
Process Support to Help Novices Design Software
Faster and Better

Aaron G. Cass
Department of Computer Science

Union College
Schenectady, NY 12308

+1 518 388-8051

cassa@union.edu

Leon J. Osterweil
Department of Computer Science

University of Massachusetts
Amherst, MA 01003-4610

+1 413 545 2013

ljo@cs.umass.edu

ABSTRACT
In earlier work we have argued that formal process definitions can
be useful in improving our understanding and performance of soft-
ware development processes. Others have suggested that such an
approach is viable for such processes as configuration management
and testing. There has, however, been considerable sentiment that
formalized process definitions are not likely to be useful in aiding
in software design. This paper describes our experimentation with
the hypothesis that formal definitions of design processes can facil-
itate the application of computing power to the design of software
by novices. Specifically, we hypothesized that both design speed
and design quality could be improved through the use of process
definitions. Our experimentation supports this hypothesis.

1. INTRODUCTION AND STATEMENT OF
THE PROBLEM

Software design is the difficult task of producing a model of a sys-
tem that can provide assurance that the final system will satisfy its
specified requirements. Design is therefore the task of producing a
collection of model elements that are related to each other and to
requirements elements such that the elements conspire together to
satisfy the totality of the requirements.

It has been observed [12] that software design, as practiced by ex-
perts, is a very iterative process. The designer undertakes a series
of activities designed to arrive at a complete and consistent design
model. Each activity will involve work on one or more parts of the
model with the goal of adding to the model in such a way that it is
still internally consistent and consistent with the requirements. Af-
ter each activity, the design may or may not be consistent – in fact
the design will often need to go through states of inconsistency on
the way to consistency. The designer must then decide both what
task to perform next and on which part of the system to perform
this task. The designer continues in this iterative fashion, fixing
inconsistencies along the way, until the final design is complete.

At each point in this sequence of activities, there is a large number
of design alternatives and choices of activities to undertake. These
choices might be easily handled by an expert, but a novice is likely
to be overwhelmed by the sheer number and variety of choices.
Furthermore, an expert might be able to keep the overall design in
mind, and know, in the midst of an iterative process, when progress
on the overall goals is being made. A novice designer, on the other
hand, cannot be expected to keep the overall goals clearly in mind.

The expert’s iterative process can be viewed as a series of oppor-
tunistic responses to the inconsistency of the design – when incon-
sistencies are noticed, the expert reworks the violating parts of the
design. We propose an approach to help the novice designer make
progress in design by providing a partially-automated process that
provides this kind of guidance.

Clearly, such a process should not be too rigid because design re-
quires creativity, genius, ingenuity, and insight. However, design
also requires a great deal of clerical work, documentation, and
cross-checking. Because humans are good at the former, but com-
puters are better at the latter, we seek to create a process in which
each does what it is good at, and is relieved of needing to do what
it is not good at. It is our belief that such a process, if correctly
encoded, should be able to guide design progress effectively, while
not being overly-restrictive.

Such a guiding process should be particularly helpful for novice
designers working within the context of specific design styles. Such
a process should be tailorable so that it directly supports specific
kinds of activities needed to create designs in a particular, well-
known design style or pattern. And within the context of such a
process, a set of design consistency rules can be tailored for the
design pattern of interest. In such a way, we believe that we should
be able to give novice designers direct and focused guidance to
make progress. We propose the dual hypotheses that by doing so,
1) we can guide novice designers to produce higher quality designs
and 2) the novice designers will spend less time designing than with
alternative approaches. In this paper, we present an experiment, the
results of which support these hypotheses.

2. RELATED WORK
Design is well-understood to be a creative activity, requiring many
mid-course changes in plan of attack. Visser [12] observed an en-
gineering designer undertaking a design after having first docu-
mented a plan for how he would proceed with the design. In the
end, the designer had not directly followed the plan, and instead



adopted an opportunistic approach. This opportunism seems to us
to be inherent in the nature of the design process. Because of this
opportunism, it has seemed difficult to capture the process of design
in a formalized model. There are many efforts to better understand
processes and improve upon them, and these activities have sug-
gested to some that the process of design is too creative an activity
to be amenable to formal modeling.

Because of this, tool-based approaches to helping designers tend
not to focus on the process of design, instead focusing on the arti-
facts produced. For example, the Argo [9] design environment uses
general-purpose design critics [10] to check design artifacts against
consistency rules, giving feedback when the relations among these
artifacts are inconsistent with respect to those rules. The Aesop [5]
environment more strictly enforces design rules by restricting the
creation of design artifacts that are incompatible with a design style
being developed. Both of these systems, and others like them, pro-
vide guidance about how the artifacts should be related and struc-
tured in the end without giving direct guidance about the process to
follow in order to achieve the desired structure and relations. This
seems to us to risk overwhelming novice designers with too many
choices.

Additionally, as noticed by Garlan, et al [5], there are times when
rules should not be enforced. In particular, it is often the case that
the only way to transform a design from one consistent design to
another is to transition via an inconsistent intermediate state. If one
is strictly enforcing all rules at all times, the rules would then have
to be weaker to allow the intermediate states. Even if all the rules
are not strictly enforced, but only used to provide warnings, the
amount of warning feedback given would seem to us to be over-
whelming at times, and therefore lacking in utility.

In previous work, we have argued that we can learn a lot by for-
malizing software processes as process programs [8], and partially
automating their execution with appropriate infrastructure [2]. As
part of this ongoing effort, we have developed a process-programming
language called Little-JIL [14, 13] and an interpreter for it called
Juliette [2] and have used both to encode and execute various com-
plex processes, in software engineering as well as in such other
domains as medicine and government. We have further argued that
software design processes can indeed be defined using a suitably-
flexible process program [3]. We have also used the flexibility of
Little-JIL to support the formalization of the common activity of
rework in design processes [4]. Based on all of this experience, we
believe that design processes can indeed be encoded and executed
while still providing the flexibility needed. In this paper, we take
this work a step further by evaluating the approach with an experi-
ment.

3. OUR APPROACH
Our approach is to augment the Aesop/Argo approach, emphasiz-
ing the evaluation of consistency rules among design artifacts, with
process guidance provided by a Little-JIL process program, which
is executed using Juliette. We start with the observation that the
process one uses for one design style might very well differ from
the process used for another, just as the consistency rules will dif-
fer (see [5]). Thus, for the experiments described in this paper, we
chose to develop a process program and consistency rules for the
Model-View-Controller (MVC) [6] architectural style. We made
this choice because it seems that it provides many opportunities for
defining important consistency rules and also because our own con-
siderable experience in using the pattern has suggested an effective

process for developing such designs.

3.1 Process Guidance
Consultation with a local designer who has much experience in de-
veloping MVC software led us to design a process for designing
MVC systems. Informally, the process involves beginning with
the model portion of the system, satisfying those requirements that
deal with the storage of application data, and then working on the
event system that keeps the views updated. The process is flexible,
at times allowing the designer considerable choice in the order to
execute process steps. The process also supports and encodes de-
sign rework by responding to problems by re-executing previously
executed steps, thereby modeling for the novice the opportunistic
rework practiced by experts (see [4]).

While the focus of this paper is not our process language Little-
JIL, we present in Figures 1 and 2 the Little-JIL formalization of
the process to clarify some of the aspects of the process and to
demonstrate that the process is formally understood. As a Little-
JIL process program, it is a hierarchy of steps that defines formally
the allowable orders of execution of the individual steps in the pro-
cess. The notation in the black bar for a step indicates the allowable
orders of the sub-steps of that step. For example, the root step is
Design MVC System and it is asequentialstep, which means that
its sub-steps are to be executed in left-to-right sequential order. So,
this process mandates that the designer must first add the primary
model class (an activity which is further decomposed into two other
steps to be executed sequentially) and then must satisfy the model
requirements. As indicated by the parallel lines in the step bar in
Figure 1(b), satisfying a model requirement is a parallel activity1.
This means that while we are adding a new model class we can also
be modifying existing ones. Notice also thecardinalitynotation on
the edge aboveAdd Model Class. The question mark indicates that
the step is optional. The cardinality ofAdd Method in the left side
of Figure 1(b) is a Kleene star, indicating that we can add zero or
more methods to the newly added model class. Similarly, the other
reference toAdd Method has a plus cardinality, meaning that we
can add one or more methods to the existing classes that we are
modifying.

In addition to the parallel step, which allows the designer quite a
bit of flexibility in this design process, we also allow for achoice
step likeAdd Registration Methods in Figure 2. This step can be
achieved byeitheradding property change listeners or adding reg-
ular listeners. These language features allow the designer flexibility
in the order in which to undertake activities, allowing the designer
to act opportunistically when the process programmer deems it ap-
propriate, while always keeping track of the overall design progress
being made.

We have not yet shown Little-JIL’s exception-handling mechanism,
which we use to respond to problems discovered during execution
of process steps. See section 3.3.

3.2 User Interface
The flexibility inherent in the process program is presented to the
user though the user interface shown in Figure 3. The user inter-
1Note that we have left out a full elaboration ofSatisfy Model Re-
quirements from Figure 1(a). This is also a parallel step, in this case
with children that are instances ofSatisfy Model Requirement, one
for each of the requirements for the system being developed. Due
to a limitation of Little-JIL, these sub-steps are hard-coded into the
process definition. See section 6 for more details.



(a) (b)

Figure 1: MVC Design Process

Figure 2: MVC Design Process, third diagram



Figure 3: User Interface

face is broken into the design view and two task lists, the second
of which has a more detailed view. The design view shows the cur-
rent state of the design, in the form of a class diagram that is very
much like those presented by other design tools. The task views
present the various activities in which the user can engage at any
one moment, while simultaneously showing the context in which
those activities are taking place.

Consider for example the snapshot shown in Figure 3. In this sce-
nario, the user is working on two instances of theSatisfy Model
Requirement step, one for the Appointment requirement and one
for the Date requirement. Since these two tasks are instances of
a step that is a child of a parallel step, they may be carried out in
any order, and thus the user is free to work on both at once – as
is indeed shown in the task list2. Within the context of adding a
class to satisfy the Appointment requirement, the user is about to
add a method, and as such has selected theAdd Method task. The
bottom part of the task list then gives the user information about
that task, such as parameter values and the iteration number. The
icons next to the tasks in the task list indicate whether the step is
optional or if it is part of aloop (i.e. if the associated Little-JIL
step has a non-unit cardinality). For optional steps, theEnd Loop
or Opt Out button is available to enable the user to specify an intent
to complete the step without action and proceed forward.

When the user presses the start button on a primitive task, a dialog

2In this example, we have configured the system to display in-
stances ofSatisfy Model Requirement with a task name different
from the step name, to indicate what requirement is being worked
on. Each other step is displayed to the user using the step’s name.

is presented to gather information from the user about the part of
the design to be added or modified. Each piece of required informa-
tion can be provided for the user, as specified by parameter passing
specified as part of the Little-JIL program (not shown here), or it
can be left to the user to fill in, thereby giving the user more or less
control over the design being developed. When the user completes
the dialog, the design model is updated and, depending on progress
made in the Little-JIL program, other tasks may be presented to
the user. In this way, the user has a range of freedom to work on
different parts of the design, doing different activities, and yet the
system can keep track of the progress made so far.

So, the process program provides flexibility and the user interface
passes on this flexibility to the user. However, the process as de-
scribed so far does not provide any artifact-based guidance. For
that, we add consistency rules.

3.3 Artifact Guidance
We have developed a set of rules to describe the desired structure
of an MVC system, along with a rule-checking system to auto-
matically check the design against those rules. The inspiration for
the rule-checking system is xlinkit [7], which we used in earlier
versions of the system. xlinkit provides a facility for checking
XML [1] documents against rules expressed as formulas over sets
of elements and using their attributes. Our rules are described in-
formally in much the same way, but we have implemented them in
Java.

The rules are relatively straightforward and derived from the struc-
tural requirements placed on MVC systems. For example, there is



a rule that says that model classes must have registration methods
used for adding and removing observers, and another rule that re-
quires that the parameter to those registration methods must be a
listener. In this experiment we chose to use style-specific rules in-
stead of general-purpose rules because we thought that their more
focused guidance would make for a more effective process. Since
we have a process model for a particular design style, it seems ad-
visable to have style-specific rules to match. In future work we
hope to explore the viability of more general-purpose rules.

To avoid overly-restricting the designer by disallowing inconsistent
intermediate states, we avoid strict enforcement of the rules. If
we did not, we would have to weaken the rules considerably in
such a way that a design that satisfied all the rules for a particular
style might not clearly have been an instance of that style. Instead,
we choose to give warnings when rules are violated. However, it
seems clear that this will result in many temporary violations and
designers will not necessarily know which warnings to heed and
which can be safely ignored. This seems particularly likely to be
true for novice designers. The risk is that users of such a design tool
will learn to ignoreall the rules, again weakening the rule system.

Therefore, our approach is to use a rich rule set but control the ap-
plication of the rules based on what point the designer has reached
in the process. Our contention is that at certain points in the design
process, if the design is going well, the design can be expected to
satisfysomeof the rules, but not necessarilyall of them. So, if at
various points in the process we check only those rules that should
be obeyed at those points, we should be able to get the benefit of a
rule system while avoiding, as much as possible, the drawback of
overwhelming the designer with useless feedback.

In fact, we can take this idea one step further to include programmed
repairs of the design. At certain points in the process, we should
know something specific about the state of the design because of
the process steps that have preceded. Then if we see a violation of
one of the rules, we have a context in which to understand how to
fix the design to bring it in line with the rules. In Little-JIL, we can
accomplish this with the exception handling mechanism. When a
violation is noticed, we throw an exception, which can be caught
and to which we can respond with any Little-JIL step, which can,
in turn, have sub-steps. So, instead of just giving a warning to the
user of the design tool, we can directly give alternative steps to
undertake to fix the problem.

Note that, because exception handling steps are simply Little-JIL
steps, they are presented to the user in the same manner as the
other steps. This seems particularly important for novice design-
ers because they lack experience and are therefore likely to run into
inconsistencies. The inconsistencies are what drive the progress
forward, and thus treating them differently from the nominal flow
does not seem desirable.

Consider the program snippet in Figure 4, which is executed (by
way of Little-JIL’s post-requisite mechanism) after an event class
has been added.Check Consistency checks the design with respect
to the single rule that states that any event class must have a con-
structor and that constructor must have a model class as a parameter
(so that the model class can indicate the object that generated the
event). If any violations of this rule are encountered, an exception
is thrown. Each violation exception is caught byChecker, causing
Fix Class to be executed.Fix Class gives the user the choice of
modifying a method or adding a method to fix the problem – be-

cause either the constructor exists and lacks the correct parameter
or we need to add the constructor to solve the problem.

Note that at other points in the process, we can check different
rules. For example, when we are creating an event class, we add
methods to it. One of the rules states that none of these methods
can be setters. So, instead of waiting until we’ve added all such
methods, we can check the design with respect to this rule after
each method is added. In this way, we place consistency checking
for the rule at the lowest level at which we can expect it to be satis-
fied, and we can respond to violations with knowledge of what the
designer is attempting at that moment. Note also that we can check
multiple rules at any point in the process and we could then have
multiple exception handlers, one to handle each kind of violation.

With this mechanism, we believe that we can leverage our knowl-
edge of the progress made in the process to give directed guidance
to novice designers so that they are not overwhelmed by feedback,
nor overwhelmed by choices of what to do next. We hypothesize
that this will have two main effects:

• The designs produced will be of higher quality than without
this directed guidance.

• The novice designer’s progress will be ensured and the de-
sign will therefore be completed more quickly than without
this directed guidance.

4. METHODS
In this section, we describe an experiment we undertook to eval-
uate our approach. The experiment was designed to compare our
approach to an Argo-like approach that gives relatively more free-
dom but as a result must give less focused, and therefore possibly
more overwhelming, feedback. Therefore, our experiment design
is essentially to develop or find design guidance tools using dif-
ferent approaches and have subjects use these tools to undertake a
design task, measuring how well they do using these approaches.
Our general hypothesis is that our approach will produce better de-
signs, more quickly, than other comparison approaches.

4.1 Infrastructure Support For a Comparison
Approach

Because the infrastructure we have developed uses a Little-JIL pro-
gram to know which activities to present at which times, creating
two different user experiences is accomplished simply by creating
two Little-JIL process programs. So, to compare design guidance
approaches, we compare Little-JIL process programs that codify
them. Any differences users experience from using the two ver-
sions are attributable directly to the processes (as codified in the
process programs) used in the two approaches. Every other aspect
of the user experience is the same for the two approaches – users
interact with the tools in the same way, the tools use the same un-
derlying technology, and the tools perform the low-level tasks with
the same level of performance.

So, to compare the Argo-like approach to our approach, we need
only create a Little-JIL process program for the Argo-like approach.
Since Argo does not encode process knowledge, this second Little-
JIL program must not restrict the actions of the user. This is ac-
complished with a very simple process program consisting only of
a single parallel step with all of the primitive design actions as sub-
steps, each with Kleene star cardinality, so that the user can perform
any steps in any order, and as many times as the user may choose.



Figure 4: Consistency Exception

After each primitive design action, we check the design rules and
present warnings in a separate warning box.

The Argo-like process lacks process-based guidance, but retains
artifact-based guidance. In an effort to understand which of these
two factors makes the most difference in the design, we also imple-
mented a process with neither process guidance nor artifact guid-
ance, as well as one that only had process guidance. We therefore
were able to carry out a factored experiment with two factors, each
with two levels (on and off), for a total of four treatments:

1. No Guidance (N): The process is a single parallel step with
all primitive design steps as sub-steps, with Kleene star car-
dinality. No consistency rules are checked, so there is no
artifact guidance nor process guidance.

2. Process Guidance (P): The process is as in our approach,
but without consistency checks, therefore not giving artifact
guidance but giving process guidance.

3. Artifact Guidance (A): This is the Argo-like process described
above.

4. Combined Guidance (C): This is our approach, in which con-
sistency checks are embedded in the process with responses
to those checks also programmed as process fragments.

4.2 Hypotheses
We hypothesize that making use of process knowledge will help
novice designers produce designs more quickly because they will
spend less time making decisions, as they will have a less over-
whelming set of tasks from which to choose. The null hypothesis
is thus:

H0(1) (duration using process guidance):Design time with-
out process guidance is equal to design time with process
guidance.

We further hypothesize that novice designers will produce designs
slower using artifact guidance because they will have to take time
to respond to that guidance:

H0(2) (duration using artifact guidance): Design time with-
out artifact guidance is equal to design time with artifact
guidance.

We also expect that more guidance, of either kind, will produce
higher quality designs:

H0(3) (quality using process guidance):Design quality
without process guidance is equal to design quality with pro-
cess guidance.

H0(4) (quality using artifact guidance): Design quality
without artifact guidance is equal to design quality with arti-
fact guidance.

We intend to test all of these hypotheses with one-sided hypothesis
tests.

4.3 Sampling and Blocking
Our sample of subjects was drawn from a population of students
that had recently passed a course at Union College in which, among
other things, they developed MVC designs. We chose this group of
subjects because college students can be expected to be novice de-
signers, and yet these students knew at least something of MVC
so that we did not have to also teach them about design. We note
that this level of experience with the MVC pattern also seems rep-
resentative of the experience level that novice designers in industry
might have.

To populate the four treatment options, we established groups of
four subjects based on their performance on a pretest. The pretest
tested their design analysis skills, on the assumption that design
analysis relates directly to design performance. This seems reason-
able given that one must analyze one’s own design to determine
when the design is complete. We did not use an actual design task
as the pretest because we wanted to avoid a training effect.

We ended up with four groups of four subjects. Two subjects dropped
out in the course of the experiment because they misunderstood or
did not follow directions. So, we therefore had fourteen subjects,
broken into four groups based on their performance on the pretest.

4.4 Variables and Measures
The independent variables are the two factors mentioned above,
giving us four treatments. We wish to measure as dependent vari-
ables both design speed and design quality. Design speed is easy to
measure by measuring the time subjects take to perform a design
task using a particular approach. We have therefore instrumented
our tool-set to log the beginning time and the time for every user
action. The duration is then measured by subtracting the start time
from the time of the last action. This is measured in milliseconds
and recorded in our analysis in seconds.

In order to measure design speed, we allow the subjects to work
until they are complete with their design, either because they deem
them complete or because there are no more tasks to carry out.

Measuring design quality is more problematic. The quality of the



performance of the task is how well it meets the objectives and in
this case the objectives are to produce a good design according to
a particular design style. Because this is the goal, we considered
using our consistency rules as a measure of design quality – a de-
sign that fits the pattern well will violate few of the rules. However,
we have rejected using this measure because it would seem unfair
– subjects that directly use the rules in their design task would cer-
tainly have an advantage on this measure when compared with sub-
jects that do not have access to the rules beforehand. We also con-
sidered using other standard design quality metrics like coupling
and cohesion, but they do not seem to measure the real variable of
fitness to the particular desired pattern.

Since purely objective measures did not seem appropriate here, we
decided to use expert opinion to rate the designs produced by sub-
jects in our experiment. To reduce the subjectiveness of this mea-
sure, we decided to get input from three design experts. Our design
experts are:

• A technical staff member of a research laboratory and current
instructor of software engineering.

• A technical staff member of a software engineering research
laboratory, with extensive experience reviewing designs cre-
ated by others.

• An industrial software engineer with recent past experience
teaching software engineering at the university-level.

We supplied these experts with the designs produced by our sub-
jects, in random order, and asked them to give a grade on a scale
from 1 to 5, with 5 being best. To ensure that we got a good
amount of rank-order information, we asked the experts to assign
each grade at most 4 times and at least 2 times. To derive a design
quality score from these individual grades, we have simply added
the scores received by each expert.

Note that our experts had no prior knowledge of the processes in-
volved in our experiments, they did not have any way to determine
which group the designs were from, and they were not coached on
how to grade the designs – we relied on their design expertise alone
to assess the quality of designs produced in our experiment.

4.5 Experiment Setup
We gave each of the subjects a design task to perform and one of
the four tools to use – each member of a group using a different one
of the four tools. The design task was to design an MVC system
for managing a date book. The subjects were given a set of require-
ments for the system and documentation describing how to use the
tools. The documentation was different for the different treatments
only in that some of the tool behavior was not available for some
treatments. For example, for treatments without process guidance,
there was only one task list for the low-level tasks while those with
process guidance added a high-level task list for higher-level tasks.
Also, the Argo-like approach had a warning list.

We captured the designs they produced and measured the time they
took to perform the task. We allowed the subjects to work with the
tools until their designs were complete, either because they deemed
them complete or because there were no more tasks to carry out.

4.6 Threats to Validity
In this section, we outline the primary risks that our results might
become meaningless, and discuss what we have done to ameliorate
these risks. See [11] for general explanation of validity threats.

4.6.1 Internal Validity
Our experimental design is aimed primarily at reducing risks of
internal invalidity. We avoid training effects by only having each
subject perform a single design task. We avoid maturation threats
by having all subjects perform the design task within a week of the
pretest. We avoid a history threat by grouping subjects by pretest
score so that subjects with similar skills are compared with each
other. Note also that the pretest scores are in a relatively small
range.

4.6.2 External Validity
In our experiments, we attempt to measure the effects of process
guidance and artifact guidance. However, we measure these only in
the context of processes and constraints for MVC designs. So, our
measures may only be valid for such designs. We have attempted
to deal with this threat by being very careful not to do anything that
we did not think would generalize to other design styles.

Another possible threat to external validity is that our sample of
subjects might not be representative of the novice designers in the
population. While this might be true, it seems unlikely to us be-
cause our subjects are students with little design experience – the
level of expertise we expect novice designers in industry will have.

4.6.3 Construct Validity
We wish to compare approaches, which are typically embodied in
tools. However, in order to reduce internal validity threats, we
have embodied the different approaches in instances of a single
tool. Even if one approach has better tools, we are not measur-
ing using those better tools. It might even be the case that one
approach might enable better tools that are not possible at all with
the other approaches. However, our expectation is that process and
constraints can be applied in several tool contexts, not just using
our infrastructure.

Our measure of quality is another source of possible threats to con-
struct validity. We are not using an entirely objective measure of
design quality. However, the collected wisdom of three expert
designers with a variety of professional and academic experience
seems to us to be a good measure of design quality.

5. RESULTS AND DISCUSSION
We start with the design duration variable. We had intended to use
an analysis of variance (ANOVA) test to determine whether there
is an effect for each of the factors and whether the factors interact,
factoring out the variance due to group (i.e. factoring out the start-
ing skill level as measured by the pretest). Unfortunately, due to
the distributions of the measure data, this did not provide any use-
ful information. We found that the grouping of subjects by pretest
score explained little of the variance in design duration (p=0.372).
This suggests that the pretest is not very good at predicting design
performance.

Instead, we focus on determining the main effect of each of the two
factors, disregarding the grouping. Figure 5 shows box plots of the
duration data. There seems to be a large improvement in duration
for process guidance versus no process guidance. In fact, we can
reject hypothesisH0(1) (p=0.027 for a one-sided Wilcoxon rank-
sum test).

The second box plot in Figure 5 shows the effect of artifact guid-
ance. There appears to be no effect, and in fact we are not able to
rejectH0(2) (p=0.426).



..................................................................................................................................................
........
........
........
........
........
........
........
........
........
..........................................................................................................................................................................................................................................

..........................................................................................................................................

........

...

...........

...........

...........

...........

.

.....................................................................

.....................................................................

........................

.

..................................................................................................................................................
........
........
........
........
........
........
..................................................................................................................................................................................................................

..........................................................................................................................................

....

........

.....................................................................

.....................................................................

........................

.

.......................................................................................................................................................................................
...........

0 1

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....

...........

...........

...........

...........

2000

3000

4000

5000

Process Guidance

Duration(s)

............................................................................................................................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........................................................................................................................................................................................................................................................

..........................................................................................................................................

........

...

........

...

........

...

........

...

........

...

........

...

.......

...........

...........

...........

...........

.....................................................................

.....................................................................

..................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
..................................................................................................................................................................................................................................................................

..........................................................................................................................................

........

...

........

...

........

...

........

...

........

...

..

...........

...........

...........

...........

...........

...........

...........

.....................................................................

.....................................................................

.......................................................................................................................................................................................
...........

0 1

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....

...........

...........

...........

...........

2000

3000

4000

5000

Artifact Guidance

Duration(s)

............................................................................................................................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Figure 5: Duration vs. Process Guidance and Artifact Guidance

0

1

2

3

4

5

6

7

8

9

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91

Time (minutes)

S
iz

e
 (

#
 o

f 
cl

a
ss

e
s)

Without Process
With Process

Figure 6: Number of classes versus time

The statistical analysis indicates that there is less than a 3 percent
chance of observing a difference of this magnitude given that the
null hypothesisH0(1) is true. Note also that the Wilcoxon rank-
sum test makes no assumptions about the distributions of the sam-
ples. So, while we will definitely try to get larger sample sizes in
the future, for this experiment, the sample size seems large enough
to support the effect we are measuring here.

So, subjects without process guidance spend more time designing
that those with it. What are these subjects doing with the extra
time? One possibility is that they are spending more time because
they are producing more design. To determine whether this is the
case, we have analyzed the differences in design size, as measured
by the number of classes and the number of methods, between the
process-guided and the non-process-guided designs. Figures 6 and
7 show, respectively, the number of classes and the number of meth-
ods, at one minute intervals, for subjects with and without process
guidance (averaged over all such subjects). In both cases, we see
that process-guided subjects produced, on average, slightly smaller
designs. However, the differences in final number of classes and

0

5

10

15

20

25

30

35

40

45

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91

Time (minutes)

S
iz

e
 (

#
 o

f 
m

e
th

o
d

s)

Without Process
With Process

Figure 7: Number of methods versus time

final number of methods are not statistically significant (p=0.818
and p=0.484 using two-sample t-tests).

Even though we do not find a significant difference in the final de-
sign sizes, Figures 6 and 7 seem to show differences in how the
different groups of subjects arrived at these design sizes. In fact, a
Kolmogorov-Smirnov two-sample test shows that it is very unlikely
that the temporal distributions are the same for the process-guided
and non-process-guided groups for either number of classes (p=
1.77e-06) or number of methods (p=0.000436).

Figures 6 and 7 show that those with process guidance build fewer
classes early, and then rapidly create classes near the end of their
design tasks. On the other hand, the number of methods does not
differ much early in the tasks, but later the non-process-guided sub-
jects seem to slow the rate of adding methods. Additionally, the
average rate of method creation for process-guided subjects is very
steady throughout the design task duration.

The differences in the rates of class creation seem best to be ex-



plained by the structure imposed by the process providing the guid-
ance. The process guides the user to work on the model classes
before working on the event classes, so the early part of the de-
sign task will be focused on a few classes. On the other hand, those
without process guidance can work on the event classes at any time.
Without guidance that it makes sense to work on the model classes
first, the subject might choose to spread their effort over the en-
tire design, thus resulting in more classes created early than the
process-guided subjects.

Method and class creation rates slow near the end of the design task
duration for non-process-guided subjects, while process-guided sub-
jects do not show this effect. Further experimentation will certainly
be needed to ascertain what is occurring here, but one reasonable
hypothesis is that after the design takes a preliminary shape, indi-
vidual design decisions are more difficult to make because there
are many possible new design elements to add and those new de-
sign elements must work with existing ones in potentially intricate
ways. The hypothesis is that the process-guided subjects give a
more focused effort because the process tells them what to focus
on, reducing the decision-making burden placed on the subject.

The above results suggest that subjects without process guidance
are not doing more design, but perhaps they are producing better
design? Figure 8 shows box plots that summarize quality scores,
derived from experts’ rankings of the designs, versus process-guidance
and versus artifact-guidance. We see what looks like a distinct
increase in design quality with process guidance as compared to
quality without process guidance. In fact, we can reject the null
hypothesisH0(3) listed above, with a one-sided t-test (p=0.0437).

Artifact guidance, on the other hand, shows a negative effect on
design quality, though this difference is not statistically significant.
We are unable to reject null hypothesisH0(4) above (p=0.274 with
a t-test).

So, our experiments are inconclusive with respect to the effects
of artifact guidance on design speed or design quality. We do,
however, see statistically significant and positive effects on design
speed and design quality of process guidance. To emphasize the re-
sults here, note that we have a formalized process for software de-
sign. It might seem that to formalize a process is to make it overly-
restrictive and that this overly-restrictive process cannot support
such a creative activity as design. However, we have shown that
we can produce a flexible, yet formal, process for software de-
sign. Through experimentation, we have shown that this formal
process can support the creative activity of software design and
help novice designers produce high quality designs. Additionally,
we have shown that the process does not slow designers down – in
fact, they produce their designs more quickly than without it. So,
while some would argue that formalizing processes is both impos-
sible and undesirable, we find that it does indeed lead to significant
benefits for novice designers.

6. FUTURE WORK
One of the goals of this work has been to evaluate the usefulness of
Little-JIL for developing processes that software engineers might
use. We see this work as validation that the language is on the right
track. However, we do plan to address some short-comings clari-
fied by this work. As we mentioned before, in our formalization
of the process we had to hard-code the requirements for the sys-
tem into the Little-JIL program. Of course, this makes the process
non-portable to other design problems. Our plan is to introduce a

new cardinality feature to the language that will allow a process
programmer to indicate that a step should be instantiated once for
each of a collection of artifacts. If we then model the requirements
as such a collection, we can write a process program that does not
have specific knowledge of the requirements of the system under
design.

In addition to infrastructure and language improvements, we plan to
extend the work to validate the approach for different domains. The
existing process is designed specifically for MVC designs. While
we expect that the results are transferable to other design styles, we
will need further experimentation to verify this. We are currently
working on developing rule sets and corresponding processes for
different design styles. Our intention is to try to find commonality
so that we can develop a general-purpose tool-set that can still offer
guidance on specific design styles.

Also, the processes we have developed to date are aimed at helping
novices. Because we work with novices, we feel more free to make
somewhat restrictive processes, the theory being that novices both
need more guidance and appreciate it more. We plan to further
develop the approach for experts as well, but the challenges will be
great. Experts are likely to insist on fewer restrictions and therefore
less guidance – finding the fine line between not enough guidance
and too much guidance is likely to be problematic.

So, while this experiment has taught us something very valuable
about how to help novice designers with MVC designs, we need
much more experimentation in the future to help non-novices with
non-MVC designs as well.

7. CONCLUSION
Software design is a complex activity of creating a model of a sys-
tem that is internally consistent and consistent with the require-
ments. These consistency requirements drive experts in their de-
sign activities, and can be effectively used to help novices as well.
By combining consistency rules with high-quality process guid-
ance, we help the novice designer to make design progress and,
perhaps more importantly, we help the novice designer know when
to stop. Therefore, process guidance helps the novice designer pro-
duce better software designs, and produce them faster, than they
would otherwise. On the other hand, consistency rules do not have
a significant effect on design duration or quality.

So, while others have indicated that the process of design cannot be
formalized or automated, we find instead that doing so has a great
advantage for novice designers.

Acknowledgments
We would like to thank Alexander Wise, for his help in developing
the Little-JIL processes used in this experiment, and Vandana Bajaj
for her help in carrying out the experimental runs. We would also
like to thank Heather Conboy, David Fisher, and Timothy Sliski for
their help in evaluating design quality.

We also thank David D. Jensen, for his considerable help in exper-
iment design and analysis, as well as Lori A. Clarke, W. Richards
Adrion, and Janis Terpenny for their advice throughout the project,
in particular for their suggestions that led to the quality metric used
and to a better analysis of how the subjects’ designs evolved over
time.

We would also like to thank Anthony Finkelstein and Christian



........................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................

........

...

........

...

........

...

........

...

........

...

........

...

.

...........

...........

...........

...........

........................................................................................................................................

........................................................................................................................................

........................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................

........

...

........

...

........

...

........

...

...........

...........

...........

...........

...........

...........

.

........................................................................................................................................

........................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................................................
...........

0 1

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

...........

...........

...........

...........

...........

...........

4

6

8

10

12

14

Process Guidance

Quality

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................

........

...

........

...

........

.

...........

...........

...........

...........

...........

...........

...........

.....

........................................................................................................................................

........................................................................................................................................

........................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................

........

...

........

...

........

.

........................................................................................................................................

........................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................................................
...........

0 1

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

...........

...........

...........

...........

...........

...........

4

6

8

10

12

14

Artifact Guidance

Quality

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Figure 8: Quality vs. Process Guidance and Artifact Guidance

Nentwich for early discussions of their xlinkit rule engine, which
helped us in our development of the rule checker used in our exper-
iments.

This research was partially supported by the Air Force Research
Laboratory/IFTD and the Defense Advanced Research Projects Agency
under Contract F30602-97-2-0032, by the U.S. Department of De-
fense/Army and the Defense Advance Research Projects Agency
under Contract DAAH01-00-C-R231, and by the National Science
Foundation under Award No. CCR-0204321 and Award No. CCR-
0205575. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon.

The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied of the De-
fense Advanced Research Projects Agency, the Air Force Research
Laboratory/IFTD, the U.S. Dept. of Defense, the U. S. Army, The
National Science Foundation, or the U.S. Government.

8. REFERENCES
[1] T. Bray, J. Paoli, M. Sperberg-McQueen, and E. Maler,

editors.The Extensible Markup Language (XML) 1.0. World
Wide Web Consortium, second edition, Oct. 2000.

[2] A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil, S. M.
Sutton, Jr., and A. Wise. Little-JIL/Juliette: A process
definition language and interpreter. InProc. of the22nd Int.
Conf. on Soft. Eng., June 2000. Limerick, Ireland.

[3] A. G. Cass and L. J. Osterweil. Design guidance through the
controlled application of constraints. InProc. of the Tenth
Int. Workshop on Soft. Specification and Design, Nov. 5–7,
2000. San Diego, CA.

[4] A. G. Cass, S. M. Sutton, Jr., and L. J. Osterweil.
Formalizing rework in software processes. InProc. of the
Ninth European Workshop on Soft. Process Technology,
Sept. 1–2, 2003. Helsinki, Finland.

[5] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style in
architectural design environments. InProc. of the Second

ACM SIGSOFT Symp. on the Foundations of Soft. Eng.
Assoc. of Computing Machinery Press, Dec. 1994. New
Orleans, LA.

[6] G. E. Krasner and S. T. Pope. A cookbook for using the
model-view-controller user interface paradigm in
smalltalk-80.J. of Object-Oriented Prog., 1(3):26 – 49,
Aug./Sept. 1988.

[7] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein.
xlinkit: A consistency checking and smart link generation
service.ACM Trans. on Internet Tech., 2002. To appear.
Available at www.cs.ucl.ac.uk/staff/A.Finkelstein/papers.

[8] L. J. Osterweil. Software processes are software, too. In
Proc. of the Ninth Int. Conf. on Soft. Eng., Mar. 1987.
Monterey, CA.

[9] J. E. Robbins, D. M. Hilbert, and D. F. Redmiles. Argo: A
design environment for evolving software architectures. In
Proc. of the Nineteenth Int. Conf. on Soft. Eng., pages
600–601. Assoc. of Computing Machinery Press, May 1997.

[10] J. E. Robbins, D. M. Hilbert, and D. F. Redmiles. Software
architecture critics in Argo. InProc. of the Third Int. Conf.
on Intelligent User Interfaces, pages 141–144. Assoc. of
Computing Machinery Press, Jan. 1997. San Francisco, CA.

[11] W. M. Trochim. The research methods knowledge base, 2nd
edition. Internet WWW page at URL:
http://www.socialresearchmethods.net/kb/index.htm. version
current as of November 7, 2004.

[12] W. Visser. More or less following a plan during design:
Opportunistic deviations in specification.Int. J. of
Man-Machine Stud., 33(3):247–278, Sept. 1990.

[13] A. Wise. Little-JIL 1.0 Language Report. Technical Report
98-24, U. of Massachusetts, Dept. of Comp. Sci., Apr. 1998.

[14] A. Wise, A. G. Cass, B. S. Lerner, E. K. McCall, L. J.
Osterweil, and S. M. Sutton, Jr. Using Little-JIL to
coordinate agents in software engineering. InProc. of the
Automated Software Engineering Conf., Sept. 2000.
Grenoble, France.


