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Introduction 

Little-JIL is an agent coordination language. Programs in Little-JIL describe the order 
of, and the communications between, units of work called steps. By assigning steps 
to agents, a Little-JIL program assists the agents in the completion of a process. 

Agents and steps 

A Little-JIL agent is an autonomous entity that is an expert in some part of the 
process described by a Little-JIL program. An agent may be human (e.g., a 
programmer in a software development process or a ticket agent in a trip planning 
process) or automated (e.g., a recompilation tool or a flight reservation system), in 
either case, an agent may be assigned work and is required to report back the 
success or failure of the work when the work is done. 

A step is a specification of a unit of work that is assigned to an agent. Each step may 
contain a specification for the information and resources that are required (e.g., a 
detailed design for a programming task), pre-requisites that must be satisfied before 
an agent can begin the work (e.g., that all members be present for a meeting to 
start), the decomposition of the work into smaller steps (if appropriate), and post-
requisites to check that the work was completed correctly (e.g., that a ticket is issued 
when a plane reservation is made). A step also specifies how it should respond to 
events that may occur during its execution, and errors that may be reported during 
the execution of the decomposition. 

Each step is assigned to an agent by posting it onto an agenda for the agent. Each 
agent has one or more agendas that the agent can examine to determine the work 
assigned to it. 

Relationship to other languages 

Because Little-JIL is designed as a coordination language, it omits some of the 
common characteristics of conventional programming languages. For example, Little-
JIL lacks: 

 Typical imperative programming statements, and 

 Type declaration mechanisms. 
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Instead, these features are represented as external factors to be provided by the 
agent environment in which Little-JIL is used. For example, within LASER, we have 
developed a Little-JIL environment (which we call Juliette) that uses Java to provide 
these features. 

This separation is not new. The separation of coordination from computation was 
central to the design of the Linda coordination language, however Little-JIL offers 
several features that we believe makes the language particularly suited to the 
domains of agent coordination and process programming. Most significantly: 

 The blending of proactive and reactive control mechanisms through the sub-step 
mechanism and pre- and post-requisites to specify proactive control, and 
reactions and exception handlers for reactive control. 

 Using resources as a means of constraining and managing process execution, 
and 

 The use of steps as programming language scopes. 

Visual notation 

Little-JIL is a visual language and programs are written in Little-JIL by drawing a 
graphical depiction of the program. This report documents the semantics and the 
graphical representation of Little-JIL. Some information in a Little-JIL program may 
not be directly represented in the graphical depiction. Such information is “attached” 
to the depiction and is connected to the depiction in a Little-JIL editor via hyper-
linking, or, in a static representation, via call-outs. 
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Steps 

A step is the basic building block of Little-JIL programs. A step represents a unit of 
work in the process and may be decomposed into sub-steps. 

Every Little-JIL program has a root step that represents the entire process. This step 
is decomposed as far as necessary to describe the process. 

Declaring steps 

A step icon represents each step in a Little-JIL program. 

StepName

Interface Badge

Prerequisite Badge

Handlers Badge

Postrequisite Badge

Sequencing Badge

!!

Reactions Badge

Step Bar !

 
 
The Little-JIL step icon includes a step name, and may be annotated with badges, 
which are vehicles for providing additional information about the step or to indicate 
the control flow within the step. Information on each of these elements is described 
below. 

Step execution 

At run-time, the steps in a Little-JIL process program are treated as templates, from 
which instances are created. After instantiation, conceptually, a Little-JIL step 
instance is in one of five states: posted, retracted, started, completed, or terminated. 
Optional steps have a sixth state: opted-out. Normally, a step moves through the 
states: posted, started, and completed. 

Posted

Started

Completed

Terminated

Retracted

Opted-Out

 

 Posted: When the proactive or reactive elements of the process indicate that a 
step is eligible to be started, the resource manager is queried to determine that 
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the resources required by the step exist, the steps parameters are initialized, an 
agent is assigned, and the step is posted to the agenda of the assigned agent to 
indicate that there is work to be done. 

 Started: A step is started when the agent indicates that it wishes to begin the 
work specified by the step. When a step is started, the resources specified by the 
step are acquired and the pre-requisite is checked. If the resources are acquired 
and the pre-requisite is successfully executed, then the work is allowed to begin. 

For a step with sub-steps, started means the appropriate sub-steps are posted. 
The sequencing badge of the step specifies the order in which the sub-steps are 
posted. 

For a step without sub-steps (a leaf), a started step is one that is being 
performed by an agent.  

 Completed: A completed step is one whose work was finished successfully. 
When the work specified by a step is finished, the post-requisite is checked, 
resources are released, and the step’s parent (if any) is informed that the step is 
done. 

A step with sub-steps is completed when all of its sub-steps are retracted, 
completed, or terminated, and its post-requisite has been successfully executed. 

A step with no sub-steps is completed when the agent informs the agenda 
manager that the work is done and its post-requisite is completed. 

 Terminated: A terminated step is one that failed to complete its specified work. 
Step termination may occur as a result of an exception within the step, thrown by 
its requisites, or propagated up from a sub-step. A step that cannot acquire its 
resources is always terminated. As with completed, a terminated step releases 
its resources. 

 Retracted: A retracted step is one that is removed from an agenda after having 
been posted but without being started by an agent. Steps are usually retracted as 
a consequence of their being unchosen alternatives in a choice step, but steps 
may also be retracted (and potentially reposted) as a result of exceptions. When 
a retracted step is reposted, it may be posted to a different agent than the 
previous instance. 

 Opted Out: An opted-out step is an optional step that the agent has indicated 
that they will not start. 

Sub-steps 

Sub-steps of a step are drawn below the parent step and are connected by arcs 
between the top of the sub-step and the sequencing badge of the parent step. 
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Grocery Shop

Go To Bank Go To Market

!

Get Milk Get Eggs
!

Get Whole Get Skim Get Brown Get White

!

 

References 

StepName

 

Each step in a Little-JIL program is defined exactly once; however, it may be used 
multiple times. These uses are represented by references. A reference is 
represented with italicized text and without badges. 

Documentation and annotations 

StepNameSample documentation

 

Steps may have arbitrary annotations attached to the step bar. If attached via call-
out, it should be typographically distinct from the surrounding information (e.g., 
colored or italicized). 

Modules  

Modules provide a mechanism to package and reuse Little-JIL processes. Modules 
may contain a list of steps that are exported (i.e., defined in the module and are to be 
made available to other modules), and a list of steps that are imported, (i.e., used by 
the module, but are not defined within the module 

Exported steps 

Exported steps are identified by the inclusion of an export arrow after the name in the 
step declaration. 

StepName !
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Imported steps 

Imported steps are identified by the inclusion of an import arrow before the name in 
the step reference. 

! StepName

 

Sequencing 

The sequencing badge on the left side of the step bar represents the sequencing for 
a step. The sequencing badge specifies the execution order for a step’s sub-steps. 
Steps may have one of five types of sequencing associated with them: none, 
sequential, parallel, choice or try.  

None 

StepName

 

If the sequencing badge for a step is empty, the step cannot have sub-steps, and is 
performed entirely by the agent assigned the step. 

Example activity with no sequencing: Go to the bank. 

Sequential 

StepName

!
 

If the sequencing badge is an arrow, the step sequencing is sequential. 

A sequential step posts each of its sub-steps in order from left to right, posting the 
next sub-step when the previous one completes. A sequential step is complete when 
all of its sub-steps have completed. 

Example sequential activity: go to the bank and then to the market. 
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Parallel 

StepName

 

If the sequencing badge is two horizontal lines, the step sequencing is parallel. 

A parallel step posts all of its sub-steps concurrently, and is complete when all of its 
sub-steps have been completed. It is important to note that a parallel step indicates 
that the sub-steps could be done in parallel, not that they must. 

Example parallel activity: get milk and eggs. 

Choice 

StepName

 

If the sequencing badge is a small circle through a horizontal line, the step 
sequencing is choice. 

A choice step allows agents to select one of several sub-steps to perform.  When one 
step is selected to be performed, the other sub-steps are retracted. If the sub-step 
succeeds, the choice is complete. Handlers (see below) can allow the agent to make 
another selection if the sub-step fails. 

Example of a choice: get either skim or whole milk. 

Try 

StepName

!!
 

If the sequencing badge is an arrow crossed with an ‘X’, the step sequencing is try. 

A try step allows agents to try alternative sub-steps left to right until one of them 
succeeds. When a sub-step succeeds, the try is complete. Handlers are used to 
specify when to try the next alternative. 

Example of try: get brown eggs or white ones if brown are not available. 
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Step Interface 

The interface to a step specifies the resources used by the step, the parameters of 
the step, the channels the step declares, and the exceptions and messages that may 
be propagated from the step. The declarations included in a step interface are 
documented below. 

 

The interface to a step is attached to the interface badge of a step. If a step has an 
interface specified the badge should be colored. 

Resources 

The execution of real-world processes is heavily influenced by the availability of 
people and materials. For example, an automobile assembly line cannot build cars 
without parts, or operate without skilled labor; similarly, a dealer cannot sell more 
cars than the assembly line can produce. Little-JIL process specifications can 
address these influences through the specification of the resources that manage and 
constrain the process. 

What is a resource? 

Intuitively, a resource is any entity for which there is contention for access. The 
product of one step may be a resource to another. In our example above, the car is a 
product of the assembly line, but a resource to the dealer. The set of resources 
modeled in a process is specified in a resource model. 

Declaring resources 

Hold Meeting

! room: LargeRoom

 

All resource declarations have a mode, and a name. There are five modes for 
resource declarations: acquisitions, uses, collections, iterators, and collection uses. 
Additionally, resource declarations that query the resource manager have an 
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associated resource specification. The resource specification language is external to 
Little-JIL.† 

Resource acquisition 

A resource acquisition declares a resource that must be acquired before the step can 
begin execution. A resource acquisition is identified with a filled dot (●). 

Resource use 

A resource use is identified with an open dot (). A resource use declares a 
resource that will be provided by another step. 

Resource collection 

 A resource collection is identified by two filled dots ( ). A resource collection is a 
(potentially empty) subset of the resource model. Resource collection can be used as 
a vehicle for representing groups of resources within a program (E.g., to model 
programmer teams.) 

Resource collection iterator 

A resource collection iterator is identified by two dots and an arrow ( ). A resource 
collection iterator is a resource collection that shares iteration state between all of its 
uses. For more information on iterating over resources, see “Cardinality” below. 

Resource collection use 

A resource collection use is represented by two open dots ( ). A resource collection 
use declares a resource collection that will be provided by another step. 

Agent defined collection 

Resource collection uses can also be used as a mechanism to allow agents to select 
resources by allowing the agent to specify the collection from which the resources will 
be acquired. 

Agents as resources 

There is one type of resource that is special to a Little-JIL step, namely its agent. An 
agent may be declared as a resource for the step, or if no agent is declared, the 
agent is inherited from the parent step. If a step specifies an agent, the resource 
manager binds an agent to the step as part of instantiation. Each step must have an 
agent, therefore every process program must at least declare an agent for the root 
step. 

The agent for a step must be named ‘agent’. 

                                                        
† Note: the simple type names (e.g., LargeRoom in the above figure) are not intended to represent any 
particular resource specification language. 
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Using resources 

If a Little-JIL resource declaration is a resource acquisition, it identified when a step is 
posted to an agent to ensure that there exist resources that match the step’s 
descriptions, and is acquired (locked for use) when the agent begins the step. 
Resources may be passed from one step to another or shared between steps via 
parameter bindings. Resources are released (unlocked) when all steps using the 
resource complete or terminate. The order for resource management operations for a 
step is undefined; if resources need to be acquired or otherwise managed in a 
specific order, the Little-JIL step structure can be used to program an ordering. 

When acquired, the external resource manager provides a handle for accessing the 
resource. The agents access these handles in the same manner as parameters. 

Resource exceptions 

After an attempt is made to identify or acquire the resources, if one or more cannot 
be identified or acquired, a subtype of ResourceException is thrown to the parent of 
the identifying or acquiring step for each failure: 

 ResourceUnknown is thrown if no matching resource can be identified in the 
resource model. 

 ResourceUnavailable is thrown if a matching resource exists, but cannot be 
acquired. 

Resource exceptions have an attribute name that contains the name of the resource 
that could not be identified or acquired. 

Parameters 

Parameter passing is a mechanism that can be used to communicate information 
between parents and children in the sub-step hierarchy of a Little-JIL program. 

Declaring parameters 

Little-JIL steps may have parameters. Each parameter has a name, type, mode, and 
an optional default value.. 

Assign Work

! dueBy: Date

 

Parameter names 

The name of a parameter is used to identify the parameter. The name is used in 
parameter bindings, and to communicate with the agent. 
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Parameter types 

A parameter declaration specifies a parameter’s type. The type however, is declared 
externally to Little-JIL. 

Parameter modes 

Parameters are communicated via copy-in/copy-out and have one of four modes: in, 
out, in/out, or local: 

 In parameters are represented by an arrow pointing down (↓). 

The value for an in parameter is copied into a step when the step is posted. 

 Out parameters are represented by an arrow pointing up (↑). 

The value for an out parameter is copied out if the step completes. 

 In/out parameters are represented by an arrow pointing both down and up (). 

The value for an in/out parameter is copied into a step when the step is posted 
and is copied out if the step completes. 

 Locals are represented by a diamond (◊). 

A local is a parameter that is created within a step to allow communication 
between its sub-steps. Locals are only visible to the sub-steps of the step in 
which they are declared. 

Default values 

If a value is not copied into a parameter when it is posted, the parameter is 
initialized to the specified default value, as shown below, or if no default is 
specified, to the default value specified by the external type model. 

Write Novel

! author: Name = “A. Nonymous”

 

Passing of parameters 

Parameters are passed between steps via parameter bindings. A binding associates 
a constant or a parameter in a step with a parameter in a sub-step of that step. The 
binding of a parameter is represented by the notation: 

sub-step-parameter arrow parent-step-parameter or constant 

The arrow is matched to the direction the information flows (determined by the mode 
of the sub-step’s parameter. Parameter bindings are attached to a badge drawn on 
the arcs between steps. The badge should contain arrows drawn to match the union 
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of the parameter modes for the sub-step (e.g., if a step has an in/out or an in and an 
out parameter, arrows pointing up and down should be drawn). 

Example of parameter binding: 
Pass parameter carton of step Parent to step Child as parameter glass. 

Parent

Child

!

" carton: Container

glass # carton

" glass: Container

 

Parameter compatibility 

Two parameters are compatible if their types are compatible, and their modes permit 
their values to be copied in, or out, as appropriate. For an in/out parameter, the 
parameter is mode compatible with several different modes, and it is possible to have 
separate bindings for the in and out operations. The external type model defines type 
compatibility. 

Binding to a constant 

A parameter may be bound to a constant value if the parameter mode is in or in/out. 

Structured parameters 

While type declarations are external to Little-JIL, some information about the type 
may be used from within the language. For structured types such as collections and 
aggregates, bindings may access and update their contents. 

Members of a collection 

If a parameter is an instance of a collection type, the contents of the collection may 
be accessed or modified by appending ‘[]’ to the parameter or field name: 

parameter ← collection[] 

 

Fields of an aggregate 

If a parameter is an instance of an aggregate type, the fields of the aggregate may be 
accessed or modified by appending a the field name after a period to the parameter 
name or collection member: 
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parameter ← aggregate.field 

Resource bindings 

Resources may also be passed between step using parameter bindings. For 
purposes of determining compatibility, resource acquisitions may be copied into 
resource uses and resource uses may be copied into other resource uses. Similarly, 
resource collections and resource collection iterators may be copied into resource 
collection uses, and resource collection uses may be copied into other resource 
collection uses.  While all resource declarations may be copied, only resource uses 
may be assigned. 

In addition to being passed around like parameters, resource collections, resource 
collection iterators, and resource collection uses may be used as constraints on other 
resource declarations. A constraint restricts the selected resource or resources to be 
from the constraining collection rather than the entire universe of resources. 

Constraints are specified as part of parameter bindings, and are represented by a 
vertical bar drawn between the resource declaration in the child and the collection in 
the parent. 

 
Example: The agent for step Child is selected from the collection team: 

Parent

Child

!

   team: Group

agent | team

! agent: Instance

 
 

Channels 

Channels provide a communication mechanism that is not tied to the hierarchical 
structure of Little-JIL. The semantics of channels support data-centric 
synchronization based on those in Linda. While channels can be used in many 
situations, they are essential for supporting communication between potentially 
parallel threads of execution. 

Declaring channels 

Little-JIL steps may declare channels. Each channel has a name and a type. 
Channels are identified iconically by a horizontal double arrow. 
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Channel names 

Each channel has a declared name that is used when addressing the channel. The 
visibility of a channel is limited to the sub-steps of the step in which it is declared. 

Channel types 

Channels are typed and contain a homogeneous collection of artifacts. If the artifact 
model supports inheritance it may be used to create heterogeneous channels. 
Channels are ordered: artifacts are retrieved from the channel “first in, first out” 
(FIFO). However, order may not be preserved if there are concurrent reads/takes. 
Channel types may support either insert or replace semantics. 

Accessing channels 

As with parameter flow, channel operations represented as bindings associated with 
connectors between steps and are coupled to the life cycle of a step instance. 

 

Write 

“Write” copies the object of an out or in/out parameter into a channel when a step 
instance completes. As with copy-out, if the step instance terminates, the write does 
not take place. Write is represented with an open triangle with the point to the right 
(). 

Read 

“Read” copies an artifact from a channel into an in or in/out parameter of a step 
instance. As with copy-in, the read takes place in preparation for posting the step. If 
the channel is empty, the instance is not posted until an artifact becomes available. 
Read is represented with an open triangle with the point to the left (). 
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Take 

“Take” is similar to “read” except that the artifact is removed from the channel and 
ensures that only a single step instance receives the artifact. If the step instance is 
retracted or terminated without reaching the started state (e.g., in the event of a pre-
requisite failure), the taken artifact is returned to the channel. In to attempt to 
preserve the channel order, the artifact is returned at the head if the queue. However, 
if another artifact is read or taken from the channel between when the first take is 
performed and when the first artifact is returned (as can be the case for multiple 
concurrent accesses), the order will not be preserved. Take is represented with a 
closed triangle with the point to the left (). 

Non-blocking reads and takes 

 

Reads and takes may be set to be non-blocking, which results in the parameter being 
bound to the types default (the same value that a local will be set to if there is no 
initializer) if no data appears on the channel when the step is posted. 

Not blocking reads and takes are identified by a question mark after the read or take 
to identify the action as optional. 

Connectors with multiple channel accesses 

If there is more than one read and or take on a connector the order of the reads and 
or takes is undefined. 

Interaction with parallel and choice sequencing 

The semantics for Little-JIL parallel and choice specify that the sub-steps are posted 
atomically. This will result in the delay in posting of all of the sub-steps in the event 
that any of them are waiting on a channel. If asynchronous posting is desired, the 
creation of additional scopes may be used. 

Cardinality 

Cardinality is a mechanism for expressing the optionality or repetition of a step. The 
number of instances of a step that should be created may be specified statically 
within a process, be determined by the agent assigned to the steps, or process 
programmers may indicate that step instances should be created based on the 
availability of artifacts or resources. 
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Static and agent bounds 

3

Step

SubStep

!

 

The cardinality of a connector is displayed adjacent to where the connector is 
attached to the sub-step as shown above. Refer to the table below for the notation 
used to indicate the cardinality of the sub-step. 

When cardinality is applied to an edge, the sequencing badge on the parent 
determines the execution semantics of the associated sub-step. 

Agent control 

If the cardinality is not a single static bound (e.g., 3), then during at least some part of 
the execution, the repeated execution of the step must depend on some external 
decision maker. If no other decision maker is specified (e.g., a resource bound), the 
agent assigned to the step controls the execution through the ability to opt out of a 
step instead of starting it. Agents can only opt out of step if the cardinality permits it, 
so if a step has a cardinality of a range of 3..5, the agent is only permitted to opt out 
on iterations 4 and 5. If all of the sub-steps of a choice or try step have been opted-
out, the exception NoMoreAlternatives is thrown. 

For a step with a sequential or try sequencer, after a step instance completes (or 
terminates for try), the next step instance is presented until the upper bound is 
reached, or the agent decides to opt out instead of starting the instance. For parallel 
or choice sequencers, enough instances are posted to satisfy the lower bound, and 
then another instance of the step is posted immediately upon the starting of a step 
instance until enough instances have been posted to satisfy the upper bound. This 
mechanism rolls out the optional instances sequentially (when one instance is 
started, another is posted.) 

? This step is optional (zero or one times.) 

+ Do this step at least one time. 

* Do this step zero or more times. 

Number Do this step exactly number times. 

Lower .. Upper Do this step at least lower times, and at most upper 
times. Both lower and upper are numbers. 

Number+ Do this step number or more times. 
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Interaction with continue 

The execution semantics of cardinality interact with the exception handling 
mechanism of Little-JIL when an exception that is thrown during the execution of a 
step with a cardinality edge is handled with a continue. 

Continue will return execution into the iteration unless the iteration has already 
satisfied its lower bound. For example, if an exception is thrown on the 2nd iteration of 
a step with a cardinality of 3..5, the third iteration will be posted, but if the 3rd iteration 
terminates, continue will resume execution after the iteration. Note that this means it 
is impossible to resume an iteration marked with kleene-star (*). 

Resource or artifact bounds 

resource+

Step

SubStep

!

 

The number of instances of a step can be controlled by the contents of a collection or 
the availability of resources in the resource model. Such bounds are represented by 
including the name of one of the parameters or resources declared in the step as part 
of the cardinality. Resource or artifact bounds may be combined with static bounds to 
express constraints on the minimum and maximum number of instances required. 
The constraint is written following the resource or parameter name in parenthesis 
(e.g., parameter (3..5)) except for kleene-star, kleene-plus, and optional, where the 
parenthesis are omitted (e.g., resource+). The default cardinality of a resource or 
artifact bound is kleene-plus which means use all available resources or artifacts in 
the collection and require that there be at least one. 

As above, the sequencing badge on the parent step determines whether the steps 
are posted in parallel or sequentially. 

For a sequential or try step, each instance is assigned a unique resource or artifact. 
The iteration is finished when the contents of the collection or set of available 
resources is exhausted. For resource bounds, each instance requires an interaction 
with the resource manager to select a new resource in order to avoid the possibility 
that resources may be removed from the resource model during execution. A side 
effect of this interaction is that resources added after the iteration begins may be 
included in the iteration. 

The behaviors of parallel and choice steps are similar to those of sequential and try, 
except that all iterations are posted when the parent step is started. Note that for 
resource bounds, unlike in the sequential case, if additional resources that could be 
part of the iteration are added to the resource model after the parent step is started, 
they are not added to the iteration to avoid the potential for a race condition between 
completing a step and adding resources. 
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If a parameter bound to a channel is used to iterate over the contents of a channel, 
as with resource-bounded iteration, for parallel and choice steps, races are avoided 
by bounding the iteration to the items in the channel at post time. 

Resource collection iterators  

Resource collection iterators may be combined with resource bounds to share 
iteration state between multiple steps. Resource bounds constrained by a resource 
collection iterator have the characteristic that when a resource instance is acquired, 
the instance is not available to be selected by future acquisitions constrained by the 
same iterator. 

 
Example: The agents for the steps Child 1 and Child 2 are both selected from the collection 
team, but cannot be the same agent: 

Parent

!

   team: Group

Child 1

agent | team

Child 2

agent | team

 
 

Predicates 

Predicates provide a conditional mechanism to control the posting of sub-steps. A 
predicate appears as a parenthesized expression in the cardinality and are mutually 
exclusive with the agent and resource or artifact-controlled mechanisms.  

 

Predicate language 

Since predicates are dependent on the particular model of the artifact definition 
language the predicate language is external to Little-JIL. 

Predicate evaluation 

Predicates are evaluated after all of the input parameters are bound. If the predicate 
evaluates to true, the sub-step is posted, if false, the sub-step is not posted, and 
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execution of the parent step continues as if the sub-step did not appear. For 
example, if the parent is a sequential step, the next step in the sequence is 
evaluated. 

Namespace 

Predicates are evaluated within the context of the step to be posted. All parameters 
are bound before the expression is evaluated except for resources, which are not 
available since they will not be acquired until the step is started. 

 

Requisites 

Requisites provide a mechanism to define guards on the entry to and exit from steps. 
If a requisite fails, the requisite throws an exception that is propagated to the parent 
of the step, which may have a handler specified to recover from the failure. 

Requisites specification 

A requisite is a step that is referenced from the pre- or post-requisite badge of 
another step. Each step may have a single pre-requisite and a single post-requisite. 
If a step has multiple pre- or post-requisites, these must be grouped under a common 
step, and step decomposition is used to specify the order of evaluation. 

Steps as requisites 

If a requisite is a step, the reference representing the requisite is attached to the pre- 
or post-requisite badge depending on whether it should be checked before or after 
step execution. If a step has requisites associated with it, the appropriate badge(s) 
should be colored. 

Hold Meeting
RoomReserved

room ! location

 

Passing parameters to requisites 

Parameters may be passed to a requisite step. Since a requisite should not have 
side effects, a requisite may not have out or in/out parameters. The parameter 
binding for a requisite is attached to the requisite’s name. In a static-representation, 
the bindings may be shown as indented under the requisite name. 

Requisite execution 

If a requisite is executed and throws an exception, it is considered to have failed and 
the step with which the requisite is associated is terminated. 
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Predicates as requisites 

Predicates may be used as requisites and are represented by attaching the 
expression and associated exception type separated by the keyword ‘else’ to the 
appropriate requisite badge. 

 

Namespace 

As with predicates, the expression of a simple requisite is evaluated within the 
context of the associated step. 

Exceptions 

Exceptions in Little-JIL can be thrown by the interpreter to indicate that a resource or 
parameter is unavailable or by agents to indicate that they could not complete a step. 
Each step specifies the exceptions that can be thrown from the step. 

Exception specification 

StepName

! ExceptionName

 

All of the exceptions that can be thrown by a step are specified in the step interface 
and are marked with a cross (✕). Exceptions thrown by the interpreter (e.g., resource 
and parameter exceptions, see the appendix for a complete list) are implicitly thrown 
from a step and do not need to be declared in the step interface. 

Exceptions are defined with a type external to Visual-JIL, just as parameters are 
defined. 

Handlers 

Handlers handle exceptions in Little-JIL. If an exception thrown to a step and the step 
does not have a handler for it, the step is terminated and the exception is propagated 
to the parent step. 
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Handler specification 

Parent

!

Handler

! ExceptionTypeName

" RestartStep

…

 

Handlers are drawn below the parent step and are connected by an arc to the 
handler badge. The continuation and specification of the handled exception is 
attached to the connecting arc. 

Handler exception specification 

A handler exception specification contains the type of the exception and optionally a 
set of attribute name, value pairs. The pairs are written 

name = value 

Exception matching 

An exception matches a specification if the exception is of the same as the type 
specified and the exception’s attributes have the same values as all attributes 
included in the specification. In cases where an exception matches more than one 
specification the left-most matching specification is used. 

Handler actions 

When an exception is thrown to a step, it is queued until the step has no posted or 
started sub-steps. When an exception is queued, any posted sub-steps are retracted. 
When no posted or started sub-steps remain, an attempt is made to match the 
exception with the handler exception specifications for the step. If a match is found, 
the corresponding handler is executed. If a step does not have a handler for the 
exception, the step is terminated and the exception is thrown to the parent of the 
step. 

Handler steps 

When an exception is handled, the handler may post a handler step for the exception 
to “clean-up” or otherwise react to the exception. 

Passing exceptions as parameters 

Exception objects may be passed into any type compatible in or in/out, parameter in 
the handler step. The parameter name and an arrow to the left of the exception 
declaration represent the binding. 



 

22 

Example: If reading the secret fails, log the attempt, passing the logging step the exception as 
‘logged.’ 

GetSecret

!

LogAttempt

! logged " AccessDenied

ReadSecret

#

$ logged: AccessDenied! AccessDenied

 

Handler control-flow badges 

Whether or not a handler posts a handler step, the handler specifies if the executing 
step should continue, complete, rethrow, or restart. 

Continuing the step  

The exception is discarded and execution of the step with the exception handler 
continues, re-posting any retracted sub-steps. Continuation is represented by an 
arrow (→). 

The exact meaning of continuation depends on the context in which it is used: 

 Parallel and choice steps re-post all of the sub-steps retracted when 
exception processing began. 

 Sequential and try steps post the next sub-step. 

If all sub-steps are completed or terminated and an attempt is made to continue a 
step then: 

 Sequential and parallel steps are completed. 

 Choice and try steps are terminated and the exception NoMoreAlternatives 
is thrown. 

Example of continue after an exception: 
If we can’t get popcorn, we can still see the movie.  

! NoPopcorn

GoToMovies

!

GetPopcorn SeeMovie

!

! NoPopcorn
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Completing the step 

The exception is discarded and control passes immediately to post-requisite 
evaluation. As a result, postrequisites are evaluated after the complete control-flow is 
used. Represented by a check (√). 

Example of complete after an exception: 
Try to call mom on her birthday. If she is not home, that is OK.  

! NoAnswer

Birthday Wishes

!

Call Mom

"

! NoAnswer

 

Rethrowing the exception 

Rethrowing an exception terminates the step as if it had not handled the exception. 
allowing a handler to respond to an exception without recovering. Represented by an 
arrow pointing up (↑). 

Example of rethrowing an exception after a handler: 
Read secret information, if access is denied, log the attempt and terminate. 

GetSecret

!

LogAttempt

! AccessDenied

ReadSecret

"

! AccessDenied

 

Restarting the step 

Restarting a step discards the exception and begins execution of the step again. 
When a step is restarted, parameters are re-bound, all resources are re-acquired 
(including the agent), and pre-requisites are re-checked. Represented by an angled 
back-arrow (↵). 

The use of restart is discouraged as a means of implementing rework since it 
discards valuable context information. 
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Example of restarting a step after a handler: 
Make a phone call, if it is the wrong number, re-dial. 

Make Call

!

Dial Phone

!

! Wrong Number
" Wrong Number

 

Multiple exceptions 

Due to the potential concurrency in the execution of the sub-steps of a parallel step, 
a step may need to handle multiple exceptions. If a step’s exception queue contains 
multiple exceptions, the queue is evaluated in the following order: 

1) First, any handler steps for the exceptions in the queue are posted, and the 
interpreter waits until all of these steps have completed or terminated. If the 
handler steps themselves throw exceptions, those exceptions are queued to be 
re-thrown to the step’s parent. 

2) Next (or if there are no handler steps in the queue), if there are any exceptions 
without matching handler specifications, if any of the handlers threw exceptions, 
or any of the executed handlers have rethrow control-flow badges, the step is 
terminated and the unhandled and rethrown exceptions are passed up to the 
parent. Any other exceptions are discarded. 

3) Finally, if the step was not terminated in step 2, the control-flow badges 
(complete, restart, or continue) are processed: 

 
a) If any handlers indicate that the step should complete, the step is completed 

(without processing the other control-flow badges). 

b) If any handlers indicate that the step should restart but none indicate that the 
step should complete, the step is restarted (without processing the other 
control-flow badges) 

c) Otherwise, execution of the step continues. If there are retracted sub-steps 
then they are re-posted. 
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Deadlines 

A deadline in Little-JIL is a point in time by which a step must have completed. 

Deadline specification 

StepName

! deadline: 30min

 

Deadlines are associated with Little-JIL steps through the specification of the 
specially named ‘deadline’ parameter on the step. Steps with deadlines are indicated 
by the inclusion of clock hands on the interface badge for the step. Deadlines are 
specified as durations measured from the point in time when the step is posted. 
When a deadline expires, the exception DeadlineExpired is thrown to the parent of 
the step with the expired deadline. 

Messages 

Messages may be sent during the execution of a Little-JIL program to signal the 
occurrence of events. Messages in Little-JIL are sent by the interpreter to allow 
processes to react to their own execution, and may be sent by agents. Each step 
specifies the messages that the agent may send during the performance of that step. 
An agent may only send the messages associated with a step when the step is in the 
started state.  

Message specification 

StepName

! MessageName

 

All of the messages that can be sent are specified in the step interface and are 
marked with a lightning bolt (). Like exceptions, messages are specified in the 
parameter type model. Messages sent by the interpreter (e.g., step started) are 
specified in the appendix and do not need to be specified in the step interface. 

Reactions 

Reactions provide a mechanism for dynamically responding to the arrival of 
messages.  Messages can be sent by agents, environment services (e.g., an object 
manager), or by the run-time in response to events within the process. 
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Reaction specification 

Reactions are represented by steps drawn below the parent step and are connected 
by an arc to the reactions badge. The specification of the message is attached to the 
connecting arc. 

Parent

Reaction

MessageName

!

  

The reactions associated with a Little-JIL step instance are only active while the 
instance is in the started state. Little-JIL reactions post sub-steps in response to 
messages. Since the sub-steps are posted immediately upon receipt of a message, 
these step instances can always be executed in parallel with the proactive sub-steps 
and each other. Similar to a parallel step, reactions delay the completion or 
termination of a step until the reactions complete; unlike a parallel step, posted 
reactions are not retracted and must be completed. 

Message specification 

As with exceptions, a message specification contains the type of the message and 
optionally a set of attribute name, value pairs. The pairs are written 

name = value 

Message matching 

The matching rules for messages are the same as those for exceptions. Unlike 
exceptions, all started steps with matching message specifications handle messages. 
As with exception handlers, search for matching message specifications proceeds 
left to right, and stops when a matching reaction is found. This is similar to the top 
down search rules in the programming language Prolog. 

Passing messages as parameters 

As with exception handlers, message objects may be passed into any type 
compatible in or in/out, parameter in the reaction step. The parameter name and an 
arrow to the left of the message declaration represent the binding. 

Restrictions on reactions 

Step instances posted by reactions are forbidden from throwing exceptions. This 
restriction prevents a reaction from changing the proactive control-flow specified in a 
process. This means a reaction cannot have a pre- or post-requisite. However, the 
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sub-steps of a reaction step may throw exceptions as long as there is a handler for 
the exception within the reaction sub-tree. 

Process messages 

During execution, the Little-JIL interpreter sends the messages in response to events 
in the execution of the program including the posting, starting, and stopping of steps. 
The complete list of messages is included in the appendix.Appendix: Little-JIL Types 

Exceptions 

ProcessException 
An abstract exception type for all exceptions thrown by the Little-JIL interpreter. 
Attributes: 
 SourceStep: the step instance from which the exception was thrown. 

NoMoreAlternatives 
Subtype of Process Exception. An exception that indicates a choice or try step 
cannot be continued as all of the alternatives have been exhausted. 

Resource exceptions 

ResourceException 
Subtype of ProcessException. An abstract exception type for all resource exceptions. 
Attributes: 
 Name: the name of the resource that could not be identified or acquired. 

ResourceUnknown 
Subtype of ResourceException. An exception that indicates that no resource exists 
that matches the specification. 

ResourceUnavailable 
Subtype of ResourceException. An exception that indicates that all resources 
matching the specification are being used. 

Real-time Exceptions 

DeadlineExpired 
Subtype of ProcessException. An exception that indicates that the agent assigned to 
a step did not complete the step in the allotted time. 

Messages 

ProcessEvent 
An abstract message type for all messages sent by the Little-JIL interpreter. 
Attributes: 
 SourceStep: The step instance from which the event was sent. 

StepStateChangeEvent 
Subtype of ProcessEvent. An abstract message type for all Little-JIL messages 
representing step state transitions. 

StepPostedEvent 
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Subtype of StepStateChangeEvent. A message that indicates that a step has been 
posted on an agenda. 

StepRetractedEvent 
Subtype of StepStateChangeEvent. A message that indicates that a step has been 
retracted. 

StepStartedEvent 
Subtype of StepStateChangeEvent. A message that indicates that a step has been 
started. 

StepOptedOutEvent 
Subtype of StepStateChangeEvent. A message that indicates that an optional step 
has been ‘opted-out.’ 

StepFinishedEvent 
Subtype of StepStateChangeEvent. An abstract message that indicates that a step 
has finished. 

StepCompletedEvent 
Subtype of StepFinishedEvent. A message that indicates that a step successfully 
completed. 

StepTerminatedEvent 
Subtype of StepFinishedEvent. A message that indicates that a step terminated with 
an exception. 
Attributes: 
 Exception: The exception that terminated the step. 


