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ABSTRACT
One of the distinguishing features of distributed systems is
the importance of the interaction mechanisms that are used
to define how the sequential components interact with each
other. Given the complexity of the behavior that is being
described and the large design space of various alternatives,
choosing appropriate interaction mechanisms is difficult. In
this paper, we propose a component-based specification ap-
proach that allows designers to experiment with alternative
interaction semantics. Our approach is also integrated with
design-time verification to provide feedback about the cor-
rectness of the overall system design. In this approach, con-
nectors representing specific interaction semantics are com-
posed from reusable building blocks. Standard communi-
cation interfaces for components are defined to reduce the
impact of changing interactions on components’ computa-
tions. The increased reusability of both components and
connectors also allows savings at model-construction time
for verification. We illustrate our approach by showing how
the specification and verification of a small example could
be done using the set of building blocks we have defined
for message passing. We also show that this set of building
blocks can be extended to describe a variety of semantics
for other interaction mechanisms such as publish/subscribe
and remote procedure call.

1. INTRODUCTION
One of the distinguishing features of distributed systems

is the importance of the interaction mechanisms that are
used to define how the sequential components interact with
each other. Consequently, software architecture description
languages typically separate the computational components
of the system from the connectors, which describe the in-
teractions among those components (e.g., [2,28,33,36]). In-
teraction mechanisms represent some of the most complex
aspects of a system. It is the interaction mechanisms that
primarily capture the non-determinism, interleavings, syn-
chronization, and interprocess communication among com-
ponents. These are all issues that can be particularly dif-
ficult to fully comprehend in terms of their impact on the
overall system behavior.

As a result, it is often very difficult to design a distributed
system with the desired component interactions. The large
design space from which developers must select the appropri-
ate interaction mechanisms adds to the difficulty. Choices
range from shared-memory mechanisms, such as monitors
and mutual exclusion locks, to distributed-memory mecha-

nisms, such as message passing and event-based notification.
Even for a single interaction mechanism type, there are usu-
ally many variations on how it could be structured.

Because of this complexity, design-time verification of dis-
tributed systems is particularly important. One would like
to be able to propose a design, use verification to determine
which important behavioral properties are not satisfied, and
then modify and reevaluate the system design repeatedly
until a satisfactory design is found. With component-based
design, existing components are often used and glued to-
gether with connectors. In this mode of design, one would
expect that the interaction mechanisms represented by the
connectors would need to be reconsidered and fine-tuned
several times during this design and design-time verifica-
tion process, whereas the high-level design of the compo-
nents would remain more stable. If using a finite-state veri-
fier, such as Spin [25], SMV [27], LTSA [29], INCA [10], or
FLAVERS [13], a model of each component and connector
could be created separately and then the composite system
model could be formed and used as the basis for verification.

With current design approaches, a major obstacle to the
realization of this vision of component-based design is that
the semantics of the interactions are deeply intertwined with
the semantics of the components’ computations. Changes in
interactions usually require nontrivial changes in the com-
ponents. As a result, it is often difficult and costly to mod-
ify the interactions without looking into the details of the
components. Similarly, there is little model reuse during
design-time verification.

In this paper, we propose a component-based approach
that allows designers to experiment with alternative inter-
action semantics in a “plug-and-play” manner, while using
the design-time verification to receive feedback about the
correctness of the overall system design. The main contri-
butions of our approach include the following:

• We provide a small set of standard interfaces by which
components can communicate with each other through
different connectors. The standard interfaces allow de-
signers to change the semantics of interactions without
having to make significant changes to the components.

• We separate connectors into ports and channels to rep-
resent different aspects of the semantics of connectors.
This decomposition of connectors allows us to sup-
port a library of parameterizable and reusable building
blocks that can be used to describe a variety of inter-
action mechanisms.
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Figure 1: A single-lane bridge with two controllers

• The combined use of standard component interfaces
and the reusable building blocks for connectors allows
designers to be able to explore the design space and
experiment with alternative choices of interaction se-
mantics more easily.

• Our approach also facilitates design-time verification.
With the increased reusability of components and con-
nectors, one can expect that our approach will create
savings in model-construction time during verification.

This paper presents the basic concepts as well as some
preliminary results from an evaluation of our approach. Sec-
tion 2 introduces an example that highlights some of the
problems we are trying to address. Section 3 gives an overview
of our “plug-and-play” approach. In Section 4, we show how
the general approach can be applied to message passing.
Specifically, a set of building blocks are defined based on
the investigation of various message-passing semantics. In
Section 5, using a small example, we illustrate how design-
ers may experiment with alternative interaction semantics
and achieve correct designs more easily using our approach.
We also show that a small set of building blocks can be
used to describe a variety of interaction semantics. Sec-
tion 6 gives some preliminary results on extending this ap-
proach to other families of interaction mechanisms, namely
publish/subscribe and remote procedure calls. Section 7 de-
scribes related work, followed by our conclusions and discus-
sions of future work in Section 8.

2. AN ILLUSTRATIVE EXAMPLE
As an example, consider a bridge that is only wide enough

to let through a single lane of traffic at a time [29]. An appro-
priate traffic control system is necessary to prevent crashes
on the bridge. For this example, we assume that traffic con-
trol is provided by two controllers, one at each end of the
bridge. Communication is allowed between controllers as
well as between cars and controllers. To make the discus-
sion easier to follow, we refer to cars entering the bridge from
one end as the blue cars and refer to that end’s controller
as the blue controller; similarly the cars and controller on
the other end are referred to as the red cars and the red
controller, respectively, as shown in Figure 1.

We first introduce a very simple, and impractical, version
of this system, called “exactly-N -cars-per-turn”, that allows
N cars to cross, starting with the blue end, before releasing
control to the other end. Specifically, when it is the blue con-
troller’s turn, the blue controller counts exactly N blue cars
entering the bridge and the red controller counts exactly N
blue cars exiting the bridge. The two controllers then switch
roles, and the red controller counts N red cars entering the
bridge and the blue controller counts N red cars exiting the
bridge. The above process then repeats. (We discuss some
more realistic ways of controlling traffic in Section 5.)

RedControllerBlueController

Component ConnectorMultiple Components

BlueEnter RedExit BlueExit RedEnter

BlueCars RedCars

Figure 2: Architectural design of the single-lane
bridge example

BlueEnter

BlueExit

ConnectorComponent

send "enter_request";
while(true){

go on to the bridge;
send "exit_request";

}

RedEnter

RedExit
send "enter_request";

while(true){

go on to the bridge;
send "exit_request";

}

RedController

BlueController

RedCar i

BlueCar i counter = 0;
while (counter<N){

while(true){

 receive "blue_enter_request";
    counter++;
}
counter = 0;
while (counter<N){

 receive "red_exit_request";
    counter++;}

}

counter = 0;
while (counter<N){

while(true){

 receive "blue_exit_request";
    counter++;
}
counter = 0;
while (counter<N){

 receive "red_enter_request";
    counter++;}

}

Figure 3: Some pseudocode design details for the
single-lane bridge example

Figure 2 shows an informal design of the system. There
are four different kinds of components: BlueController,
RedController, one or more BlueCar components, and one
or more RedCar components. Components communicate
with each other through connectors: a BlueEnter connector
between BlueCar components and the BlueController com-
ponent, a BlueExit connector between the BlueCar compo-
nents and RedController component, and similarly a RedEn-

ter connector and a RedExit connector.
A more detailed description of the “exactly-N -cars-per-

turn” version of the single-lane bridge problem is shown in
Figure 3 where component interactions are described using
a message passing interaction mechanism. In this figure,
a car sends an enter request message to the controller at
the end of the bridge it wants to enter and then proceeds
onto the bridge. When it exits the bridge, it notifies the
controller at the exit end by sending an exit request mes-
sage. Controllers receive enter request and exit request

messages, update their counters, and decide when to switch
turns. Since there are multiple cars that communicate with
each controller, messages are buffered in the connectors be-
tween car components and controller components.

Astute readers will notice that, according to the descrip-
tion in Figure 3, cars from different directions can be on
the bridge at the same time, which could result in a crash.
This is due to an erroneous design in the component inter-
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BlueEnter

BlueExit

RedExit

while(true){
counter = 0;
while (counter<N){

RedController

 receive "red_enter_request";

}
}

    counter++;
send "go_ahead";

while (counter<N)
counter = 0;

 receive "blue_exit_request";
    counter++;
}

RedCar i

send "enter_request";
while(true){

receive "go_ahead";

send "exit_request";
go on to the bridge;

}

 receive "blue_enter_request";
send "go_ahead";

while(true){
counter = 0;
while (counter<N){

    counter++;
}
counter = 0
while (counter<N){

 receive "red_exit_request";
    counter++;
}

}

BlueController

ConnectorComponent

BlueCar i
while(true){

receive "go_ahead";

send "exit_request";
go on to the bridge;

}

RedEnter

send "enter_request";

Figure 4: Modified design of the single-lane bridge

actions. With this design, a car sends an enter request

message and immediately goes onto the bridge without con-
firming that its request has been accepted by the controller.
At this point of time however, the controller may still be
waiting for and handling exit requests from the cars from
the other direction and the enter request message from this
car may still be in the buffer to be retrieved and handled.
Therefore, a car can go on to the bridge while there are still
cars traveling in the opposite direction. Obviously, what is
needed here is synchronous communication between a car
and its controller rather than asynchronous communication.

One way to fix this problem is to have the controller send
a go ahead message after receiving each enter request to au-
thorize the car to enter the bridge. After sending the enter
request, the car would wait for this acknowledgement before
entering the the bridge, as shown in Figure 4 (the highlighted
areas indicate the changes). These changes, involving both
the car components and the controller components, effec-
tively make the communication between them synchronous
and solve the problem caused by the asynchronous commu-
nication. Notice, however, that the synchronization seman-
tics of the interaction between the components is expressed
in the computations of those components, rather than in a
connector.

Although our example is quite simple, we can see that
the semantics of the interaction mechanisms are not spec-
ified independently from other aspects of the system, but
instead are spread among the connectors and the compo-
nents. This is a trivial example, but it is easy to envision
how the intertwined semantics of the connectors and com-
ponents makes it more challenging to discover and correct
errors in the design of more complex systems. Therefore, we
prefer an approach that allows us to modify connectors and
components more independently of each other.

3. THE “PLUG-AND-PLAY” APPROACH
As illustrated in the example above, changing from asyn-

chronous message passing to synchronous message passing
requires significant changes in the components, not just the
connectors. In our approach, we introduce ports as part
of the connectors to capture those different synchronization
semantics. Components employ simple, standard interfaces
that allow them to access different synchronization seman-
tics by plugging into the appropriate type of port. Other

Sender Receiver

Sender Receiver

Sender Receiver
BlockingReceiveAsynBlockingSend

Single−slot buffer

Receive portConnector Component Send portChannel

A library of ports and channels

BlockingReceiveSynBlockingSend
Single−slot buffer

BlockingReceiveAsynBlockingSend
FIFO queue (size 5)
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Figure 5: Constructing message passing connectors

semantics such as the buffering of the intermediate commu-
nication media are captured in channels, a separate part of
the connectors. Components do not communicate with each
other or with channels directly without going through ports.

To allow users to specify a wide range of interaction se-
mantics, we support a library of parameterizable and reusable
building blocks. One may select a subset of appropriate
ports and channels from the library to construct a connector
with the specific semantics. Figure 5(a) shows an example
of how one might specify an asynchronous message passing
communication between a pair of sender and receiver com-
ponents.

The connector is composed of an asynchronous blocking
send port, a blocking receive port, and a channel that buffers
one message. Through this connector, the sender component
sends a message without waiting for an acknowledgement
from the receiver but blocks until the message is stored in
the channel. The receiver component blocks until a message
can be received. By replacing the asynchronous send port
with a synchronous one from the library, the new connector
in Figure 5(b) allows the sender to block not only until the
message is stored in the channel but also until it has been
delivered to the receiver. Similarly, channels can also be eas-
ily replaced. For example, a FIFO queue channel that holds
up to 5 messages can be selected from the library to replace
the single-slot buffer, when messages need to be buffered (as
shown in Figure 5(c)). The replacement of channels can be
done independently of the replacement of ports. The de-
tailed semantics of these building blocks and the standard
component interfaces are described in Section 4.2.

This kind of “plug-and-play” practice can be very efficient
for designers experimenting with alternative interaction se-
mantics. We have also found that our approach helps reduce
the effort for repeated model construction when designers
use design-time verification to check their design choices. In
Section 4.3, we discuss techniques to facilitate design-time
verification.

4. THE MESSAGE PASSING MECHANISM
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To be more concrete, we describe how this approach could
support a family of message passing semantics. Before de-
scribing the building blocks, standard interfaces, and model
reuse that results during design-time verification, we first
discuss some of the semantics of message passing that will
need to be supported by the library of building blocks.

4.1 Dimensions
Although the fundamental message passing interactions

are the two operations send and receive, there are a sur-
prising number of variations in their semantics. Moreover,
the implementation of the message passing infrastructure
may also vary in terms of how messages are stored in the
buffer, how messages are delivered, and what information
is relayed to senders and receivers. Many languages, such
as CSP [24], Occam [12], and Linda [7] incorporate message
passing facilities. There are also message passing libraries
such as MPI [37] and PVM [19]. Here we introduce a few di-
mensions that describe some of the most important aspects
and common variations of the message passing semantics.

1. Synchronous send ∼ Asynchronous send

With a synchronous send, a sender sends a message
and blocks until it is notified that the message has been
received by the receiver. With an asynchronous send,
a sender sends a message and continues regardless of
whether the message has been received by the receiver.

2. Blocking send ∼ Nonblocking send ∼ Checking
send

With a blocking send, a sender blocks until it is con-
firmed that the message has been accepted by the
channel. With a nonblocking send, a sender sends a
message to the channel and continues immediately re-
gardless of whether the message can be accepted by the
channel. With a checking send, a sender first checks
with the channel. If it is notified that the channel
currently cannot accept the message (e.g., when the
buffer is full), it continues. Otherwise, it blocks until
the message is stored in the channel.

3. Blocking receive ∼ Nonblocking receive

With a blocking receive, a receiver blocks until a desired
message is received successfully. With a nonblocking
receive, a receiver may continue when no desired mes-
sage can be received.

4. Selective receive ∼ Nonselective receive

With selective receive, a receiver specifies the specific
kind of messages it is interested in using certain selec-
tion criteria, such as the type of the messages or the
sender of the messages. With nonselective receive, a
receiver accepts any messages available in the buffer.

5. Copy receive ∼ Remove receive

With copy receive, a copy of the message is delivered
to the receiver, and the original message remains in
the buffer. With remove receive, when a message is
delivered to the receiver, it is removed from the buffer.

A number of other dimensions should be considered, such
as the ordering of messages being stored and delivered, what
happens when a message buffer becomes full, or whether a
buffer is reliable or lossy. Since they are not the focus of
this paper, we leave out the details here.

.

..

}
.
..

.

..

.

..
}

m;send 
receive

SendStatus;m,

SendStatus;

(a) Component−send port protocol (b) Component−receive port protocol

Message

send 
receive

Message m, RecvRequest,

RecvRequest;
RecvStatus;

receive m;

RecvStatus;
Component{ Component{

Figure 6: Standard component interfaces

send m

time

sender send port channel

send m

sender send port channel

time

SendStatus = 
"sendOk"

Asynchronous Send(a) Synchronous Send(b)

m

"receiveOk"

"receiveOk"

m

"sendOk"
SendStatus = 

Figure 7: Example scenarios of message passing in-
teractions (using send ports)

4.2 Component Interfaces and Building Blocks
As mentioned in Section 3, we find it useful to decompose

connectors into ports and channels that capture different
parts of the message passing semantics. We construct a
typical message passing connector from a channel to buffer
messages, a send port to mediate between the sender compo-
nent and the channel, and a receive port to mediate between
the receiver component and the channel. To understand
how these building blocks support the practice of “plug-
and-play” design, we first introduce the standard interfaces
between components and ports and illustrate how ports cap-
ture the synchronization semantics.

Figure 6(a) shows the standard interface that can be used
by any component that wants to send a message through a
connector to another component. We require the component
to wait to receive a SendStatus message from the connector
after sending a message. This interface is designed to work
with connectors with different interaction semantics. For
example, in the case of asynchronous message passing, the
connector should return the SendStatus message to the send-
ing component immediately, while for synchronous message
passing, the connector should not return the SendStatus un-
til the sender’s message has been delivered.

Similarly, in Figure 6(b), a component that wishes to re-
ceive a message first sends a receive request to the port and
waits for feedback (the RecvStatus message) on whether the
requested message has been successfully retrieved. It then
waits for a message from the receive port, either a real mes-
sage (when the receive is successful) or an empty message
(when the receive has failed).1 It is up to the receiving com-
ponent to check if a valid message has been received.

Using a notation similar to Message Sequence Charts, Fig-

1The empty message is used as a stub so that the interface
remains the same in case of failure.
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receive portreceive port channelreceiver

(b) Nonblocking Receive(a) Blocking Receive
Action

(Condition) Trigeers only when the condition satisfies

A transition that could happen more than once*

null
(BufferStatus ="outFail")

"recvFail"
(BufferStatus =
RecvStatus =

"outFail")

receiver channel

time

ReceiveRequest
ReceiveRequest

RecvStatus =
"recvSucc"

(BufferStatus

m

m

ReceiveRequest
ReceiveRequest

*
"outOk")

"recvSucc"RecvStatus =
(BufferStatus =

BufferStatus = "outOk/outFail"

m
(BufferStatus = "outOk")m

(BufferStatus = "outOk")= "outOK")

BufferStatus =
"outOK/outFail"

Figure 8: Example scenarios of message passing in-
teractions (using receive ports)

ure 7 and Figure 8 illustrate how different ports may work
with the same interfaces to implement different semantics.
In the two parts of Figure 7, we see the same protocol be-
ing used between the sending component and the send port,
and between the send port and the channel. (The figure only
shows the cases in which the communication occurs without
problems.) The component sends a message m and the send
port returns the SendStatus message sendOk. Similarly, the
send port passes the message m to the channel and, after
delivering the message to a receive port, the channel sends
the acknowledgment receiveOk to the send port. It is the
send port that controls the relaying and interleaving of the
internal events, and thus whether the message passing is
synchronous or asynchronous.

In Figure 7(a), the asynchronous send port returns the
sendOk message to the sending component without waiting
for the channel to deliver the message and simply discards
the receiveOk message from the channel when it arrives. The
synchronous send port in Figure 7(b) waits to receive the re-
ceiveOk message from the channel before sending sendOk to
the sending component, which is therefore blocked until after
the message m is received. Neither the sending component
nor the channel needs to know whether the connector is im-
plementing synchronous or asynchronous message passing;
the designer can swap one send port for the other to switch
the semantics of the connector.

Similar considerations apply to the interface between a
receiving component and a receive port. Figure 8(a) shows
how a receive port implement the semantics of blocking re-
ceive. After forwarding the ReceiveRequest from the receiver
to the channel, the port blocks until an outOk message is
received from the channel indicating that the desired mes-
sage is available. A recvSucc confirmation is then sent to
the receiver followed the retrieved message. To implement
the semantics of nonblocking receive (Figure 8(b)), a receive
port may immediately return when the desired message is
not available (outFail) by sending a recvFail message fol-
lowed by an empty message to the receiving component.

In a fashion similar to that illustrated above, we are able
to define a number of send and receive ports that can be
used to implement a wide range of different message passing
semantics, all designed to work with the standard compo-
nent interface. We also define some of the most commonly

Waits for a message from the sender and sends a confirmation
back immediately; the message may or may not be accepted

Waits for a message from the sender and sends a confirmation
back AFTER the message has been accepted by the channel.

Waits for a message from the sender and forwards it to the
channel. If the message cannot be accepted by the channel,
it returns and sends a notification to the sender. Otherwise,
it blocks until the message is accepted and sends a 
confirmation back to the sender.

Waits for a message from the sender and sends a confirmation
back AFTER it is notified by the channel that the message
has been received by the receiver.

Similar to "asynchronous checking send" except that when
the message can be accepted by the channel, it blocks until
the message is received by the receiver and then sends a 
confirmation back to the sender.
Waits for a "receive request" from the receiver and forwards
it to the channel. It blocks until a desired message is retrieved
from the channel and sends a confirmation to the receiver.

and handled by the channel.

Similar to "blocking receive" except that it returns immediately

a notification along with an empty message to the receiver.
if no desired message can be retrieved currently. It then sends

Asynchronous
Nonblocking

Asynchronous
Blocking

Asynchronous
Checking

Synchronous
Blocking

Synchronous
Checking

Port
Send

1−slot buffer A buffer of size 1.

FIFO queue A FIFO queue of size N.

Priority queue A priority queue of size N.

Receive
Port

Channel

Blocking
(copy/remove)

Nonblocking
(copy/remove)

Figure 9: Examples of message passing building
blocks

used channels. Figure 9 shows a few examples of those ports
and channels. Notice that when receiving a message from
the channel, a receive port could either notify the channel
to keep the message in the buffer or to remove it after the
message is delivered to the port, which creates two versions
(copy/remove) for each kind of receive port.

The semantics of selective/nonselective, for example, can
be specified as optional tags in the receive request mes-
sages sent by the receive components and acted upon by the
channel. The way we define these message passing building
blocks is preliminary and the set of building blocks is not yet
meant to cover every aspect of message passing semantics.
As we can see in the example in Section 5, however, these
building blocks are useful in practice and can in fact express
a wide range of message passing semantics.

The same interface and protocols can be used when we
apply this approach to some other interaction mechanisms
as shown in Section 6. In general, any outgoing commu-
nication will be mapped to sending a message and incom-
ing communication will be mapped to receiving a message.
In addition, as we show in Section 6, the library of mes-
sage passing building blocks can also be used to describe a
range of important semantics for other interaction mecha-
nisms such as publish/subscribe and remote procedure calls.
In fact, one of our long-term goals is to support a shared li-
brary of building blocks that are rich enough to describe a
large variety of heterogeneous interaction mechanisms.

4.3 Formal Models and Verification
In addition to providing a convenient and efficient way

of specifying and experimenting with various interaction se-
mantics, this approach supports design-time verification for
checking important properties of the system. With this
approach, predefined and reusable formal models are cre-
ated for every building block. Formal models of the selected
building blocks are composed at verification time with for-
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mal models of components to form a system model that is
then checked against the specified properties. Note that the
designer is responsible for providing the models of the com-
ponents and specifying the properties to be checked.

Through verification, users may find unexpected behav-
iors or errors in their system design. If the problems are
caused by the interaction mechanisms, changes can be made
by simply adjusting the building blocks of the connectors
without having to modify the components. When this oc-
curs, there is no need to recreate the component models.
Moreover, predefined models for the building blocks can be
used in most cases for the modified interaction mechanisms,
also reducing the cost of model construction for verification.

In the example described in this paper, we used Spin [25]
as our back-end verifier to check properties of our design.
Formal models of all the building blocks listed in Figure 9,
as well as the system components, are described in Promela,
the input language of Spin. In particular, the formal models
of the predefined ports and channels are made parameteriz-
able and instantiatable so that they can be reused in differ-
ent applications simply by plugging in different parameters.
Specifically, we use the default message passing operations
(“?” and “!”) in Promela to implement the communica-
tions among components, ports and channels. Each port is
a Promela proctype that takes two Promela native channels
as parameters for communications with the component and
the channel that are connected to this port. For the purpose
of this paper, we have coded models in a way that reflects
our goal of reusable and parameterizable building blocks.
For a particular choice of interaction mechanisms, it might
well be possible to implement connectors more directly us-
ing features of the Promela language. The full description of
the Promela models for the building blocks is given in [43].

Notice that by using Spin and Promela to support design-
time verification, we are only showing one possible way to
combine our design approach and verification. Our approach
is not tied to particular formalisms or verification techniques.
In fact, we have defined the same set of building blocks in
the process algebra FSP and used LTSA [29] to verify the
system designs. It is reasonable to expect, however, that
when using different formalisms and verification techniques,
specialized optimizations will need to be developed.

5. THE SINGLE-LANE BRIDGE PROBLEM
REVISITED

In this section, we return to the single-lane bridge problem
introduced in Section 2 to illustrate the use of the building
blocks described above to facilitate iterative exploration and
verification of designs. The architecture of the exactly-N -
cars-per-turn system is shown in Figure 10. All the cars of
a given color share a single connector to the controller of
that color and a single connector to the controller of the
other color. For the initial design, the developer chose an
interaction mechanism with asynchronous blocking sends,
blocking receives, and a reliable FIFO queue for each of these
connectors. As indicated in the figure, this involves choosing
the appropriate send and receive ports and channels.

Of course, we want our bridge system to satisfy the prop-
erty that cars traveling in opposite directions are never al-
lowed on the bridge at the same time. Constructing Promela
models of the components and using the models of the build-
ing blocks from the library, as described in the previous sec-
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AsynBlSend

Single−slot buffer
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Figure 10: The architecture design of the “exactly-
N-cars-per-turn” single-lane bridge problem

tion, we can use Spin to determine whether the system sat-
isfies the property. In this case, of course, Spin produces a
counterexample in which a blue car sends an enter request

message and enters the bridge, followed by a red car send-
ing an enter request message and entering the bridge. The
problem is caused by the fact that the cars do not need to
wait for the messages to be received by the controller before
entering the bridge, as previously mentioned.

The designer might then try to solve the problem by chang-
ing the interaction mechanism to make the enter request

messages be sent synchronously, so that a car cannot enter
the bridge before the controller has received the message.
The only change required to achieve this is to replace the
asynchronous blocking send ports with synchronous block-
ing send ports. Replacing the Promela code for these ports
with the appropriate code from the library, we can redo the
verification. In this case, Spin reports that the property
holds, and the system never allows cars traveling in oppo-
site directions on the bridge at the same time.

Note that other designs can also satisfy the property. For
instance, since the exact order in which the exit request

messages are received does not really matter and these mes-
sages are handled by a connector with blocking send ports
(so that the sending component will wait until the channel
can accept the message), we could replace the FIFO queues
in the connectors carrying the exit request messages with
single-slot buffers. Again, we need only replace the Promela
code for these channels and run Spin again to see that this
system would also keep cars from opposite directions from
colliding on the bridge.

Of course, not all modifications to a system require only
simple changes in the interaction mechanisms. Suppose that,
in order to improve traffic flow, the designer wishes to mod-
ify the bridge system so that if cars on one side are waiting
to cross and no cars from the other side are on the bridge or
waiting to cross, the controllers will allow the waiting cars to
cross no matter whose turn it might be. If cars from both
sides are waiting, though, no more than N cars from one
side can cross before cars from the other side get a turn.

To construct this “at-most-N -cars-if-waiting” system, we
must add some communication between the controllers and
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Figure 11: The architecture design of the “at-most-
N-cars-if-waiting” single-lane bridge

modify the controller components to use it. Since this ver-
sion of the system has additional functionality, it is not un-
reasonable to have to change the components to support this
functionality. Still, however, we would like to limit the im-
pact of these changes and reuse models of the components
and connectors as much as possible.

Figure 11 shows a possible architecture for the modified
system, with two new connectors between the components,
one for the blue controller to notify the red controller that
no blue cars are waiting and one for the red controller to no-
tify the blue controller that no red cars are waiting. In this
case the designer chose an interaction mechanism with syn-
chronous blocking send, nonblocking receive, and a reliable
single-slot buffer. Since the controllers will poll for messages
from cars and from the other controller, we must also change
the interaction mechanisms for the communications between
cars and controller to have nonblocking receive semantics.
To verify that this new system still prevents crashes of cars
traveling in opposite directions on the bridge, the compo-
nent models need to be modified to reflect the new commu-
nications. Models of the new connectors, however, can be
constructed from the library models of building blocks.

Going further, the designer may then decide to modify
the bridge system so that when (on-duty) emergency vehi-
cles approach the bridge no new vehicles are allowed onto
the bridge from the opposite side and the emergency ve-
hicles are allowed to cross the bridge as soon as possible.
Again there is new functionality so the components must be
modified to provide this functionality. One way to design
this version of the system is to modify the controller com-
ponents so that when there are emergency vehicles waiting
on the side of the controller that does not have the turn,
that controller sends an emergency stop signal to the other
controller. The controller that holds the turn should stop
accepting enter requests messages from its side after re-
ceiving an emergency stop signal if there are no emergency
vehicles waiting on its side. This new design can use the
existing connectors between the controllers, but the con-
troller component logic will need to be modified to reflect
the new functionality. To allow a controller to check if there
is an emergency vehicle waiting on its side, a nonblocking

copy receive port is used to poll the enter request channel
without actually removing a request from the channel. Fur-
thermore, the FIFO queues used for the channels between
the vehicles and the controllers must be changed to priority
queues so that the emergency vehicles are allowed to cross
the bridge ahead of the cars. Due to space limitations, we
leave out the details of the implementation of these priority
queues. For this version of the system, the designer wants to
verify the property that emergency vehicles are allowed to
cross the bridge as soon as possible as well as the property
that no vehicles traveling in opposite directions are on the
bridge at the same time. After creating new models of the
controller components, models of the new connectors can be
constructed from the library models of building blocks and
both properties verified using Spin.

This example has illustrated a series of system designs
that attempt to fix problems as well as add new functional-
ity. Using our plug-and-play approach, the impact of each
change was kept relatively local. Components had to be
modified when only new functionality was added. When
connectors were changed, they could be easily composed
from the building blocks. For each version, components and
connector models were reused, making verification much eas-
ier. Note, all the library building blocks and versions of the
components are described in [43].

6. OTHER INTERACTION MECHANISMS
Although our experience with other interaction mecha-

nisms is not as extensive as with message passing, we have
begun to explore the application of our approach to other
interaction mechanisms such as publish/subscribe. In fact,
based on case studies about available publish/subscribe sys-
tems and event models such as CORBA Event Services [1],
Java Event Models, JEDI [11], SIENA [8], etc., we have
found that the set of building blocks we have defined for
message passing can be easily extended to describe a range
of important semantics for publish/subscribe.

In publish/subscribe systems, the fundamental commu-
nications between components and connectors are the an-
nouncement of events by components, the delivery of events
to components, and the subscription or unsubscription by
which components indicate their interest in particular events.
It is straightforward to map these communications to send-
ing and receiving messages; therefore they can be described
using available message passing building blocks. In message
passing, it is almost always the case that the sender initiates
the communication by pushing messages to the connector
and the receiver pulls messages from the connector. Unlike
message passing, however, most publish/subscribe systems
support one or more combinations of push/pull on both the
publisher side and the subscriber side. To describe these
semantics, we define new kinds of send and receive ports for
publish/subscribe (Figure 12).

With the pull send ports, communication is initiated by
the port forwarding a pull request from the channel to the
sender. A message (or event, but we use them interchange-
ably here) is then subsequently handed to the port by the
sender. The port blocks either until the message is received
by the channel (asynchronous blocking) or until it is received
by a receiver (synchronous blocking)2. With the push receive

2Although this type of strict synchronization is only used
from time to time in publish/subscribe systems, it can be
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Figure 12: A shared library of send and receive ports

port, communication is initiated by the channel pushing a
message to the port which then forwards the message to the
receiver. The receiver may block until a a message is avail-
able in the port (blocking) or return and check back later
(nonblocking). When a message is delivered to a compo-
nent, a confirmation may be issued by the port and sent to
the channel (synchronous).

The newly introduced ports are designed such that com-
ponents interacting through publish/subscribe can employ
the same interface as when they interact through message
passing. So again, it is possible for designers to change their
choices of interaction mechanisms without changing the de-
sign of components. Notice that here we are only describ-
ing the synchronization semantics between components and
connectors and have not described the semantics of the com-
munication media inside a connector. In publish/subscribe
systems, the communication media are often much more
complicated than in message passing. Publish/subscribe
connectors might involve a router, a registrar, and an as-
sortment of message filtering capabilities. It is certainly
desirable and possible to provide parameterizable building
blocks for the different aspects of the communication media.
Garlan et.al. have defined a set of building blocks based
on the dimensions of the publish/subscribe middleware [18].
Other work on defining semantics and comparing variations
for publish/subscribe systems include [5, 14–16]. We are
working to define additional building blocks to express these
other aspects of the semantics of publish/subscribe systems.
In addition, using combinations of different send and re-
ceive ports we have defined for message passing and pub-
lish/subscribe, we have been able to describe several ver-
sions of remote procedure calls (RPC) such as the one-way
RPC, synchronous RPC, deferred synchronous RPC, and
asynchronous RPC [40].

7. RELATED WORK
The limitations and frustrations of component-based de-

velopment are well known (e.g., [17, 26]). Previous work

easily described using the available ports.

such as [2, 4, 20, 28, 33, 36] has proposed treating connectors
as first-class entities in component-based development, al-
though [20] in particular, has put the focus at a lower level
of abstraction (programming level) than what we are inter-
ested in.

The idea of specifying complex connectors and modeling
them for verification is, of course, not new. The Wright
architecture description language [2], for example, used the
CSP process algebra to describe arbitrary connectors, and
the Architectural Interaction Diagrams (AIDs) of Ray and
Cleaveland [34] use process algebra methods to construct
connectors hierarchically. Constraint automata based ap-
proaches have also been proposed to specify and analyze
the semantics of connectors composed from a set of primi-
tive channels [3, 32]. In approaches like these, the burden
is on the designer to construct a model of a connector with
the right semantics from powerful, but low-level, primitives.
Our approach is aimed more at providing a library of build-
ing blocks from which connectors representing widely used
interaction mechanisms can be easily constructed, offering
“ready-to-use” pieces that hide from the user most of the de-
tails of how these pieces are actually constructed and mod-
eled. As we noted above, however, the actual formal models
of our building blocks used for verification could be built
using any suitable formalisms with verification support, in-
cluding CSP or AIDs.

Our use of ports to allow a standard component interface
and facilitate the substitution of connectors with different
semantics is closely related to the connector wrappers of [38],
although that work is aimed more at adapting existing con-
nectors and our emphasis is on building up new connectors
that can be easily exchanged for one another. Our notion
of ports is very similar to what is described in [35]. The dif-
ference is that in our approach, ports are part of connectors
and provide more complex semantics.

The term building blocks has been often used in different
contexts. For example, in [42], building blocks are referred
to as parts of software used to build a system. The build-
ing blocks in our approach are design-level elements used to
construct connectors representing interactions.

Our approach differs from previous work on architectural
evolution (e.g., [30, 41]) in our focus on supporting the ex-
ploration of different interaction mechanisms at the design
stage and our emphasis on modeling and verification. Our
goals are to support the design of systems that may in-
volve heterogeneous interaction mechanisms between differ-
ent components and to allow the designer to easily experi-
ment with different mechanisms validating the suitability of
different combinations with finite-state verification tools.

Our work on the semantics of interaction mechanisms
is closely related to work on categorizing connectors (e.g.
[23, 31]). In particular, our analysis of the dimensions for
message passing semantics is similar in spirit to the analysis
of publish/subscribe systems in [18]. In terms of applying
verification to one particular interaction mechanism, as we
did with message passing, there has been extensive work on
modeling and verifying publish/subscribe systems(e.g. [6,21,
44]) However, this work has not attempted to introduce ex-
plicit design-level building blocks to allow the construction
of connectors with different semantics as we did. And our
approach is intended to support many kinds of mechanisms,
rather than being restricted to a single type.

A number of middleware frameworks support component-
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based development, although each typically allows a some-
what limited range of interaction mechanisms and no direct
support is provided for verification. Some work, such as
the Cadena system [9], has been directed at providing veri-
fication support for systems built on standard middleware.
A number of approaches have also been proposed for as-
sembling existing components into applications, including
mediators [39], active interfaces [22], and various techniques
for wrapping components. Our interest here is more in the
choice of interaction mechanisms between components and
less on the adaptation of existing components to interact
with each other.

8. CONCLUSION AND FUTURE WORK
In this paper, we propose a compositional specification

approach that helps designers more easily experiment with
different interaction mechanisms between components. By
decomposing the connectors into ports and channels, and us-
ing ports as mediators between components and channels,
we are able to keep the interface of the components simple
and standardized so that changes to the interaction mecha-
nisms can be made with little or no modification to the com-
ponents. The decomposition also allows us to build a library
of ports and channels as reusable building blocks to con-
struct connectors with different semantics. Our approach is
also integrated with finite-state verification techniques, facil-
itating design-time verification and the early detection of de-
sign errors. Using our approach, designers may experiment
with their choice of design for various interaction seman-
tics by simply dragging, plugging in, or replacing building
blocks and frequently using verification to check their design
choices. While this process may repeat, our approach allows
considerable reuse of the models of components and connec-
tors. Consequently, we also save on model-construction time
while doing the verification.

Our long-term goal is to provide a framework that in-
tegrates compositional specification and design-time verifi-
cation and supports a rich library of building blocks from
which one can build different interaction mechanisms. An
architecture description language and a GUI design envi-
ronment may be developed to allow designers to easily use
building blocks to specify and verify a system architecture.
We intend to explore the semantics of other commonly used
interaction mechanisms and to construct additional build-
ing blocks to express those semantics. It may also be useful
to allow users to define their own building blocks, requir-
ing a more systematic way of defining and modeling the
building blocks. There are a number of interesting issues re-
lated to design-time verification. For instance, a variety of
optimizations could be developed to reduce the formal sys-
tem models that are composed of the building blocks and
models of the components; these depend, of course, on the
particular modeling formalism and verification tools being
applied. We need to explore these optimizations and learn
when they can be profitably applied. Finally, more extensive
case studies need to be done to evaluate the effectiveness of
our approach.
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APPENDIX

A. EXAMPLE BUILDING BLOCKS
IN PROMELA

#define BUFFER_SIZE 3
/* internal communication signals */
mtype = {SEND_SUCC, SEND_FAIL, IN_OK, IN_FAIL};
mtype = {OUT_OK, OUT_FAIL, RECV_OK, RECV_SUCC, RECV_FAIL};
/* messages from components */
typedef DataMsg{
byte data; // application-specific data

byte sender_id; // filled by the send port
byte selectiveData; // matching criteria
bool selective; // selective/nonselective receive
bool remove // remove/copy receive

};
/* internal messages from ports and channels */
typedef InternalMsg{
mtype signal;

byte port_pid // used to route different internal signals
// using -1 if the id does not matter

};
/* two synchronous channels for internal communication */
typedef SynChan{

chan c = [0] of {InternalMsg};
chan d = [0] of {DataMsg}

}
mtype sendStatus; // SEND_SUCC, SEND_FAIL
mtype bufferStatus; // IN_OK, IN_FAIL
mtype recvStatus; // RECV_SUCC, RECV_FAIL
/****************** send ports ***************************/
proctype AsynNbSendPort(SynChan component; SynChan channel){

DataMsg m;
end: do

:: channel.c?_,eval(_pid); // ignore irrelevant signals
:: atomic{

component.d?m;
component.c!SEND_SUCC,-1;
m.sender_id = _pid;
channel.d!m

}
od

}
proctype AsynBlSendPort(SynChan component; SynChan channel){

DataMsg m;
end: do

:: channel.c?_,eval(_pid);
:: atomic{

component.d?m;
m.sender_id = _pid;
do
:: channel.d!m;

if
:: channel.c?IN_OK,_;

break
:: channel.c?IN_FAIL,_
fi

od;
component.c!SEND_SUCC,-1

}
od

}
proctype SynBlSendPort(SynChan component; SynChan channel){

DataMsg m;
end: do

:: atomic{
component.d?m;
m.sender_id = _pid;
do
:: channel.d!m;

if
:: channel.c?IN_OK,_;

break
:: channel.c?IN_FAIL,_
fi

od;
channel.c?RECV_OK,eval(_pid);
component.c!SEND_SUCC,-1
}

od
}

proctype AsynCheckingSendPort(SynChan component; SynChan channel){
DataMsg m;

end: do
:: channel.c?_,eval(_pid);
:: atomic{

component.d?m;
m.sender_id = _pid;
channel.d!m;
if
:: channel.c?IN_OK,_;

component.c!SEND_SUCC,-1
:: channel.c?IN_FAIL,_; // won’t try again

component.c!SEND_FAIL,-1
fi

}
od

}
/****************** receive port ***************************/
proctype BlRecvPort(SynChan component; SynChan channel){

DataMsg recvRequest,m;
end: do

:: atomic{
component.d?recvRequest;
do
:: channel.d!recvRequest;

if
:: channel.c?OUT_OK,_;

channel.d?m;
break

:: channel.c?OUT_FAIL,_ // if fail, try again
fi

od;
component.c!RECV_SUCC,-1;
component.d!m //should always be a valid message

}
od

}
proctype NbRecvPort(SynChan component; SynChan channel){

DataMsg recvRequest,m;
end: do

:: atomic{
component.d?recvRequest;
channel.d!recvRequest;
if
:: channel.c?OUT_OK,_;

channel.d?m;
component.c!RECV_SUCC,-1

:: channel.c?OUT_FAIL,_;
component.c!RECV_FAIL,-1

fi;
component.d!m // may or may not be a valid message

}
od

}
/************************** channel *********************************/
/* channels have only one incoming and one outgoing synchans (one-way).
* On each synchan, there might be multiple send or receive ports listerning.
*/

proctype single_slot_buffer (SynChan sender; SynChan receiver){
DataMsg recvRequest, m, buffer;
bool buffer_empty = 1;
do
:: receiver.d?recvRequest; /* handle receive request */

if
:: (!buffer_empty && !recvRequest.selective)

|| (!buffer_empty && recvRequest.selective
&& buffer.selectiveData == recvRequest.selectiveData) ->

receiver.c!OUT_OK,-1;
receiver.d!buffer;
sender.c!RECV_OK,buffer.sender_id;
if
:: recvRequest.remove ->

buffer_empty = 1
:: else
fi

:: else ->
receiver.c!OUT_FAIL,-1

fi
:: sender.d?m; /* handle send request */

if
:: buffer_empty ->

sender.c!IN_OK,-1;
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buffer.data = m.data;
buffer.sender_id = m.sender_id;
buffer.selectiveData = m.selectiveData;
buffer.selective = m.selective;
buffer.remove = m.remove;
buffer_empty = 0

:: else ->
sender.c!IN_FAIL,-1

fi
od

}
proctype FIFO_queue(SynChan sender; SynChan receiver){

chan buffer = [BUFFER_SIZE] of { DataMsg };
DataMsg m, recvRequest;
do
:: receiver.d?recvRequest; /* handle receive */

if
:: !recvRequest.selective ->

/* find the first message in the buffer */
if
:: buffer?[m];

if
:: recvRequest.remove ->

buffer?m
:: else ->

buffer?<m>
fi;
receiver.c!OUT_OK,-1;
receiver.d!m;
sender.c!RECV_OK,m.sender_id

:: else ->
receiver.c!OUT_FAIL,-1

fi
:: recvRequest.selective ->

/* find the first matching message in the buffer */
if
:: buffer??[m.data,m.sender_id,

eval(recvRequest.selectiveData),
m.selective, m.remove];

if
:: recvRequest.remove ->

buffer??m.data,m.sender_id,
eval(recvRequest.selectiveData),
m.selective, m.remove

:: else ->
buffer??<m.data,m.sender_id,

eval(recvRequest.selectiveData),
m.selective, m.remove>

fi;
receiver.c!OUT_OK,-1;
receiver.d!m;
sender.c!RECV_OK,m.sender_id

:: else ->
receiver.c!OUT_FAIL,-1

fi
fi

:: sender.d?m;
if
:: full(buffer) ->

sender.c!IN_FAIL, -1
:: nfull(buffer) ->

buffer!m;
sender.c!IN_OK,-1

fi
od

}
/* A priority queue that only handles two priorities */
proctype priority_queue(SynChan sender; SynChan receiver){

chan buffer = [BUFFER_SIZE] of { DataMsg };
DataMsg m, recvRequest;
do
:: receiver.d?recvRequest; /* handle receive */

if
:: !recvRequest.selective ->

if
/* find the message with higher priority */
:: buffer??[m.data,m.sender_id, 1,

m.selective, m.remove];
if
:: recvRequest.remove ->

buffer??m.data,m.sender_id, 1,
m.selective, m.remove;

:: else ->

buffer??<m.data,m.sender_id, 1,
m.selective, m.remove>;

fi;
receiver.c!OUT_OK,-1;
receiver.d!m;
sender.c!RECV_OK,m.sender_id

:: else -> //retrieve a message with lower priority
if
:: buffer??[m.data,m.sender_id, 0,

m.selective, m.remove];
if
:: recvRequest.remove ->

buffer??m.data,m.sender_id, 0,
m.selective, m.remove;

:: else ->
buffer??<m.data,m.sender_id, 0,

m.selective, m.remove>;
fi;
receiver.c!OUT_OK,-1;
receiver.d!m;
sender.c!RECV_OK,m.sender_id

:: else ->
receiver.c!OUT_FAIL,-1

fi
fi

:: recvRequest.selective ->
/* find the first matching message in the buffer */
if
:: buffer??[m.data,m.sender_id,

eval(recvRequest.selectiveData),
m.selective, m.remove];

if
:: recvRequest.remove ->

buffer??m.data,m.sender_id,
eval(recvRequest.selectiveData),
m.selective, m.remove

:: else ->
buffer??<m.data,m.sender_id,

eval(recvRequest.selectiveData),
m.selective, m.remove>

fi;
receiver.c!OUT_OK,-1;
receiver.d!m;
sender.c!RECV_OK,m.sender_id

:: else ->
receiver.c!OUT_FAIL,-1

fi
fi

:: sender.d?m;
if
:: full(buffer) ->

sender.c!IN_FAIL, -1
:: nfull(buffer) ->

buffer!m;
sender.c!IN_OK,-1

fi
od

}

B. THE BRIDGE EXAMPLE VERSION 1
/**************** "exactly-N-cars-per-turn" ***************/
#define EACH_TURN_MAX 2 //maximum number of cars allowed each turn
#define NUM_OF_CARS 2 //total number of cars from each direction
#define INITIAL_TURN 1 //the blue controller

proctype car(SynChan enter; SynChan exit){
/* contents of these messages do not matter in this case */
DataMsg enter_request;
DataMsg exit_request;

end:do
:: enter.d!enter_request; // connected to SynBlSend port

enter.c?sendStatus,_;
onbridge: skip;
offbridge: skip;
exit.d!exit_request; // connected to AsynBnSend port
exit.c?sendStatus,_

od
}
proctype controller(bool myColor; SynChan enter; SynChan exit){
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byte count = 0;
bool myturn = false;
DataMsg recvRequest, enter_request, exit_request;

if
:: (myColor == INITIAL_TURN) -> myturn = true
:: else
fi;
recvRequest.selective = 0; //nonselective receive
recvRequest.remove = 1; //remove receive

end:do
:: myturn -> /* handle enter_request */

atomic{
enter.d!recvRequest; // connected to BlRecv port
enter.c?recvStatus,_;
enter.d?enter_request;

count++;
if
:: (count == EACH_TURN_MAX) ->

myturn = false;
count = 0

:: else
fi

}
:: !myturn ->

atomic{
exit.d!recvRequest; // connected to BlRecv port
exit.c?recvStatus,_;
exit.d?exit_request;

count++;
if
:: (count == EACH_TURN_MAX) ->

myturn = true;
count = 0

:: else
fi

}
od

}
/* initialize the system
* compose different channels, ports and components
* using default ‘‘promela channels’’ */

init{
byte i=0;

/** define ‘‘promela channels’’ for internal communication **/
/* for communitation between components and ports */
SynChan BlueCar_BlueEnter[NUM_OF_CARS];
SynChan BlueCar_BlueExit[NUM_OF_CARS];
SynChan RedCar_RedEnter[NUM_OF_CARS];
SynChan RedCar_RedExit[NUM_OF_CARS];
SynChan BlueController_BlueEnter;
SynChan BlueController_RedExit;
SynChan RedController_RedEnter;
SynChan RedController_BlueExit;

/* for communication between channels and ports */
SynChan BlueEnter_BlueController;
SynChan BlueExit_RedController;
SynChan BlueEnter_BlueCar;
SynChan BlueExit_BlueCar;
SynChan RedEnter_RedController;
SynChan RedExit_BlueController;
SynChan RedEnter_RedCar;
SynChan RedExit_RedCar;

atomic{
do
/* start car components and corresponding send/receive ports */
:: (i<NUM_OF_CARS)->

run car(BlueCar_BlueEnter[i],BlueCar_BlueExit[i]);
run car(RedCar_RedEnter[i],RedCar_RedExit[i]);
run SynBlSendPort(BlueCar_BlueEnter[i],BlueEnter_BlueCar);
run SynBlSendPort(RedCar_RedEnter[i],RedEnter_RedCar);
run AsynBlSendPort(BlueCar_BlueExit[i],BlueExit_BlueCar);
run AsynBlSendPort(RedCar_RedExit[i],RedExit_RedCar);
i++

:: else -> break
od;
/* start channels and corresponding send/receive ports */
run FIFO_queue(BlueEnter_BlueCar,BlueEnter_BlueController);
run FIFO_queue(RedEnter_RedCar,RedEnter_RedController);

run single_slot_buffer(BlueExit_BlueCar,BlueExit_RedController); run single_slot_buffer(RedExit_RedCar,RedExit_BlueController);
run controller(1,BlueController_BlueEnter,BlueController_RedExit);
run controller(0,RedController_RedEnter,RedController_BlueExit);
run NbRecvPort(BlueController_BlueEnter, BlueEnter_BlueController);
run NbRecvPort(RedController_RedEnter, RedEnter_RedController);
run NbRecvPort(BlueController_RedExit, RedExit_BlueController);
run NbRecvPort(RedController_BlueExit, BlueExit_RedController);

}
}
/* Property: cars from two directions should never */
* be on the bridge at the same time */

/* car[1] blue, car[2] red */

never { /* ! ( [] ( ! ( ( p ) && ( q ) ) ) ) */
T0_init:

if
:: ((car[1]@onbridge) && (car[2]@onbridge)) ->

goto accept_all
:: (1) -> goto T0_init
fi;

accept_all:
skip

}

C. THE BRIDGE EXAMPLE VERSION 2
/* "at-most-N-cars-per-turn-if-waiting" */
proctype controller(bool myColor; SynChan enter; SynChan exit;

SynChan toOther; SynChan fromOther){
byte count = 0;
bool myturn = 0;
bool otherFinished = 0;
byte numEntered = 0;
DataMsg recvRequest, enter_request,

exit_request, finish_notification_with_num;
recvRequest.remove = 1;
recvRequest.selective = 0;
if
:: (myColor == INITIAL_TURN) -> myturn = true
:: else
fi;

end:do
:: myturn ->

enter.d!recvRequest; //connected to NbRecv port
enter.c?recvStatus,_;
enter.d?enter_request;
if
:: (recvStatus == RECV_SUCC) ->

count++;
if
:: (count == EACH_TURN_MAX) -> //finished, yields turn

myturn = false;
finish_notification_with_num.data = count;
toOther.d!finish_notification_with_num;
toOther.c?sendStatus,_; //connected to SynBlSend port
count = 0

:: else
fi

:: (recvStatus == RECV_FAIL) -> //finished, yields turn
myturn = false;
finish_notification_with_num.data = count;
toOther.d!finish_notification_with_num;
toOther.c?sendStatus,_; //connected to SynBlSend port
count = 0

fi
:: !myturn ->

if //check if already received ‘‘finish’’ signal
:: (otherFinished) -> goto L1;
:: else
fi;
/* check if a finish notification is available */
fromOther.d!recvRequest; // connected to NbRecv port
fromOther.c?recvStatus,_;
fromOther.d?finish_notification_with_num;
if
:: (recvStatus == RECV_SUCC) ->

numEntered = finish_notification_with_num.data;
otherFinished = true

:: (recvStatus == RECV_FAIL) ->
fi;
/* handle exit requests */

L1: exit.d!recvRequest;
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exit.c?recvStatus,_;
exit.d?exit_request;
if
:: (recvStatus == RECV_SUCC) ->

count++
:: (recvStatus == RECV_FAIL) ->
fi;
if
:: (otherFinished && count == numEntered) ->

myturn = true;
otherFinished = false;
count = 0

:: else
fi;

od
}

D. THE BRIDGE EXAMPLE VERSION 3
/* "at-most-N-cars-per-turn-if-waiting" with emergency vehicles */
#define NUM_OF_NM_CARS 1 //number of normal cars from each direction
#define NUM_OF_EM_CARS 1 //number of emergency cars from each direction
#define NUM_OF_CARS_TOTAL 2 //total number of cars from each direction

proctype car(SynChan enter; SynChan exit; byte emergency){
DataMsg enter_request;
DataMsg exit_request;

enter_request.selectiveData = emergency;
end:do

:: enter.d!enter_request;
enter.c?sendStatus,_;

onbridge: skip;
offbridge: skip;
exit.d!exit_request;
exit.c?sendStatus,_

od
}
proctype controller(bool myColor; SynChan enter; SynChan exit;

SynChan toOther; SynChan fromOther){
byte count = 0;
bool myturn = 0;
bool otherFinished = 0;
byte numEntered = 0;
DataMsg recvRequest, enter_request, exit_request,

finish_notification_with_num, emergency_stop;

if
:: (myColor == INITIAL_TURN) -> myturn = true
:: else
fi;
recvRequest.selective = 0;

end: do
:: myturn ->

recvRequest.remove = 0; // nonblocking copy receive
enter.d!recvRequest;
enter.c?recvStatus,_;
enter.d?enter_request;
if
:: (recvStatus == RECV_SUCC) ->

if
/* check if an emergency_stop signal is available only when */
/* there is no emergency car waiting on my own side */
:: enter_request.selectiveData == 0 ->

/* there is only request from normal vehicles */
recvRequest.remove = 1;
fromOther.d!recvRequest;
fromOther.c?recvStatus,_;
fromOther.d?emergency_stop;
if
:: (recvStatus == RECV_SUCC)

|| (count == EACH_TURN_MAX) ->
/* there are emergency cars waiting on the other side */
/* finish */
myturn = false;
finish_notification_with_num.data = count;
toOther.d!finish_notification_with_num;
toOther.c?sendStatus,_;
count = 0;
goto end

:: else
fi

:: else
fi;
/* continue to handle my own enter_request */
recvRequest.remove = 1; //nonblocking remove receive
enter.d!recvRequest;
enter.c?recvStatus,_;
enter.d?enter_request;
count++

:: (recvStatus == RECV_FAIL) -> // finish
myturn = false;
finish_notification_with_num.data = count;
toOther.d!finish_notification_with_num;
toOther.c?sendStatus,_;
count = 0;
/* flush the possible emergency_stop signal*/
recvRequest.remove = 1;
fromOther.d!recvRequest;
fromOther.c?recvStatus,_;
fromOther.d?emergency_stop

fi
:: !myturn ->

if
:: (otherFinished) -> goto L1;
:: else
fi;
/* check if there are emergency vehicles waiting on my side */
recvRequest.remove = 0; //don’t remove
enter.d!recvRequest;
enter.c?recvStatus,_;
enter.d?enter_request;
if
:: (recvStatus == RECV_SUCC

&& enter_request.selectiveData == 1) ->
/* if there are emergency cars waiting */
toOther.d!emergency_stop;
toOther.c?sendStatus,_;

:: (recvStatus == RECV_FAIL) ->
fi;
/* check if a finish notification is available */
recvRequest.remove = 1;
fromOther.d!recvRequest; //nonblocking remove receive
fromOther.c?recvStatus,_;
fromOther.d?finish_notification_with_num;
if
:: (recvStatus == RECV_SUCC) ->

numEntered = finish_notification_with_num.data;
otherFinished = true

:: (recvStatus == RECV_FAIL) ->
fi;
/* handle exit requests */

L1: recvRequest.remove = 1;
exit.d!recvRequest;
exit.c?recvStatus,_;
exit.d?exit_request;
if
:: (recvStatus == RECV_SUCC) ->

count++
:: (recvStatus == RECV_FAIL) ->
fi;
if
:: (otherFinished && count == numEntered) ->

myturn = true;
otherFinished = false;
count = 0

:: else
fi

od
}
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