. A. Clarke,
E. Katsh, and D. Rainey. Using process definitions to
facilitate the specification of requirements. Technical
report, Department of Computer Science, University
of Massachusetts Amherst, 2006.

[36] S. Paul, E. Park, and J. Chaar. Rainman: a workflow
system for the internet. In USENIX Symp. on Internet
Technologies and Systems, Berkeley, CA, 1997.

[37] M. S. Raunak, B. Chen, A. Elssamadisy, L. A. Clarke,
and L. J. Osterweil. Definition and analysis of election
processes. In SPW/ProSim 2006, volume 3966 of
LNCS, pages 178–185, Shanghai, May 2006.

[38] M. S. Raunak and L. J. Osterweil. Effective resource
allocation for process simulation: A position paper. In
6th International Workshop on Software Process
Simulation and Modeling, St. Louis, MO, May 2005.

[39] P. P. Reid, W. D. Compton, J. H. Grossman, and
G. Fanjiang, editors. Building a Better Delivery
System: A New Engineering/Health Care Partnership.
National Academy Press, Washington, D.C., 2005.

[40] M. Ruffolo, C. Information, and R. Curia. Process
management in health care: A system for preventing
risks and medical errors. In Business Process
Management, pages 334–343, 2005.

[41] Y. Shahar, S. Miksch, and P. Johnson. The asgaard
project: a task-specific framework for the application
and critiquing of time-oriented clinical guidelines.
Artificial Intelligence in Medicine, 14(1-2):29–51, 1998.

[42] D. H. Stamatis. Failure Mode and Effect Analysis:
FMEA from Theory to Execution. Amer Society for
Quality, March 1995.

[43] D. R. Sutton and J. Fox. The syntax and semantics of
the proforma guideline modeling language. In Journal
of the American Medical Informatics Association,
volume 10, pages 433–443, Sep-Oct 2003.

[44] J. S. M. Sutton, D. Heimbigner, and L. J. Osterweil.
Appl/a: a language for software process programming.
ACM Trans. on Software Engineering and
Methodology, 4(3):221–286, 1995.

[45] A. ten Teije, M. Marcos, M. Balser, J. van
Croonenborg, C. Duelli, F. van Harmelen, P. Lucas,
S. Miksch, W. Reif, K. Rosenbrand, and A. Seyfang.
Improving medical protocols by formal methods.
Artificial Intell. in Medicine, 36(3):193–209, 2006.

[46] P. Terenziani, L. Giordano, A. Bottrighi, S. Montani,
and L. Donzella. Spin model checking for the
verification of clinical guidelines. In ECAI 2006
Workshop on AI techniques in healthcare:
evidence-based guidelines and protocols, August 2006.

[47] L. van der Gaag, S. Renooji, C. Witteman, B. Aleman,
and B. Taal. Probabilities for a probabilistic network:
a case study in oesophageal cancer. Artificial
Intelligence in Medicine, 25(2):123–148, June 2002.

[48] W. Vesely, F. Goldberg, N. Roberts, and D. Haasl.
Fault Tree Handbook (NUREG-0492). U.S. Nuclear
Regulatory Commission, Washington, D.C., Jan. 1981.

[49] D. Voak, J. Chapman, and P. Phillips. Quality of
transfusion practice beyond the blood transfusion
laboratory is essential to prevent abo-incompatible
death. Transfusion Medicine, 10(2):95–96, June 2000.

[50] J. M. Wilkinson and K. V. Leuven. Fundamentals of
Nursing. F. A. Davis Company, June 2007.

[51] J. M. Wilkinson and K. V. Leuven. Procedure
checklist for administering a blood transfusion.
http://davisplus.fadavis.com/wilkinson/PDFs/

Procedure_Checklists/PC_Ch36-01.pdf, 2007.

