
Heuristic-Guided Counterexample Search in FLAVERS ∗

Jianbin Tan, George S. Avrunin,
Lori A. Clarke, Shlomo Zilberstein

Department of Computer Science
University of Massachusetts

Amherst, Massachusetts 01003, USA

{tjb, avrunin, clarke,
shlomo}@cs.umass.edu

Stefan Leue
Department of Computer and Information

Science
University of Konstanz

D-78457 Konstanz, Germany

Stefan.Leue@inf.uni-konstanz.de

ABSTRACT
One of the benefits of finite-state verification (FSV) tools,
such as model checkers, is that a counterexample is provided
when the property cannot be verified. Not all counterexam-
ples, however, are equally useful to the analysts trying to
understand and localize the fault. Often counterexamples
are so long that they are hard to understand. Thus, it is
important for FSV tools to find short counterexamples and
to do so quickly. Commonly used search strategies, such
as breadth-first and depth-first search, do not usually per-
form well in both of these dimensions. In this paper, we
investigate heuristic-guided search strategies for the FSV
tool FLAVERS and propose a novel two-stage counterex-
ample search strategy. We describe an experiment showing
that this two-stage strategy, when combined with appropri-
ate heuristics, is extremely effective at quickly finding short
counterexamples for a large set of verification problems.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods, model checking, validation

General Terms
Verification

∗This research was partially supported by the National Sci-
ence Foundation under grant CCR-0205575, by the U.S.
Army Research Laboratory and the U.S. Army Research
Office under agreement DAAD190110564, and by the U.S.
Department of Defense/Army Research Office under agree-
ment DAAD190310133.
Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and
do not necessarily reflect the views of the National Science
Foundation, the U. S. Army Research Office or the U. S.
Department of Defense/Army Research Office.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’04/FSE-12,Oct. 31–Nov. 6, 2004, Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-855-5/04/0010 ...$5.00.

Keywords
Heuristic search, counterexamples, FLAVERS

1. INTRODUCTION
Finite-state verification approaches attempt to prove prop-

erties about a model of a system. These approaches are not
as general as theorem-proving based verification, but they
are usually easier to use. In addition, when it is found that
a property does not hold, most FSV tools provide a coun-
terexample, a trace through the model that illustrates how
the property can be violated. The counterexample is impor-
tant to analysts since it contains clues about the cause of
the violation. By studying the counterexample, analysts can
usually determine if the trace represents an actual violation
or a false positive. For an actual violation, analysts will
correct the system, its corresponding model, or the prop-
erty and then rerun the verification. For a false positive
result, analysts use the information from the counterexam-
ple to try to determine how to improve the precision of the
model so that such spurious violations will be eliminated on
subsequent verification attempts. In this iterative process
of correcting or improving the system, model, or property,
short counterexamples are usually preferred since they are
easier for analysts to understand. It is, of course, also desir-
able that the verification be relatively fast so that analysts
do not have to wait for long periods of time before learning
the verification results. Therefore, it is desirable that FSV
tools return results quickly and, when a property can not be
verified, provide a short counterexample.

Most FSV tools, such as SPIN [18] and FLAVERS [6, 8],
represent the verification problem as a search problem over
the model of the system. This model is usually a graph rep-
resentation of the system, optimized for the specific property
to be verified. Accordingly, the counterexample is a path
through the model. Commonly used search strategies, such
as breadth-first search (BFS) and depth-first search (DFS),
may be used in this context. Previous work [5] showed
that for FLAVERS the BFS strategy, which always finds
the shortest counterexample as long as it does not run out
of memory, tends to have disappointing execution perfor-
mance, whereas the DFS strategy tends to find a counterex-
ample quickly but this counterexample tends to be very long.
Thus, for FLAVERS neither of these two strategies satisfies
both the time and length requirements. We would expect
similar results for other FSV tools.

In this paper we report on our efforts to find a heuristic-

guided search strategy that will tend to return short coun-
terexamples quickly. In a heuristic graph search algorithm,
problem-specific knowledge, typically based on a goal node,
is used to associate an estimated metric with each node.
This metric is then used to discriminate among the nodes
during the search. The heuristics we considered are based
on the structure of the model of the system and on the prop-
erty to be verified. Moreover, we propose a novel two-stage
search strategy that is designed for properties represented by
automata having a special form. All safety properties can
be represented by such automata. We demonstrate that the
two-stage search strategy, combined appropriately with the
heuristics, is particularly effective. The evaluation is con-
ducted using the FLAVERS/Ada toolset applied to a set of
Ada tasking programs. Although our experimental evalua-
tion is based on analysis of Ada programs with FLAVERS,
we believe that the results provide insights that could be
applied to other FSV techniques and other programming
languages.

In the next section of this paper, we provide an overview
of FLAVERS so that the reader can understand the intu-
ition behind the heuristics that we investigated. The third
section describes these heuristics and the two-stage search
strategy. Section 4 discusses our experimental methodology,
and Section 5 presents the experimental results. Section 6
describes related work, and we conclude in Section 7 with a
summary of the results and a discussion of future work.

2. FLAVERS OVERVIEW
FLAVERS/Ada is an event-based FSV tool that can check

if all possible executions of an abstract model of a system are
consistent with a user-specified property. The property rep-
resents desirable (or undesirable) sequences of events that
should occur on all (or none) of the executions of the sys-
tem. An event is typically some syntactically recognizable
executable action in the system, such as a method call or
task synchronization. The property must be represented in
a notation that can be translated into a finite-state automa-
ton (FSA) representation, where a transition represents the
occurrence of an event. For example, Figure 1(a) is a prop-
erty FSA, involving events T2.lock and T2.unlock, for the
system of two communicating tasks described in Figure 1(b).
This property specifies that two instances of event T2.lock
cannot occur consecutively

The model of the system used in FLAVERS, called a Trace
Flow Graph (TFG), is automatically derived from the sys-
tem description (e.g., the source code). Since the property is
described in terms of sequences of events, the TFG must ap-
propriately represent the control flow among these events in
the system. For a sequential system, this model would be an
annotated control flow graph, where the nodes in the graph
correspond to the execution of the action associated with an
event. For simplicity, we create the model so that at most
one event is associated with a node. If a node does not have
any events associated with it and does not affect the flow of
control for any nodes that do, it may be removed from the
model. If the events of a property occur infrequently in the
system, the resulting model is usually very small. Thus, it
is generally practical to inline all method calls.1

To model a concurrent Ada system, each task is repre-
sented by an annotated control flow graph, as described

1FLAVERS currently does not handle recursive calls.

above, and then some modifications are made to represent
the synchronization and the interleaving of events. Specif-
ically, communication nodes are created that conceptually
“merge” the nodes that represent the rendezvous between
two tasks and May Immediately Precede edges (MIP edges)
(created using the algorithm of [19]) are used to represent
the potential interleavings of events in different tasks.

Formally, a TFG is a labeled directed graph,
G = (N, E, ninitial, nfinal,AG, L), where N is a finite set of
nodes, E ⊆ N ×N is a set of directed edges, ninitial, nfinal ∈
N are initial and final nodes of the TFG, AG is an alphabet
of event labels associated with the TFG, and L : N → AG∪
{∅} is a function mapping nodes to their labels or to the null
event.

Figure 1(c) shows the control flow graphs for the system in
Figure 1(b), and Figure 1(d) gives the TFG for this system.
In Figure 1(d), the diamond-shaped nodes represent com-
munication nodes, which model the Ada rendezvous, and
the triangular nodes represent the initial and final nodes.
The dashed edges in Figure 1(d) represent MIP edges.

The TFG model is conservative, meaning that each se-
quence of events that could occur during the execution of
the system corresponds to a path in the TFG that results in
traversing the same sequence of events. Therefore, when all
event sequences in the model are accepted by the property,
it is safe to conclude that the property holds on the original
system. On the other hand, if there is a sequence of events
in the model that is not accepted by the property, it may be
an indication of an error in the system (or in the property),
or it may be that the path in the model that traverses the
sequence of events does not correspond to any real execu-
tion in the system and thus is infeasible. Thus, the model
is imprecise in that it may overapproximate the behavior of
the system.

One of the strengths of FLAVERS is that analysts can
incrementally improve precision by augmenting the model
with constraints that may eliminate at least some of the in-
feasible paths. These constraints are represented as FSAs,
and they specify the sequences of events that must occur
during any execution of the system. When a sequence of
events in the model violates any constraint, the correspond-
ing path is considered to be infeasible and thus is eliminated
from consideration.

Three kinds of constraints are commonly used in FLAVERS:
Context Automata (CAs) are used to model the environ-
ment; Variable Automata (VAs) are used to model the value
of variables; and Task Automata (TAs) are used to model
execution traces for tasks. CAs are usually specified by
analysts according to knowledge about the environment in
which the system will be executed. VAs and TAs, however,
can usually be generated automatically by FLAVERS de-
pending on the type of the variable or on the control flow
graph of a task, respectively. Figure 2(a) shows the VA for
the boolean variable locked in the system of Figure 1. This
VA specifies that when the variable locked is true(or false),
the event “locked==false” (or “locked==true”) that corre-
sponds to a test of locked returning the opposite value can
not occur. Figure 2(b) shows the TA for task T1 in the
system of Figure 1. This TA is based on the control flow
graph of the task T1 shown in Figure 1, with two changes.
First, those nodes in the control flow graph that do not have
an associated event are not modeled in the TA. Second, the
transition label in the TA is the index of the correspond-

(c) Control flow graphs

2

3

1

T2.lockT2.unlock

T2.unlock
T2.lock

T2.lock

T2.unlock

(a) Property (b) Source code (d) TFG

T2.lock

0

6

7

11

1

T2.unlock

Task T1

3

5

T2.lock T2.unlock

0

2

11

6 5

locked:=false9

10

Task T2

locked==false
3 4

7 8

10

11

locked:=true

locked==true

locked:=false

2

5

1

0

locked:=true

locked==false
locked==true

T2.unlock T2.lock8

4

9

6

Task T1
 boolean done
 loop
 if (locked) then
 call T2.unlock
 else
 call T2.lock
 end if
 exit when done
 end loop

Taks T2
 boolean done
 loop
 select
 accept lock
 locked := true
 or
 accept unlock
 locked :=false
 end select
 exit when done
 end loop

Figure 1: A simple example

3 4

6

(b) TA of task T1

1111

5 43

3 4

U

T F

locked==false
locked:=false
locked==true
locked:=true

V

locked:=false

locked:=true

locked==false
locked:=false

locked:=false
locked==false

locked==truelocked==false

locked==true
locked:=true

locked==true
locked:=true

(a) VA of variable locked

Figure 2: VA and TA examples

ing state in the control flow graph. Each state in the TA
may be thought of as a program counter value for that task.
Note that each TA has only one accepting state, which cor-
responds to the termination of the task.

Given a subject that includes a TFG, a property, and a
set of constraints, FLAVERS uses one of two different al-
gorithms to check if there is an event sequence in the TFG
that is accepted by every constraint but violates the prop-
erty. The State Propagation algorithm [8] is a data-flow
analysis fix-point algorithm. The Find Path algorithm is a
typical search algorithm. As shown in [5], the State Prop-
agation algorithm tends to be more efficient than the Find
Path algorithm when the property turns out to hold. In
those cases where the property is found to be violated, how-
ever, the Find Path algorithm is more efficient. In addition,
it is easier to generate a counterexample for the Find Path
algorithm than the State Propagation algorithm. Therefore,
the Find Path algorithm is probably a better platform for

exploring heuristics for counterexample search and thus is
the only approach considered further in this paper.

As shown in Figure 3, the Find Path algorithm performs
a search on a node-tuple graph, whose vertices are pairs con-
sisting of a node from the TFG node and a tuple or vector
of states, one from the property FSA and one from each
constraint FSA. In the node-tuple graph, node-tuple 〈n′, t′〉
with TFG node n′ and tuple t′ is a successor of 〈n, t〉 if and
only if n′ is a successor of n in the TFG and t′ is computed
by applying the event labeling n′ to each state in t.

The algorithm starts with an initial node-tuple that is
composed of the initial TFG node and the start state of
each FSA and builds the node-tuple graph on-the-fly while
it conducts a search for a violation of the property. A viola-
tion of the property is found if a node-tuple is encountered
where the node is the final node of the TFG and, for the
states in the tuple, the property state is non-accepting and
all constraint states are accepting. As soon as such a vio-

lating node-tuple is discovered, the algorithm returns an in-
conclusive result, meaning that the property is violated. In
addition, a counterexample that is a path in the node-tuple
graph from the initial node-tuple to the violating node-tuple
is provided by tracing back through the ancestors of the vi-
olating node-tuple. If all the node-tuples reachable from the
initial node-tuple are examined and no violating node-tuple
is found, the algorithm returns a conclusive result, meaning
that the property holds. Since the TFG and all FSAs are fi-
nite, and each node-tuple is visited only once, the algorithm
will always terminate.

Add the initial node-tuple in the worklist W
While W is not empty

Remove a node-tuple n from W
For each successor s of n

If s has been encountered before
continue

Else
Set n to be the parent of s
If s is a violating node-tuple

Generate the counterexample by
tracing back the parents of s
Return INCONCLUSIVE

Else
Add s to W

End If
End If

End For
End While
Return CONCLUSIVE

Figure 3: The Find Path algorithm

3. HEURISTICS CONSIDERED
Generally speaking, a heuristic-guided search strategy uses

an evaluation function, f(n), to determine the order in which
the nodes in the search graph are selected for expansion.
The evaluation function measures the distance to a goal
node based on a heuristic function, h(n), which gives the
estimated shortest distance from the given node n to a goal
node. To make Find Path a heuristic search algorithm, we
can simply use a priority queue, a data structure that sorts
the node-tuples according to their f -values, as the worklist.

We considered two heuristic search algorithms, the Best
First (BF) algorithm and the Weighted A* (WA*) algo-
rithm [15]. In the BF algorithm, the evaluation function
is just the heuristic function, which considers the estimated
distance between the current node and a goal node. Con-
sequently, the BF algorithm is a goal-oriented DFS-like al-
gorithm and thus is likely to find a goal node quickly. The
WA* algorithm is a generalized version of the widely known
A* algorithm [16]. In this algorithm, the evaluation func-
tion is defined to be f(n) = g(n) + w ∗ h(n), where h(n)
is a heuristic function, g(n) is the distance from the initial
node to the node n, and w is a parameterized weight. Un-
like the BF algorithm, which estimates the distance to the
goal from the current node, WA* measures the estimated
distance from the initial node to a goal node. WA* is more
BFS-like, in that it will backtrack to an earlier node, and
thus tends to find a short path.

The value of the weight w in the WA* algorithm is usually
determined by experimentation. The weight actually repre-
sents a trade-off between the search time and the length of

the returned path. When the weight is 1, the WA* algorithm
becomes identical to the A* algorithm. The A* algorithm
is guaranteed to find the shortest path to a goal node pro-
vided that the heuristic function is admissible, which means
it never overestimates the distance to that goal. On the
other hand, when the weight is large, the WA* algorithm
returns the same path returned by the BF algorithm, which
tends to find a goal node quickly, as described above. Select-
ing a weight, therefore, provides control over the trade-off
between the search time and the length of the path to the
goal node.

When applying the WA* algorithm to find counterexam-
ples in FLAVERS, we define g(n) to be the length of the first
path that reaches the node-tuple n from the initial node-
tuple, as described in Figure 3. This definition of g(n) is
different from the standard one, which updates g(n) when-
ever a shorter path to reach node n is discovered. We ex-
perimentally evaluated both definitions and found that the
one based on the first path makes the returned counterex-
ample slightly longer but almost always reduces the amount
of time; we therefore use this definition of g(n) throughout
this paper. In addition, as shown in Figure 3, we generate a
counterexample as soon as a violating node-tuple is encoun-
tered, whereas in the A* algorithm the solution is generated
when only a goal node is selected for expansion. This con-
servative approach of the A* is not used since we are not
seeking the optimal solution, only a good solution.

The heuristic function is obviously a key element in a
heuristic search algorithm. To estimate the distance be-
tween a given node and a goal node, the heuristic function
is usually based on some aspects of the goal node. In the
context of the counterexample search in FLAVERS, a goal
node is a violating node-tuple. In this section, we describe
two heuristics, the TA heuristic and the trap heuristic, each
of which focuses on different aspects of the violating node-
tuple. The TA heuristic uses the TA states in the node-tuple
to calculate the estimate, while the trap heuristic uses the
property state in the node-tuple. After describing these two
heuristics, we present a two-stage search strategy that is also
based on the property to be verified.

3.1 The TA Heuristic
Recall that in a violating node-tuple, all constraint states

are accepting. Since each TA constraint has only one ac-
cepting state, this is the state associated with the violating
node-tuple for that TA. Based on this observation, the TA
heuristic [5] estimates the shortest distance from a given
node-tuple to a violating node-tuple by summing the short-
est distance from the current state to the accepting state for
each TA. The intuition behind the TA heuristic is that it
provides an estimate of the smallest number of node-tuples
that need to be visited before reaching a violating node-
tuple. Since this heuristic never overestimates the distance
to a violating node-tuple, it is admissible.2

There are other aspects of a node-tuple besides the TA
states that we do not consider in formulating this heuristic
function, such as the current TFG node, current property
state, and other current constraint states. Experimentally,
we found that these aspects are not good predictors of the
path length. The TFG is not a good predictor because it in-

2To make sure the TA heuristic is admissible, we must assure
that each communication node, representing a rendezvous
between two tasks, is only counted once in the estimate.

cludes infeasible paths that violate the TA constraints. Un-
like the TA constraints that have only one goal state (the
only accepting state), each property or non-TA constraint
may have several goal states (any non-accepting state for the
property and any accepting state for the constraint). Thus,
the distance from the current property state or non-TA con-
straint state to its goal state is also not a good predictor
of the path length since multi-goals tend to make these dis-
tances indifferently small.

We also considered using these other aspects to break ties
when the TA heuristic returned identical minimal values for
more than one node-tuple. In our experiments, such tie-
breaking provided only slightly better results than arbitrary
choice and thus will not be discussed further in this paper.

As shown in Section 5, the simple TA heuristic is a rela-
tively good predictor of path length and can be used in both
the WA* algorithm, yielding an algorithm we call WATA,
and the BF algorithm, yielding an algorithm we call BFTA.

3.2 The Trap Heuristic
A trap state in an FSA is a non-accepting state that does

not have any outgoing transitions except self-loops. It is
easy to see that once the property enters a trap state, it is
violated and, unlike other non-accepting states, there is no
way to recover from the violation. Consequently, if there is
more than one trap state in a property, these states can be
combined into a single trap state. A node-tuple whose prop-
erty state is the trap state is called a trap node-tuple. When
a trap node-tuple is encountered, it is a good indication that
the property might be violated. Violation is still uncertain,
however, until a path is found from this trap node-tuple to
a violating node-tuple that does not violate any constraint.
We note that any safety property can be represented by a
prefix-closed finite automaton [1], and therefore that any
safety property can be represented by an automaton with a
single trap state.

Because of the likelihood of finding a violation, it seems
reasonable to use the trap state as the goal of the heuristic
function. We could define a simple heuristic, similar to the
TA heuristic, that computes the shortest distance between
the current property state and the trap state in the property
FSA.3 The evaluation function would use this heuristic to
select the node-tuple on the worklist that causes a property
transition to the state with the lowest heuristic value. The
problem with this simple heuristic is that, in most property
FSAs, most states have at least one transition to the trap
state. As a result, these states have the same metric value,
namely 1. Our trap heuristic solves this problem by also
considering the number of transitions to the trap state. In
the trap heuristic, if a state does not have any transitions to
the trap state, then its metric value is simply the shortest
distance to the trap state. For a state that has transitions
to the trap state, the metric value is equal to 1+1/n, where
n is the number of the transitions to the trap state. This
makes the metric smaller on states with more transitions to
the trap state. The metric value for the trap state is always
0. Figure 4 gives an example of the calculation of the trap
heuristic.

3As mentioned above, the shortest distance to a non-
accepting state of the property FSA is not a good predictor
of path length because there is usually more than one non-
accepting state. This simple heuristic, however, restricts the
goal to a single state and thus does not have this problem.

a1

b2

a1

a2

a1

3 4

1

2

Metric of each state based on
b2

b1

b1
a2

h(1) = 2
h(2) = 1.5
h(3) = 1.333
h(4) = 1.333
h(5) = 0

the trap heuristic

a1
a2

b1
b2

5

a2
b1

a2
b2

b2
b1
a1

Figure 4: A trap heuristic example

Since the trap heuristic considers the distance within the
property FSA, it does not make sense to use it in the WA*
algorithm, where g(n) gives the distance in the node-tuple
graph. Therefore, the trap heuristic is only used in the BF
algorithm, yielding an algorithm we call BFtrap.

3.3 A Two-stage Search Strategy
For properties with a trap state, it is reasonable to con-

sider a two-stage search strategy. In the first stage, the goal
is to reach a trap node-tuple. After that goal is achieved,
then the goal of the second stage is to reach a violating
node-tuple. There are two benefits of this two-stage search
strategy. One is that the search in the second stage only
needs to examine the trap node-tuples since a successor of
a trap node-tuple is also a trap node-tuple. A second ben-
efit is that there is probably no need to try to reduce the
length of the path from the trap node-tuple to the violat-
ing node-tuple. This is based on the observation that if a
counterexample contains trap node-tuples, analysts usually
only need to study a prefix from the initial node-tuple to
the first trap node-tuple, since this prefix is almost always
enough to determine what went wrong in the verification.
Thus, the requirements for these two stages are different.
Stage 1 is required to quickly find a short trace to the trap
node-tuple. Stage 2 is only required to find a violating node-
tuple quickly, since the length restriction can be ignored.

Based on the different goals of these two stages, we can
choose appropriate algorithms for each stage. For the first
stage, we considered the BFS and WATA algorithms, since
they tend to keep the paths short. We also considered BFtrap

since it should help find a trap node-tuple quickly. In addi-
tion, we considered using a combination of the WATA and
the BFtrap heuristics in which we first use BFtrap to select
node-tuples, and then use WATA to break ties. This com-
bination is denoted as BFtrap + WATA. We also tried using
WATA first and then applying BFtrap to break ties. Exper-
imentally, this second combination was just slightly better
than applying WATA alone. Thus, we do not report fur-
ther on this combination. Recalling that speed is the only
requirement for the second stage, we considered DFS and
BFTA, since both tend to find a violating node-tuple fast.

4. METHODOLOGY
We considered four one-stage search algorithms: BFS,

DFS, WATA, and BFTA. For the two-stage heuristic search
algorithms, we considered four alternatives for the first stage
(BFS, WATA, BFtrap, and BFtrap + WATA) and two alterna-
tives for the second stage (DFS and BFTA), giving us eight
two-stage algorithms. For algorithms using WATA, we con-
sidered a number of different values of the weight w, and
report here the results for five of these (1, 2, 3, 5, and 9)
that show the best results and the trend as w increases.

As mentioned before, two measurements, the runtime and
the length of the counterexample, are used to evaluate the
search algorithms. Runtime is used to measure the perfor-
mance and is determined by a straightforward reading of the
computation time. Length is used to evaluate the quality of
the counterexample and is computed by counting the num-
ber of node-tuples in the counterexample. In the case where
the counterexample has a trap node-tuple, however, we de-
fine the measure of length to be the length of the prefix of
the counterexample that starts from the initial node-tuple
and ends with the first trap node-tuple. We believe that it is
this prefix that is usually of primary interest to the analyst
trying to determine whether the counterexample represents
a genuine violation of the property being checked and, when
it does, to understand the source of the problem. All the
properties in our experiment were in a form that had a trap
state, so the lengths reported here are all lengths of such
prefixes.

The runtimes and prefix lengths for the different algo-
rithms vary considerably over the different subjects in our
experiment. Rather than report the raw values of runtimes
and prefix lengths, we report the ratios of the runtime and
prefix length compared to the corresponding values obtained
by running BFS on the same subject. Since BFS returns the
shortest counterexample, we would expect the prefix length
for the heuristics to be larger than the prefix length for BFS,
but prefer algorithms where the ratio is closer to 1. (As
described in the next section, the heuristic algorithms can
sometimes do better than BFS because they are focusing
on the trap node-tuple instead of the violating node-tuple.)
Since BFS tends to take longer to execute than DFS, we
would expect the heuristic algorithms to take less time to
execute than BFS and thus prefer algorithms where the ratio
is smaller.

We used a set of 10 different examples from the concur-
rency literature, including a memory management system,
the gas station system, the three way handshake protocol,
and the Chiron user interface system. These examples have
been widely studied and are frequently used to compare the
performance of FSV tools. Most of them are scalable, allow-
ing an evaluation of performance as the size of the system
being verified increases. For the scalable systems, we chose
a size that was not too large for the search algorithms to find
a counterexample with the resources available nor too small
for differences in performance of the various algorithms to
be detectable. We found that the pattern of performance of
these algorithms on a scalable system did not change much
with the size of the system, although the differences between
algorithms were magnified as the size increased. We there-
fore chose one size for each of the scalable systems, one that
was as large as possible without making the counterexam-
ple search run out of memory for most of the algorithms we
considered. With these choices, the Ada programs used in

the experiment had between 4 and 16 tasks and ranged in
size from 226 to 6,935 lines of code, as shown in Table 1.

of # of # of
System LOCs tasks properties subjects
Memory management 703 9 1 4
Gas station 648 9 1 4
Three way handshake 491 5 1 4
Chiron(Original ver.) 6,495 8 3 12
Chiron(Decomposed ver.) 6,935 16 3 14
Token ring 386 11 2 24
Relay 321 7 1 9
Cyclic scheduler 226 11 1 9
Peterson n-way tie breaker 1,063 4 1 8
Smoker 327 7 6 14

Table 1: The example programs in the experiment

For each of these programs, we had already identified sev-
eral properties and used FLAVERS to verify that each prop-
erty holds. For this experiment, however, we needed prop-
erties that are violated (in the model, at least). Rather than
introducing faults in the programs or properties that would
cause the properties to be violated, we chose to simply delete
some constraints that removed paths that violated the prop-
erties. While this may seem like it would lead to contrived
examples, in fact it reflects a common situation in the use
of FSV tools, in which the analyst tries to verify a property
with a model that, though conservative, does not represent
the system under analysis accurately enough. Analysts typi-
cally go through several cycles of running an FSV tool, find-
ing a counterexample that does not correspond to an actual
execution of the system, and refining the model to eliminate
this sort of spurious counterexample (usually at the cost of
making the model more complex and the verification more
expensive).

For FLAVERS, this process of refining the model involves
adding constraints. In previous work, we had identified a
set of constraints for each system and property that would
give a conclusive result and that was minimal, in the sense
that no proper subset would give a conclusive result. Given
such a minimal constraint set for a system-property pair,
we generate a subject by removing one constraint from that
set. As a result, if the minimal constraint set has order
n, there will be n subjects for the system-property pair.
Some of these subjects, however, had running times that
were too small to be useful in this experiment. We discarded
any subject for which any search algorithm took less than
2 seconds to find a counterexample. After removing these
small subjects, we had 102 subjects from 20 different system-
property pairs, as shown in Table 1. In all these cases, the
property has a reachable trap state.

We ran the experiments on a PC with a 2 GHz Pentium
4 processor and 1 GB of memory running Linux. We col-
lected the runtime information by using the Linux command
“time.” FLAVERS is written in Java and was run on Sun
Java SDK Standard Edition (build 1.4.1 01).

There are several threats to the validity of our results.
First, the selection of examples may bias the results. Most
of our examples are relatively small, even with scaling, and
represent somewhat unrealistic programs that have been
constructed to illustrate issues in the design of concurrent
systems. For each system, we verified a small number of
properties. These examples may not adequately represent
the range of systems and properties to which FLAVERS (or

Figure 5: The average runtime ratios of one-stage
algorithms

Figure 6: The average prefix length ratios of one-
stage algorithms

other FSV tools) might be applied in practice, and our re-
sults may be misleading for that reason. A second threat
arises from our method of generating subjects with coun-
terexamples from subject for which the analysis was origi-
nally conclusive. As a consequence, the results reported in
the paper may not reflect the performance of these algo-
rithms in the cases where the property does not hold even
when all necessary constraints are used. Finally, all prop-
erties used in the experiment have a reachable trap state.
This means that we did not evaluate the performance of
these algorithms in cases where the property does not have
a reachable trap state. (Of course, our two-stage algorithms
are not applicable for these cases.)

5. EXPERIMENTAL RESULTS
Here we present and analyze the experimental results. All

the inputs and results from our experiment are available at
http://laser.cs.umass.edu/counterexamplesearch.

Figure 5 shows the average runtime ratios (compared to
BFS, as described earlier) for the one-stage algorithms. The
vertical lines in the figure show the range of runtime ratios
for each algorithm. The line running left to right through
the boxes connects the geometric mean of the runtime ra-
tios of the different algorithms;4 the numeric values of these
means are also given along the X axis below the names of the

4Here we use the geometric mean of the ratios rather than
the arithmetic mean. The reason is illustrated by the fol-
lowing simple example. Suppose there are 100 subjects and

Figure 7: The average runtime ratios of two-stage
algorithms that use the DFS in the stage 2

Figure 8: The average runtime ratios of two-stage
algorithms that use the BFTA in the stage 2

algorithms. The box gives the geometric standard deviation
of each algorithm. Figure 6, similarly shows the average
prefix length ratios for one-stage algorithms.

These two figures show that the DFS, whose average run-
time ratio is 0.139, is the fastest among one-stage algo-
rithms, but its average prefix length ratio, which is equal
to 22.79, is the worst among them. For WATA and BFTA

(recall that the BF can be thought of as a special WA* with
a very large weight), we observe that the average runtime
ratios are all smaller than 1, meaning that on average these
algorithms are faster than BFS, though not as fast as DFS.
When the weight is set to 2, the WATA runs fastest. As the
weight increases from 2, the average runtime ratios increase
as well. The average prefix length ratios of WATA and BFTA

also increases with the weight, but all of them are around 1.
Figures 7 and 8 show the runtime ratios for the two-stage

algorithms using DFS and BFTA in the second stage, re-
spectively. Figure 9 shows the prefix length ratios for two-
stage algorithms. (Since we are only interested in the prefix

the runtime ratio of algorithm A for 50 subjects are all 0.01,
meaning that algorithm A is 100 times faster than BFS for
these subjects. For the remaining 50 subjects, suppose that
the runtime ratios of A is 100, meaning that the algorithm A
is 100 times slower than BFS. In this example, the arithmetic
mean of the runtime ratios for A is around 50, suggesting
that, on average, algorithm A is nearly 50 times faster than
BFS even though A is 100 times slower than BFS on half
the subjects. The geometric mean of the runtime ratios of
A, however, is equal to 1, a more useful estimate.

Figure 9: The average prefix length ratios of two-
stage algorithms

length, it is not necessary to distinguish between the differ-
ent possibilities for the second stage.) All these figures use
the same format as Figures 5 and 6.

Figure 7 and Figure 8 show that the speed of the algo-
rithms using BFS for stage one is relatively close to that of
the algorithms using WATA, compared to the difference be-
tween these when used alone as one-stage algorithms. Here
WATA performs best with a weight of 1, and the perfor-
mance decreases as the weight increases. The algorithms
that use the trap heuristic in stage one are faster than those
that do not. Using WATA after the BFtrap, as compared to
using the BFtrap only, improves the search speed when the
weight is small, but hurts performance when the weight is
larger than 3.

Finally, comparing Figure 7 with Figure 8, we can see
that the BFTA is faster than the DFS in stage 2 for these
examples.

Figure 9 shows that all two-stage algorithms have small
average prefix length ratios, mostly less than 1. This may be
counterintuitive, but the BFS, when used as a one-stage al-
gorithm, considers the length of the whole counterexample.
As a result, the BFS always finds the shortest counterex-
amples, but these counterexamples may not have the short-
est prefixes from the initial node-tuple to a trap node-tuple.
Since what we are evaluating here is the length of this prefix,
rather than the length of the whole counterexample, the av-
erage prefix length ratios of these two-stage algorithms may
be, and often are, smaller than 1. When the BFS is used
as an alternative in stage 1, it does find the counterexample
with the shortest prefix, as shown in Figure 9, where the
average prefix length ratio for BFS, 0.760, is the smallest.

Among these two-stage algorithms, the one that uses BFtrap

+ WATA with w = 1 in stage 1, and uses the BFTA in stage
2 seems to offer a good combination of speed and coun-
terexample quality. Its average runtime ratio is 0.083, which
means that this algorithm is on average about 12 times faster
than the BFS, and is even faster than the DFS, whose av-
erage runtime ratio is 0.139. Meanwhile, the average prefix
length ratio of this two-stage algorithm is 0.809, which is
only slightly larger than 0.760, the shortest prefix length
ratio of all.

To give a more concrete idea about how this two-stage
algorithm compares with the WATA with w = 2 (which of-
fered a good combination of speed and counterexample qual-
ity among the one-stage algorithms), we show the runtime

Figure 10: The runtime ratio comparison

Figure 11: The prefix length ratio comparison

ratios and prefix length ratios comparisons case by case be-
tween these two algorithms in Figure 10 and 11. Figure 10
shows that the two-stage algorithm runs faster than the one-
stage algorithm for every subject. Moreover, all runtime
ratios of the two-stage algorithm are less than 1, whereas
more than 1/4 of runtime ratios of the one-stage algorithm
are larger than 1. From Figure 11, we see that most of the
prefix length ratios for the two-stage algorithm are less than
or equal to those of the one-stage algorithm.

Thus, these experimental results show that the BFtrap +
WATA algorithm with w = 1 in stage 1 BFTA in stage 2
algorithm is relatively effective at producing a short counter
example quickly.

6. RELATED WORK
The TA heuristic was first presented in [5] and used there

in the A* algorithm. We extend that work by applying the
TA heuristic in WA* and BF algorithms and by developing
the trap heuristic and a two-stage algorithm based on the
trap state in the property. The focus of the earlier work
was on comparing different algorithms used in different sit-
uations, namely when the property to be verified is expected
to hold or not. That work noted that although it would be
desirable to have one algorithm that would work well in both
situations, different algorithms were needed to achieve good
performance. As shown in [5], for the case where the prop-
erty does not hold, the A* algorithm using the TA heuristic
is preferred; but for the case where the property holds, a
State Propagation algorithm gives the best performance. As

described here, we are able to develop a heuristic search algo-
rithm that performs better than the A* algorithm with the
TA heuristic for the situation where the property does not
hold. We also compared our best heuristic search algorithm
with the best State Propagation algorithm for the situation
where the property holds. In this situation, all node-tuples
reachable from the initial node-tuple must be examined, no
matter which algorithm is used. In this case, our heuristic
algorithm is about 30% slower than the State Propagation
algorithm, since it must compute evaluation functions and
sort the worklist based on these values. Hence, when ana-
lysts expect that the property holds, the State Propagation
algorithm should still be used. When the property is not
expected to hold, such as during the early stages of the de-
velopment, however, our heuristic search algorithm would
be the appropriate algorithm to use.

A number of other investigators have applied heuristic-
guided search to find counterexamples with FSV tools. In [10],
for example, heuristics based on the property being verified
are proposed for use with a version of SPIN. SPIN uses a
nested depth-first search algorithm to find an accepting state
in a cycle; the work in [10] uses the structure of the prop-
erty to eliminate the need for the “inner” part of the search
in some cases and uses heuristics to guide the “outer” part
of the search. In contrast, our two-stage algorithm employs
heuristics in both stages and uses the structure of the prop-
erty to determine if we can initiate the second stage to im-
prove efficiency. In [13], a heuristic considering code cover-
age is used with Java PathFinder. This heuristic, in essence,
is based on the structure of the model. The TA heuristic in
our work is based on some aspects of the model’s struc-
ture. A Hamming Distance heuristic has been used to guide
the counterexample search in both Murφ [26] and SPIN [9].
These techniques require that a specific state of the system
in which the property has been violated be identified ini-
tially; the Hamming distance between that state and the
system state currently being expanded is then used to guide
the search for a short counterexample that reaches the given
violation state. Our two-stage heuristics do not search for a
path to a specific state of the system, but begin by searching
for a path to any node-tuple in which the property is in the
trap state. In [11], a genetic algorithm is used to help find
error states in very large systems. This approach makes use
of several heuristics such as counting the number of outgoing
transitions, maximizing assertion evaluation, and maximiz-
ing exchanged messages to find deadlocks and violations of
assertions, but this work is focused on finding an error state
and does not consider the length of the path to that state.

There have been many research efforts aimed at address-
ing the computational complexity of search by dividing the
entire process into multiple phases. One example is the use
of iterative improvement (or iterative repair) techniques in
planning and scheduling (e.g., [22, 23]). These techniques
typically divide the search into two phases. In the first
phase, a solution candidate is generated using randomized
techniques or some fast greedy heuristic algorithm. In the
second phase, the solution is improved using local search
techniques until a local optimum is reached. Another ex-
ample is the wide use of hybrid search in solving constraint
satisfaction and combinatorial optimization problems (e.g.,
[14, 24]). These techniques typically combine some form of
complete search with local search algorithms. The complete
search, normally in the form of constraint propagation, is

used to restrict the neighborhood or to prune the search
space, while local search helps reach solutions quickly. Sim-
ilar hybrid search techniques have been used to improve
the efficiency of evolutionary programming techniques [25].
There has also been work on the application of hybrid search
to heterogeneous search spaces. For example, the mixed-
integer programming technique is an operations research
paradigm that combines linear programming and branch-
and-bound search [12]. What is unique about our problem
domain and solution technique is that the two phases of the
two-stage search strategy have different objectives to opti-
mize, while sharing the same underlying representation and
search graph. The two phases of the search are designed
to reduce the overall computation time, while optimizing
solution length in the first phase of the search.

7. CONCLUSION
FSV techniques can prove that a property holds on all pos-

sible executions of a system. Such methods are especially
important for concurrent and distributed systems, where
nondeterministic behavior makes testing especially problem-
atic. FSV tools work by constructing a finite model that
represents all the executions and then by verifying that the
property holds on that model. When the property does not
hold for the model, either because the model overapproxi-
mates the set of possible executions or because the system
does not satisfy the property (or both), these tools produce
a counterexample, a trace through the model that shows
how the property can be violated. These counterexamples
are of substantial value to analysts in refining the model as
necessary and correcting actual faults in the system. But
counterexamples that are long are hard to understand, and
their utility is significantly reduced. It is therefore desirable
that FSV tools return results quickly and, if the property
does not hold, return short counterexamples.

For many FSV tools, the verification process can be re-
garded as a search over a graph representation of the model
of the system. Standard search strategies, such as DFS and
BFS, are usually not effective in satisfying both the time
and length requirements. In this paper, we have explored
heuristic-guided search strategies that do a better job in sat-
isfying these requirements together. We have presented two
heuristics, one based on the structure of the model and one
based on the structure of the property being checked, and
a novel two-stage search strategy. The two-stage strategy
seeks to optimize different functions in the different stages,
considering length in the first stage and speed in the second,
although both share the same underlying representation and
search graph. We have compared several search algorithms
employing the heuristics, along with several different ver-
sions of the two-stage strategy that use different heuristics
to guide the search during the different stages. One of these
versions, employing BFtrap + WATA with w = 1 in the first
stage and BFTA in the second stage, seems to provide a par-
ticularly good combination of speed and short counterexam-
ples.

We intend to explore several additional directions. First,
we will see how well our methods work on a broader range
of systems and properties. While we will certainly inves-
tigate the use of these search strategies on additional Ada
programs, the FLAVERS approach can be applied to Java
programs as well as Ada programs [20, 21], and we are cur-
rently building tools that use the Bandera toolset [7] to con-

struct FLAVERS models from Java code. As soon as these
tools are complete, we will investigate the applicability of
these heuristics and the two-stage strategy to counterex-
ample search in the analysis of Java programs. It will be
interesting to see if the experimental results are consistent
for these two languages.

We are also interested in exploring the use of heuristic
search in automated counterexample guided refinement [2–4,
17]. In this work, a counterexample that reflects the model’s
overapproximation of the system’s execution is used to auto-
matically refine the model, and alternating cycles of coun-
terexample search and refinement continue until the FSV
tool runs out of resources or can give a definitive state-
ment as to whether the property holds for the system. (In
FLAVERS, the model is refined by adding additional con-
straints.) Several techniques have been proposed for analyz-
ing counterexamples to determine how to refine the model
and, since these techniques are automated, the length of
the counterexample may be less significant than when the
counterexample will be viewed by a human analyst. Other
aspects of the counterexample such as the prefix to a trap
node-tuple, however, may lead to more rapid refinement of
the model, and we plan to investigate the extent to which
heuristic search can improve this process.

8. ACKNOWLEDGMENTS
We thank Jamieson Cobleigh and Heather Conboy for

their assistance in collecting the experimental subjects.

9. REFERENCES
[1] B. Alpern and F. B. Schneider. Recognizing safety and

liveness. Distributed Computing, 2(3):117–126, 1987.

[2] T. Ball, A. Podelski, and S. K. Rajamani. Relative

completeness of abstraction refinement for software model

checking. In 8th International Conference on Tools and

Algorithms for Construction and Analysis of Systems, volume

2280 of LNCS, pages 158 – 172. Springer-Verlag, Apr. 2002.

[3] T. Ball and S. K. Rajamani. Automatically validating

temporal safety properties of interfaces. In Proceedings of the

8th International SPIN Workshop on Model Checking of

Software, volume 2057 of LNCS, pages 103–122.

Springer-Verlag, May 2001.

[4] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.

Counterexample-guided abstraction refinement. In Proceedings

of the 12th International Conference on Computer Aided

Verification, volume 1855 of LNCS, pages 154–169.

Springer-Verlag, Jul. 2000.

[5] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. The right

algorithm at the right time: Comparing data flow analysis

algorithms for finite state verification. In Proceedings of the

23rd International Conference on Software Engineering,

pages 37–46, May 2001.

[6] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. FLAVERS:

A finite state verification technique for software systems. IBM

Systems Journal, 41(1):140–165, 2002.

[7] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.

Păsăreanu, Robby, and H. Zheng. Bandera: Extracting

finite-state models from Java source code. In Proceedings of

the 22nd International Conference on Software Engineering,

pages 439–448, Jun. 2000.

[8] M. B. Dwyer and L. A. Clarke. Data flow analysis for verifying

properties of concurrent programs. In Proceedings of the 2nd

ACM SIGSOFT Symposium on the Foundations of Software

Engineering, pages 62–75, Dec. 1994.

[9] S. Edelkamp, A. L. Lafuente, and S. Leue. Trail-directed model

checking. In Proceedings of the Workshop on Software Model

Checking, Electrical Notes in Theoretical Computer Science,

volume 55, Jul. 2001.

[10] S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed

explicit-state model checking in the validation of

communication protocols. International Journal on Software

Tools for Technology Transfer, 5(2-3):247–267, 2004.

[11] P. Godefroid and S. Khurshid. Exploring very large state

spaces using genetic algorithms. In 8th International

Conference on Tools and Algorithms for Construction and

Analysis of Systems, volume 2280 of LNCS, pages 266–280.

Springer-Verlag, Apr. 2002.

[12] C. Gomes and B. Selman. Hybrid search strategies for

heterogeneous search spaces. International Journal on

Artificial Intelligence Tools, 9(1):45–57, 2000.

[13] A. Groce and W. Visser. Model checking Java programs using

structural heuristics. In Proceedings of the International

Symposium on Software Testing and Analysis, pages 12–21,

Jul. 2002.

[14] D. Habet, C. M. Li, L. Devendeville, and M. Vasquez. A

hybrid approach for SAT. In Proceedings of the 8th

International Conference on Principle and Practice of

Constraint Programming, pages 172–184, Sep. 2002.

[15] E. A. Hansen, S. Zilberstein, and V. A. Danilchenko. Anytime

heuristic search: First results. TR UM-CS-1997-50,

Department of Computer Science, University of Massachusetts

Amherst, 1997.

[16] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for

the heuristic determination of minimum cost paths. IEEE

Transactions on Systems Science and Cybernetics,

4(2):100–107, 1968.

[17] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy

abstraction. In Proceedings of the 29th ACM

SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 58–70, Jan. 2002.

[18] G. J. Holzmann. The Spin Model Checker. Addison-Wesley,

Boston, 2004.

[19] G. Naumovich and G. S. Avrunin. A conservative data flow

algorithm for detecting all pairs of statements that may

happen in parallel. In Proceedings of the 6th ACM SIGSOFT

Symposium on the Foundations of Software Engineering,

pages 24–34, Nov. 1998.

[20] G. Naumovich, G. S. Avrunin, and L. A. Clarke. Data flow

analysis for checking properties of concurrent Java programs.

In Proceedings of the 21st International Conference on

Software Engineering, pages 399–410, May 1999.

[21] G. Naumovich, G. S. Avrunin, and L. A. Clarke. An efficient

algorithm for computing MHP information for concurrent Java

programs. In Proceedings of the 7th European Software

Engineering Conference held jointly with the 7th ACM

SIGSOFT International Symposium on Foundations of

Software Engineering, pages 338–354. Springer-Verlag, Sep.

1999.

[22] G. Rabideau, S. Chien, J. Willis, and T. Mann. Using iterative

repair to automate planning and scheduling of shuttle payload

operations. In Proceedings of the 11th Conference on

Innovative Applications of Artificial Intelligence, pages

813–820, 1999.

[23] D. Ratner and I. Pohl. Joint and LPA*: Combination of

approximation and search. In Proceedings of the 5th National

Conference on Artificial Intelligence, pages 173–177, 1986.

[24] P. Shaw. Using constraint programming and local search

methods to solve vehicle routing problems. In Proceedings of

the 4th International Conference on Principles and Practice

of Constraint Programming, pages 417–431, 1998.

[25] V. Tam and P. Stuckey. Improving evolutionary algorithms for

efficient constraint satisfaction. International Journal on

Artificial Intelligence Tools, 8(4):363–383, 1999.

[26] C. H. Yang and D. L. Dill. Validation with guided search of

the state space. In Proceedings of the 35th Design

Automation Conference, pages 599–604, Jun. 1998.

