
Heuristic-Guided
Counterexample Search
in FLAVERS

Jianbin Tan, George Avrunin, Lori Clarke, Shlomo Zilberstein

University of Massachusetts, Amherst

Stefan Leue

University of Konstanz

Finite State Verification (FSV)

! FSV techniques verify whether a model
of a system is consistent with a specified
property

" If the property is found to be violated,
counterexamples are usually provided to
demonstrate how the violation happened

" Counterexamples help isolate the cause of
the problem

Counterexample Search

! Can represent the verification problem as a
search for counterexamples
" Two metrics: time and length

! Standard algorithms have drawbacks
" BFS: finds the shortest counterexample but

usually is slow

" DFS: usually is fast, but tends to produce a long
counterexample

! Want a heuristic search algorithm that usually
finds short counterexamples fast

Outline

!FLAVERS overview

!Heuristic search algorithms
considered

!Experimental results

!Related work

!Conclusions and future work

FLAVERS Architecture
FLow Analysis for VERification of Systems

System

Property

Model

Constraints

Report conclusive result
(property holds)

Report inconclusive result
(property might not hold)

and return a counterexample

Verification
algorithm

Property

! Specifies sequences of
events that should occur
on all executions of the
system

! Represented as a finite-
state automaton (FSA)

! Example: “lock” can never
occur consecutively

3

1

2

lock unlock

lock

lock
unlock

unlock

Model

! A flow graph that models the event
sequences of the system

" Built from annotated control flow graphs for
the threads

" Each node may be labeled by one event

" Each path in the model represents a
sequence of events

" Conservative but imprecise

Model: An Example Task1
loop

if (locked) then
call Task2.unlock

else
call Task2.lock

end if
exit when done

end loop

Task2
loop

select
accept lock
locked:=true

or
accept unlock
locked:=false

end select
exit when done

end loop

Model: An Example

unlock lock

L==t L==f

Task1
loop

if (locked) then
call Task2.unlock

else
call Task2.lock

end if
exit when done

end loop

Task2
loop

select
accept lock
locked:=true

or
accept unlock
locked:=false

end select
exit when done

end loop

Model: An Example

unlock lock

L==t L==f
unlock lock

L:=t L:=f

Task1
loop

if (locked) then
call Task2.unlock

else
call Task2.lock

end if
exit when done

end loop

Task2
loop

select
accept lock
locked:=true

or
accept unlock
locked:=false

end select
exit when done

end loop

Model: An Example

unlock

L==t L==f
lock

L:=t L:=f

Task1
loop

if (locked) then
call Task2.unlock

else
call Task2.lock

end if
exit when done

end loop

Task2
loop

select
accept lock
locked:=true

or
accept unlock
locked:=false

end select
exit when done

end loop

Model is Imprecise Task1
loop

if (locked) then
call Task2.unlock

else
call Task2.lock

end if
exit when done

end loop

Task2
loop

select
accept lock
locked:=true

or
accept unlock
locked:=false

end select
exit when done

end loop

unlock

L==t L==f
lock

L:=t L:=f

Constraints

! Introduced to refine the model

" Specify valid sequences of events in the model

" If a path is not accepted by a constraint, the
path is rejected

! Represented as FSAs

! Several kinds of constraints

" Many can be automatically created

Constraint: An Example

Task Automaton (TA) of Task1Control flow graph of Task1

unlock lock

L==t L==f

Constraints Make the Model
More Precise

t3

t5

t4

t6

t11

t1

t9

t0 X

0

1 2

3

4

5

6

7 8

9 10

11

unlock

L==t L==f
lock

L:=t L:=f

Verification Algorithms

! FLAVERS explores all paths in the model
that do not violate any constraint

! There are several alternative algorithms that
can be used

" Data-flow analysis algorithms work well when
the property turns out to hold

" Search algorithms work well when there are
counterexamples

Search Framework

! Builds and checks a node-tuple graph
on-the-fly

(x, <p1, c2, …, cm>)

A node from the
flow graph

A vector with states from
the property FSA and each
constraint FSA

3

2

lock unlock

lock

lock
unlock

unlock

1

t3

t5

t4

t6

t11

t1

t9

t0
0

1 2

3

4

5

6

7 8

9 10

11

unlock

L==t L==f lock

L:=t L:=f

3

2

lock unlock

lock

lock
unlock

unlock

1

(0, <1, t0>)

t3

t5

t4

t6

t11

t1

t9

t0
0

1 2

3

4

5

6

7 8

9 10

11

unlock

L==t L==f lock

L:=t L:=f

3

2

lock unlock

lock

lock
unlock

unlock

1

(0, <1, t0>)

t3

t5

t4

t6

t11

t1

t9

t0
0

1 2

3

4

5

6

7 8

9 10

11

unlock

L==t L==f lock

L:=t L:=f

(1, <1, t1>)

(4, <1, t4>)

…

(0, <1, t0>)

(1, <1, t1>)

0

1 2

3

4

5

6

7 8

9 10

11

unlock

L==t L==f lock

L:=t L:=f 3

2

lock unlock

lock

lock
unlock

unlock

1

t3

t5

t4

t6

t11

t1

t9

t0

(4, <1, t4>)

…

(0, <1, t0>)

(1, <1, t1>)

0

1 2

3

4

5

6

7 8

9 10

11

unlock

L==t L==f lock

L:=t L:=f 3

2

lock unlock

lock

lock
unlock

unlock

1

t3

t5

t4

t6

t11

t1

t9

t0

(6, <2, t6>)

(0, <1, t0>)

0

1 2

3

4

5

6

7 8

9 10

11

unlock

L==t L==f lock

L:=t L:=f 3

2

lock unlock

lock

lock
unlock

unlock

1

t3

t5

t4

t6

t11

t1

t9

t0

…

(11, <3, t11>)

…
A violating
node-tuple

The Search Framework

Put the initial node-tuple in the worklist W

While W is not Empty

remove a node-tuple n from W

for each successor s of n

If s is a violating node-tuple

Generate the counterexample

Return INCONCLUSIVE

Else if s has not been visited before

Add s to W

Return CONCLUSIVE

The Search Framework

Put the initial node-tuple in the worklist W

While W is not Empty

remove a node-tuple n from W

for each successor s of n

If s is a violating node-tuple

Generate the counterexample

Return INCONCLUSIVE

Else if s has not been visited before

Add s to W

Return CONCLUSIVE

Consider different ways to remove elements
from the worklist

" BFS: FILO

" DFS: FIFO

" Heuristic search: remove the node-tuple with the
smallest value of an evaluation function f(n)

Considered Two Ways to
Construct Evaluation Function f

! Best First (BF): f(n) = h(n)

! Weighted A* (WA*): f(n) = g(n) + w*h(n)

Where:
" h(n): a heuristic function that estimates distance

from current node n to a goal node

" g(n): a function that gives a distance from the
initial node to the current node

" w: a parameter that provides control over the
trade-off between search time and the length of
the path

Explore Heuristic Functions

! Usually based on aspects of the goal
node
" In FLAVERS, a goal node is a violating

node-tuple

! Evaluated two heuristic functions that
estimate distance to a goal node
" TA heuristic: based on the TA states in a

node-tuple

" Trap heuristic: based on the property state
in a node-tuple

! In a violating node-tuple, each TA
must be in its final state

! Estimate the distance to a violating
node-tuple

" Sum over all TAs of the shortest
distance d from the current state to
the final state

" E.g.: d(t1) = 4, d(t5) = 2

The TA Heuristic

t3

t5

t4

t6

t11

t1

t7

t0

The Property Trap Heuristic

! A trap state is a non-accepting sink
state

" Multiple trap states can be merged

" Once the property is in a trap state, it
can never get into an accepting state

" Fact: all safety properties can be
represented by an FSA with a trap
state

" Trap node-tuple: a node-tuple with the
property in the trap state

3

1

2

lock unlock

lock

lock
unlock

unlock

2-Stage Search Strategy

! 1st stage: from the initial
node-tuple, try to find a
short path to a trap
node-tuple fast ...

... ...

1st stage

A trap node-tuple

2-Stage Search Strategy

! 1st stage: from the initial
node-tuple, try to find a
short path to a trap
node-tuple fast

! 2nd stage: from the trap
node-tuple, try to find a
path to a final node-tuple
fast

... ...

...

1st stage

2nd stage

...

2-Stage Search Strategy

! Path found in the 1st

stage is used to
understand the cause of
the violation

! Path found in the 2nd

stage is needed to be
sure the whole path is a
counterexample

... ...

...

1st stage

2nd stage

...

Trap Heuristic for the 1st Stage

! Estimate the distance to a trap
node-tuple

" Use the shortest distance d
from the current property state
to the trap state

" E.g.: d(1)=2; d(2)=1; d(3)=0

3

1

2

lock unlock

lock

lock
unlock

unlock

Search Algorithms Evaluated

! Trap heuristic, which is based on the property, can not
be used in the WA* algorithm, which is based on the
node-tuple graph

2nd

Stage

1st

Stage !!!!

BFtrap +WAta
w=1, 2, 3, 5, 9

!!!!!!!!

!!!!!!!!!!!!

2
-S

ta
g

e

!!!!!!!!!!!!!!!!1-Stage

BFtrapBFta
WAta

w=1, 2, 3, 5, 9
DFSBFS

Search Algorithms Evaluated

2nd

Stage

1st

Stage

X

!!!!

X

BFtrap +WAta
w=1, 2, 3, 5, 9

X!!!!!!!!

!!!!!!!!!!!!

2
-S

ta
g

e

X!!!!!!!!!!!!!!!!1-Stage

BFtrapBFta
WAta

w=1, 2, 3, 5, 9
DFSBFS

! X: BFtrap is based on the property trap state, not the final
node

Search Algorithms Evaluated

2nd

Stage

1st

Stage !!!!

BFtrap +WAta
w=1, 2, 3, 5, 9

!!!!!!!!

!!!!X!!!!X!!!!

2
-S

ta
g

e

!!!!!!!!!!!!!!!!1-Stage

BFtrapBFta
WAta

w=1, 2, 3, 5, 9
DFSBFS

! X: DFS and BFta tend to produce a long path

Search Algorithms Evaluated

2nd

Stage

1st

Stage !!!!

BFtrap +WAta
w=1, 2, 3, 5, 9

!!!!X!!!!X

!!!!!!!!!!!!

2
-S

ta
g

e

!!!!!!!!!!!!!!!!1-Stage

BFtrapBFta
WAta

w=1, 2, 3, 5, 9
DFSBFS

! X: BFS and WAta tend to be slow

Metrics

! Runtime ratio:

Runtime

BFS runtime

! Prefix length ratio:

" Prefix length: length from the initial

node-tuple to the first trap node-tuple

Prefix length

BFS prefix length

Subjects in the Experiment

! Widely studied concurrent systems

! Properties originally hold in the systems
" For each property, find a minimal set of

constraints that are necessary to prove the
property

" Remove one constraint from the minimal set to
generate a subject for the experiment

#N subjects will be generated if the set has N
constraints

Subjects in the Experiment

! Remove small subjects that do not
differentiate the performance of
algorithms

! Remove large subjects if not all
algorithms can handle them

DFS WAta BFta

w=1 w=3 w=5 w=9

0.139 0.803 0.433 0.488 0.523 0.758

WAta WAta WAta

Runtime Ratios of 1-Stage
Algorithms

0.0001

0.001

0.01

0.1

1

10

100

1000

w=2

0.395

WAta

Prefix Length Ratios of 1-Stage
Algorithms

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

DFS WAta

w=1

22.791 0.986 1.020 1.054 1.079 1.097 1.152

WAta

w=2

WAta

w=3

WAta

w=5

WAta

w=9

BFta

0.803 0.395

Runtime Ratios of 2-Stage
Algorithms

0.0001

0.001

0.01

0.1

1

10

100

B
F

S

w
=

1

w
=

2

w
=

3

w
=

5

w
=

9

WAta

DFS

Runtime Ratios of 2-Stage
Algorithms

0.0001

0.001

0.01

0.1

1

10

100

B
F

S

w
=

1

w
=

2

w
=

3

w
=

5

w
=

9

w
=

1

w
=

2

w
=

3

w
=

5

w
=

9

WAta WAta

B
F

S

DFS BFta

Runtime Ratios of 2-Stage
Algorithms

w
=

1

w
=

2

w
=

3

w
=

5

w
=

9

BFtrap+WAta

B
F

tr
a
p

DFS

0.0001

0.001

0.01

0.1

1

10

100

B
F

S

w
=

1

w
=

2

w
=

3

w
=

5

w
=

9

w
=

1

w
=

2

w
=

3

w
=

5

w
=

9

WAta WAta

B
F

S

DFS BFta

Runtime Ratios of 2-Stage
Algorithms

w
=

1

w
=

2

w
=

3

w
=

5

w
=

9

B
F

tr
a
p

w
=

1

w
=

2

w
=

3

w
=

5

w
=

9

BFtrap+WAta BFtrap+ WAta

B
F

tr
a
p

DFS BFta

0.0001

0.001

0.01

0.1

1

10

100

B
F

S

w
=

1

w
=

2

w
=

3

w
=

5

w
=

9

w
=

1

w
=

2

w
=

3

w
=

5

w
=

9

WAta WAta

B
F

S

DFS BFta

Runtime Ratios of 2-Stage
Algorithms

w
=

1

w
=

2

w
=

3

w
=

5

w
=

9

B
F

tr
a
p

w
=

1

w
=

2

w
=

3

w
=

5

w
=

9

BFtrap+WAta BFtrap+ WAta

B
F

tr
a
p

DFS BFta

0.0001

0.001

0.01

0.1

1

10

100

B
F

S

w
=

1

w
=

2

w
=

3

w
=

5

w
=

9

w
=

1

w
=

2

w
=

3

w
=

5

w
=

9

WAta WAta

B
F

S

DFS BFta

Prefix Length Ratios of 2-Stage
Algorithms

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0.760 0.772 0.954 0.985 1.008 1.026

BFS
w=1 w=2 w=3 w=5 w=9

WAta

0.811 0.809 0.847 0.883 0.887 0.893

BFtrap w=1 w=2 w=3 w=5 w=9

BFtrap+WAta

0.231 0.220 0.083

Runtime Ratios Comparison

0

0.5

1

1.5

2

2.5

3

3.5

4

1st stage: BFtrap+ WAta (w=1)
2nd stage: BFta

WAta(w=2)

Prefix Length Ratios Comparison

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1st stage: BFtrap+ WAta (w=1)
2nd stage: BFta

WAta(w=2)

Summary

! The 2-stage algorithm with

BFtrap+WAta (w=1) and BFta

is surprisingly good
" Runtime ratio:

Range from 0.001 to 0.903

Average 0.083

On average, faster than DFS (0.139)

" Prefix length ratio:
Range from 0.021 to 1.278

Average 0.809

" Works consistently well for these systems

Threats to Validity

! Systems used in the experiment might not
be representative

! The inconclusive subjects are created by
removing a constraint from the originally
conclusive subjects

! Did not evaluate the performance of these
algorithms in cases where the property
FSAs do not have a trap state

" 2-stage algorithm is not applicable in these
cases

Related Work

! TA heuristic was first described by
Cobleigh, etc.

" Focused on comparing different algorithms
used in different situations

! Our work developed the trap heuristic
and the 2-stage search algorithm and
focused on counterexamples

Related Work

! Apply heuristic search to guide the
counterexample search in other FSV tools

" HSF-SPIN: heuristics based on the property and
the structure of the model

" Java PathFinder: heuristics based on the
structure of the model

" MurØ: Hamming Distance based heuristic

" VeriSoft: genetic algorithm

! Multi-stage search used in AI

Future Work

! Use heuristic algorithms on a broader
range of systems and properties

" Apply them to Java programs

! Explore the use of heuristic search to
find counterexamples that are useful to
refine the model

Conclusions

! Explored heuristic search algorithms to find
short counterexample fast

! The best algorithm used property and model
information
" Always finds short, but not necessarily shortest,

prefix faster than BFS and on average faster
than DFS

! Other FSV approaches could also consider
property and model based 2-stage heuristic
search algorithms

Thank You

Questions?

! Trap node-tuple: a node-tuple with the property
in the trap state

" Use the trap state to guide the search to a trap
node-tuple (“first part”)

" Once at a trap node-tuple, start a new search for a
violating node-tuple that examines the successors
of the trap node-tuple only (“second part”)

" Need second part to be sure it is a
counterexample, but usually only need first part to
understand the cause

Observation

! Use the number of transitions
to the trap state to reduce the
tie
" For a property state that has

k>1 transitions to the trap
state: d = 1 + 1/k

#More transitions mean more
possibilities to enter the trap
state

#Small estimated value is
preferred

Refined Trap Heuristic

d(0)=2 d(1)=1.5
d(2)=h(3)=1.333 d(4) = 0

4

1
a1 a2

b1 b2

a2,a1,b2
a1,a2,b1

b1
b2

*

0

2 3

b1,b2

BFS
w=1 w=2 w=3 w=5 w=9

0.291 0.277 0.295 0.347 0.389 0.437

WAta

Runtime Ratios of 2-Stage
Algorithms (2nd Stage uses DFS)

BFtrap

0.131 0.125 0.129 0.137 0.163 0.184

w=1 w=2 w=3 w=5 w=9

BFtrap+WAta

0.0001

0.001

0.01

0.1

1

10

100

0.231 0.220 0.240 0.281 0.324 0.367

BFS
w=1 w=2 w=3 w=5 w=9

WAta

Runtime Ratios of 2-Stage
Algorithms (2nd Stage uses BFta)

0.092 0.083 0.084 0.091 0.106 0.120

BFtrap
w=1 w=2 w=3 w=5 w=9

BFtrap+WAta
0.0001

0.001

0.01

0.1

1

10

100

