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Finite State Verification (FSV)

! FSV techniques verify whether a model 
of a system is consistent with a specified 
property

" If the property is found to be violated, 
counterexamples are usually provided to 
demonstrate how the violation happened

" Counterexamples help isolate the cause of 
the problem



Counterexample Search

! Can represent the verification problem as a 
search for counterexamples
" Two metrics: time and length

! Standard algorithms have drawbacks
" BFS: finds the shortest counterexample but 

usually is slow

" DFS: usually is fast, but tends to produce a long 
counterexample

! Want a heuristic search algorithm that usually 
finds short counterexamples fast



Outline

!FLAVERS overview

!Heuristic search algorithms 
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!Experimental results
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FLAVERS Architecture
FLow Analysis for VERification of Systems

System

Property

Model

Constraints

Report conclusive result
(property holds)

Report inconclusive result
(property might not hold)

and return a counterexample

Verification
algorithm



Property

! Specifies sequences of 
events that should occur 
on all executions of the 
system

! Represented as a finite-
state automaton (FSA)

! Example: “lock” can never 
occur consecutively
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Model

! A flow graph that models the event 
sequences of the system

" Built from annotated control flow graphs for 
the threads

" Each node may be labeled by one event

" Each path in the model represents a 
sequence of events

" Conservative but imprecise



Model: An Example Task1
loop

if ( locked ) then
call Task2.unlock

else
call Task2.lock

end if
exit when done

end loop  

Task2
loop

select
accept lock
locked:=true

or
accept unlock
locked:=false

end select
exit when done

end loop



Model: An Example

unlock lock

L==t L==f

Task1
loop

if ( locked ) then
call Task2.unlock

else
call Task2.lock

end if
exit when done

end loop  

Task2
loop

select
accept lock
locked:=true

or
accept unlock
locked:=false

end select
exit when done

end loop



Model: An Example

unlock lock

L==t L==f
unlock lock

L:=t L:=f

Task1
loop

if ( locked ) then
call Task2.unlock

else
call Task2.lock

end if
exit when done

end loop  

Task2
loop

select
accept lock
locked:=true

or
accept unlock
locked:=false

end select
exit when done

end loop



Model: An Example

unlock

L==t L==f
lock

L:=t L:=f

Task1
loop

if ( locked ) then
call Task2.unlock

else
call Task2.lock

end if
exit when done

end loop  

Task2
loop

select
accept lock
locked:=true

or
accept unlock
locked:=false

end select
exit when done

end loop



Model is Imprecise Task1
loop

if ( locked ) then
call Task2.unlock

else
call Task2.lock

end if
exit when done

end loop  

Task2
loop

select
accept lock
locked:=true

or
accept unlock
locked:=false

end select
exit when done

end loop

unlock

L==t L==f
lock

L:=t L:=f



Constraints

! Introduced to refine the model

" Specify valid sequences of events in the model

" If a path is not accepted by a constraint, the 
path is rejected

! Represented as FSAs

! Several kinds of constraints

" Many can be automatically created



Constraint: An Example

Task Automaton (TA) of Task1Control flow graph of Task1

unlock lock

L==t L==f



Constraints Make the Model 
More Precise

t3

t5

t4

t6

t11

t1

t9

t0 X

0

1 2

3

4

5

6

7 8

9 10

11

unlock

L==t L==f
lock

L:=t L:=f



Verification Algorithms

! FLAVERS explores all paths in the model 
that do not violate any constraint

! There are several alternative algorithms that 
can be used

" Data-flow analysis algorithms work well when 
the property turns out to hold

" Search algorithms work well when there are 
counterexamples



Search Framework

! Builds and checks a node-tuple graph
on-the-fly

( x, <p1, c2, …, cm> )

A node from the 
flow graph

A vector with states from 
the property FSA and each 
constraint FSA
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(4, <1, t4>)

…
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The Search Framework

Put the initial node-tuple in the worklist W

While W is not Empty

remove a node-tuple n from W

for each successor s of n

If s is a violating node-tuple

Generate the counterexample

Return INCONCLUSIVE

Else if s has not been visited before

Add s to W

Return CONCLUSIVE



The Search Framework

Put the initial node-tuple in the worklist W

While W is not Empty

remove a node-tuple n from W

for each successor s of n

If s is a violating node-tuple

Generate the counterexample

Return INCONCLUSIVE

Else if s has not been visited before

Add s to W

Return CONCLUSIVE

Consider different ways to remove elements 
from the worklist

" BFS: FILO

" DFS: FIFO

" Heuristic search: remove the node-tuple with the 
smallest value of an evaluation function f(n)



Considered Two Ways to 
Construct Evaluation Function f

! Best First (BF):           f(n) = h(n)

! Weighted A* (WA*):   f(n) = g(n) + w*h(n)

Where: 
" h(n): a heuristic function that estimates distance 

from current node n to a goal node

" g(n): a function that gives a distance from the 
initial node to the current node

" w: a parameter that provides control over the 
trade-off between search time and the length of 
the path



Explore Heuristic Functions

! Usually based on aspects of the goal 
node
" In FLAVERS, a goal node is a violating 

node-tuple

! Evaluated two heuristic functions that 
estimate distance to a goal node
" TA heuristic: based on the TA states in a 

node-tuple

" Trap heuristic: based on the property state 
in a node-tuple



! In a violating node-tuple, each TA 
must be in its final state

! Estimate the distance to a violating 
node-tuple

" Sum over all TAs of the shortest 
distance d from the current state to 
the final state

" E.g.: d(t1) = 4, d(t5) = 2

The TA Heuristic
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The Property Trap Heuristic

! A trap state is a non-accepting sink 
state

" Multiple trap states can be merged

" Once the property is in a trap state, it 
can never get into an accepting state

" Fact: all safety properties can be 
represented by an FSA with a trap 
state

" Trap node-tuple: a node-tuple with the 
property in the trap state
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2-Stage Search Strategy

! 1st stage: from the initial 
node-tuple, try to find a 
short path to a trap 
node-tuple fast ...

... ...

1st stage

A trap node-tuple



2-Stage Search Strategy

! 1st stage: from the initial 
node-tuple, try to find a 
short path to a trap 
node-tuple fast

! 2nd stage: from the trap 
node-tuple, try to find a 
path to a final node-tuple 
fast

... ...

...

1st stage

2nd stage

...



2-Stage Search Strategy

! Path found in the 1st

stage is used to 
understand the cause of 
the violation

! Path found in the 2nd

stage is needed to be 
sure the whole path is a 
counterexample

... ...

...

1st stage

2nd stage

...



Trap Heuristic for the 1st Stage

! Estimate the distance to a trap 
node-tuple 

" Use the shortest distance d
from the current property state 
to the trap state

" E.g.: d(1)=2; d(2)=1; d(3)=0

3

1

2

lock unlock

lock

lock
unlock

unlock



Search Algorithms Evaluated

! Trap heuristic, which is based on the property, can not 
be used in the WA* algorithm, which is based on the 
node-tuple graph

2nd
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1st
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Search Algorithms Evaluated
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! X: BFtrap is based on the property trap state, not the final 
node



Search Algorithms Evaluated
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! X: DFS and BFta tend to produce a long path



Search Algorithms Evaluated

2nd
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1st

Stage !!!!

BFtrap +WAta
w=1, 2, 3, 5, 9
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BFtrapBFta
WAta

w=1, 2, 3, 5, 9
DFSBFS

! X: BFS and WAta tend to be slow



Metrics

! Runtime ratio:

Runtime

BFS runtime

! Prefix length ratio:

" Prefix length: length from the initial 

node-tuple to the first trap node-tuple

Prefix length

BFS prefix length



Subjects in the Experiment

! Widely studied concurrent systems

! Properties originally hold in the systems
" For each property, find a minimal set of 

constraints that are necessary to prove the 
property

" Remove one constraint from the minimal set to 
generate a subject for the experiment

#N subjects will be generated if the set has N
constraints



Subjects in the Experiment

! Remove small subjects that do not 
differentiate the performance of 
algorithms

! Remove large subjects if not all 
algorithms can handle them
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Prefix Length Ratios of 1-Stage 
Algorithms

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

DFS WAta

w=1

22.791 0.986 1.020 1.054 1.079 1.097 1.152 

WAta

w=2

WAta

w=3

WAta

w=5

WAta

w=9

BFta

0.803 0.395 



Runtime Ratios of 2-Stage 
Algorithms
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Runtime Ratios of 2-Stage 
Algorithms
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Runtime Ratios of 2-Stage 
Algorithms
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Runtime Ratios of 2-Stage 
Algorithms
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Prefix Length Ratios of 2-Stage 
Algorithms
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Runtime Ratios Comparison
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Prefix Length Ratios Comparison
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Summary

! The 2-stage algorithm with 

BFtrap+WAta (w=1) and BFta

is surprisingly good
" Runtime ratio:

# Range from 0.001 to 0.903

# Average 0.083

# On average, faster than DFS (0.139)

" Prefix length ratio:
# Range from 0.021 to 1.278

# Average 0.809

" Works consistently well for these systems



Threats to Validity

! Systems used in the experiment might not 
be representative

! The inconclusive subjects are created by 
removing a constraint from the originally 
conclusive subjects

! Did not evaluate the performance of these 
algorithms in cases where the property 
FSAs do not have a trap state

" 2-stage algorithm is not applicable in these 
cases



Related Work

! TA heuristic was first described by 
Cobleigh, etc.

" Focused on comparing different algorithms 
used in different situations

! Our work developed the trap heuristic 
and the 2-stage search algorithm and 
focused on counterexamples



Related Work

! Apply heuristic search to guide the 
counterexample search in other FSV tools

" HSF-SPIN: heuristics based on the property and 
the structure of the model

" Java PathFinder: heuristics based on the 
structure of the model

" MurØ: Hamming Distance based heuristic

" VeriSoft: genetic algorithm

! Multi-stage search used in AI



Future Work

! Use heuristic algorithms on a broader 
range of systems and properties

" Apply them to Java programs

! Explore the use of heuristic search to 
find counterexamples that are useful to 
refine the model



Conclusions

! Explored heuristic search algorithms to find 
short counterexample fast

! The best algorithm used property and model 
information
" Always finds short, but not necessarily shortest, 

prefix faster than BFS and on average faster 
than DFS

! Other FSV approaches could also consider 
property and model based 2-stage heuristic 
search algorithms



Thank You

Questions?



! Trap node-tuple: a node-tuple with the property 
in the trap state

" Use the trap state to guide the search to a trap 
node-tuple  (“first part”)

" Once at a trap node-tuple, start a new search for a 
violating node-tuple that examines the successors 
of the trap node-tuple only (“second part”)

" Need second part to be sure it is a 
counterexample, but usually only need first part to 
understand the cause

Observation



! Use the number of transitions 
to the trap state to reduce the 
tie
" For a property state that has 

k>1 transitions to the trap 
state: d = 1 + 1/k

#More transitions mean more 
possibilities to enter the trap 
state

#Small estimated value is 
preferred

Refined Trap Heuristic

d(0)=2 d(1)=1.5
d(2)=h(3)=1.333   d(4) = 0
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BFS
w=1 w=2 w=3 w=5 w=9
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WAta

Runtime Ratios of 2-Stage 
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