
Analyzing Processes for E-Government
Application Development:

The Emergence
of Process Definition Languages

Leon J. Osterweil
Charles M. Schweik

Norman K. Sondheimer
Craig W. Thomas

Leon J. Osterweil is Professor in the Department of Computer Science, and Dean of
the College of Natural Sciences and Mathematics at the University of Massachusetts,
Amherst. He has served as Associate Editor of ACM Transactions on Software Engi-
neering, is a Fellow of the Association of Computing Machinery (ACM), and is recipi-
ent of the Outstanding Research Award from the ACM’s Special Interest Group on
Software Engineering (E-mail: ljo@cs.umass.edu).

Charles M. Schweik is Assistant Professor in the Department of Natural Resources
Conservation and the Center for Public Policy and Administration at the University of
Massachusetts, Amherst. His research focuses on public sector information technol-
ogy, environmental management and policy, and the intersection of these domains.

Norman K. Sondheimer is the Dean’s Executive Professor in the School of Manage-
ment at the University of Massachusetts, Amherst. He is co-Director with Professor
Osterweil of the University’s Electronic Enterprise Institute (EEI) and investigates
fundamental issues that underlie digital government, electronic commerce and the vir-
tual enterprise (E-mail: sondheimer@som.umass.edu).

Craig W. Thomas is Associate Professor in the Department of Political Science and
the Center for Public Policy and Administration at the University of Massachusetts,
Amherst. He is the author of Bureaucratic Landscapes: Interagency Cooperation and
the Preservation of Biodiversity (MIT 2003), and articles on collaborative governance,
environmental management, and public trust in government agencies (E-mail:
cthomas@polsci.umass.edu).

Address correspondence to: Charles M. Schweik, Department of Natural Resources
Conservation and Center for Public Policy and Administration, 217 Holdsworth Hall,
University of Massachusetts, Amherst, Amherst, MA 01003 (E-mail: cschweik@
pubpol.umass.edu).

Journal of E-Government, Vol. 1(4) 2004
Available online at http://www.haworthpress.com/web/JEG

© 2004 by The Haworth Press, Inc. All rights reserved.
Digital Object Identifier: 10.1300/J399v01n04_05 63

http://www.haworthpress.com/web/JEG


ABSTRACT. E-government developers need to clearly understand pro-
cesses they are automating and ensure that automated processes are de-
fect-free. This paper introduces readers to Process Definition Language
(PDL) technology that provides rigor and precision over traditional
forms of process documentation. We report our experience documenting
license renewal processes for application in the Mass.gov portal. The
PDL helped analysts identify inconsistencies and errors in natural lan-
guage-based documents that were guiding system development. This
case provides an initial demonstration of the benefits PDLs can bring to
e-government application development. We conclude with a discussion
of the current limitations of PDLs and a discussion of computer-based
analysis approaches that will likely emerge in the future. [Article copies
available for a fee from The Haworth Document Delivery Service: 1-800-
HAWORTH. E-mail address: <docdelivery@haworthpress.com> Website:
<http://www.HaworthPress.com> © 2004 by The Haworth Press, Inc. All rights
reserved.]

KEYWORDS. Process definition language, systems analysis, e-gov-
ernment application development, trusted processes, process documen-
tation, workflow

INTRODUCTION

Readers of this journal are well aware of the rapid deployment of e-
government worldwide (Moon, 2002; Ho, 2002, West, 2002a; West,
2002b; Seville European Council, 2002). The services being automated,
such as license registration, electronic payment, filing of documents,
and information provision, often involve intricate collaborations be-
tween computer systems, government staff, and the citizenry who are
the users and recipients of these services. Government managers and e-
government application developers are faced with the challenge of
demonstrating that these applications are error-free.

This is not all that different from traditional information systems de-
velopment in organizations, except that in the context of e-government
applications are widely seen and used by people outside the agency.
And there is one other important distinction: in most e-government con-
texts, the manual process is not replaced, but is duplicated online. In
these settings, e-government application developers, analysts and gov-
ernment managers need tools that can help them analyze existing or pro-

64 JOURNAL OF E-GOVERNMENT

http://www.HaworthPress.com>�2004


posed online (and offline) processes to ensure they are well understood
and function as desired.

The main objective of this paper is to introduce readers to the emerg-
ing field of Process Definition Languages (PDLs). The paper empha-
sizes the utility of these tools for public administration in general, and e-
government application development in particular. PDLs are formal
languages that provide analysts with the ability to articulate organiza-
tional processes in a rigorous, precise, complete, and clear manner.
PDLs are most distinguished by the rigor with which they themselves
are defined, and the completeness of the definitions of the processes
they are used to define. While particular process definitions vary, in
general most PDLs provide a means to specify who (a person or posi-
tion) or what (such as a computer program) is responsible for conduct-
ing a particular task; when the task is to be undertaken; when
parallelism is possible; what kinds of resources are required (e.g., people,
computer programs); where data used in the process are stored; what kinds
of activities or sub-steps of the process occur; what other people or pro-
cesses need to know about the outcomes or intermediary stages of the pro-
cess; and what kinds of outputs are produced. While PDL technology are
still emerging, examples of existing PDLs include: “Adele” (Estublier,
1985; Belkhatir, Estublier and Walcelio, 1991; Belkhatir, Estublier and
Walcelio, 1993), “Slang” (Bandinelli, Fuggetta and Grigolli, 1993;
Bandinelli and Fuggetta, 1993) and “Marvel” (Kaiser, Barghouti and
Sokolsky, 1990; Heineman et al., 1992).

Because of the precise nature of PDLs, errors or inconsistencies in
process logic can be identified more readily than if the process were ar-
ticulated using other methods of process documentation that are popular
today, such as data flow diagrams, use cases, or natural language (e.g.,
English) descriptions. The precision of PDLs brings additional benefits,
such as comparability and reuse. Through explicit representation, cou-
pled with visualization or graphical features, PDLs provide the analyst
with tools to enhance comparison of processes. In the e-government
context, this can assist in ensuring that online and offline processes that
are intended to be identical are indeed so. This documentation adds an-
other benefit: all or parts of a trustworthy or a proven-to-be-efficient
process articulated in a PDL can be readily copied and reused in other
areas.

With the goal being to introduce readers to PDLs and their utility in e-
government application development, the paper begins by providing a
definition of a PDL and a more complete discussion about the main ben-
efit of PDLs: enhanced process analyzability. Next, we present an em-

Osterweil et al. 65



pirical example of a PDL in action; we describe the PDL we used
(called “Little-JIL,” created by computer scientists at the University of
Massachusetts); and our experiences using this PDL to validate the de-
signs of online license renewal processes being implemented in the
Commonwealth of Massachusetts’ e-government efforts. To demon-
strate the main benefit of analyzability, we provide some comparisons
between more traditional natural language use cases and our experience
with Little-JIL formalisms for license renewal processes. But the
analyzability features we report here only begin to demonstrate the po-
tential PDLs can bring to public administration in the analysis of online
(and offline) processes. We close the paper with a discussion of where
we expect PDLs and PDL-based process analyzability to go in the
future, based on what already is occurring in the field of software
engineering.

PROCESS DEFINITION LANGUAGES, E-GOVERNMENT
APPLICATION DEVELOPMENT AND ANALYZABILITY

The issue of understanding and documenting organizational pro-
cesses is not new. Indeed, the eminent sociologist Max Weber, writing
before the emergence of computers, identified written documentation as
one of the core characteristics of bureaucracy (Weber, 1946). For
Weber, written documentation was important because it separated the
working life from the private life of public officials. During the 20th
century, the documentation of processes became a routine part of orga-
nizational life for other reasons, as well. For example, some organiza-
tions operating hazardous systems, such as nuclear power plants,
extensively documented their operating procedures as a means for
searching out the root causes of potentially catastrophic errors to
prevent such errors from occurring (La Porte and Thomas, 1995).

Documenting public-sector processes is difficult. Even the most sim-
ple-appearing processes are remarkably intricate. The intricacy comes
in part from the need for a process definition to articulate not just the ac-
tivities that are to be performed, but also the rights and responsibilities
of the agents (human or computer) that must carry them out, the re-
sources these agents are to be granted, the time limits on process execu-
tion, and the appropriate responses to deviant or alternative conditions
that might arise. Even prior to the emergence of e-government there was
a critical need for public administrators to articulate processes clearly
and analyze them for defects, particularly in the case of organizations

66 JOURNAL OF E-GOVERNMENT



operating or overseeing critical systems such as electric power grids.
The emergence of Web-based e-government services and the continued
need for manual processes to serve constituents who are not yet online
makes it even more crucial that public administrators are able to articu-
late completely and precisely the broad range of process activities,
agents, resources and timing issues.

Yet in most organizations processes tend to be described using infor-
mal natural language text, with the only parts of processes defined pre-
cisely being those performed by computers. In the latter cases, the
process definition is captured as executable computer code, which un-
dergoes varying degrees of analysis and testing to ascertain its correct-
ness and performance characteristics. But humans perform large and
important aspects of most public sector processes, and these parts are
often defined far less precisely and are far less amenable to definitive
analysis.

This quest for increasingly effective process definitions has been ma-
terially aided by the growth of computer science, which necessitates
very precise and complete languages for communication of computa-
tional needs to computing devices. Languages for communicating these
needs directly to computers (“programming languages”) are most fa-
miliar. But, in addition, there has been increasing acknowledgement of
the need for languages for communicating to organizations and stake-
holders the myriad processes needed to conceptualize, design, imple-
ment, test, and evolve software systems. Thus, over time, computer
scientists and others have created methodologies and languages for
specifying these processes and defining software requirements. These
methodologies can be generally categorized as (1) dataflow languages,
(2) workflow languages, and (3) PDLs. There are no hard and fast defi-
nitions of these languages, or rules for categorizing them, and we will
not attempt to do so. Rather, we suggest these qualitative characteriza-
tions.

Dataflow languages can be placed at one end of a comparative spec-
trum. They tend to be pictorial, and highly appealing to human intuition
and understanding. On the other hand, they tend to be relatively limited
in semantic scope (i.e., the range of different aspects covered and de-
scriptive power), and lack rigor in their definitions. That is, it is rela-
tively easy for the analyst to leave something out of the process
definition, or to develop a process definition that is too vague or is in-
consistent. PDLs fall at the opposite end of this spectrum. They are
broadly comprehensive in semantic scope, and follow rigorous rules
about what needs to be included in their definitions (Cass et al., 2000).

Osterweil et al. 67



Because of their rigor, they are amenable to computer-based analysis,
although often at the expense of easy comprehensibility by humans.
Workflow languages span a spectrum of approaches between these two
extremes, some emphasizing rigor and semantics, and others hewing
more to the side of human comprehensibility. For example, the “use
case” approach to process description (Cockburn, 2001; Schneider and
Winters, 2001; Dennis, Wixom and Tegarden, 2002) could be classified
in the workflow language category. These are semi-structured descrip-
tions of processes that use a mixture of diagrams, tables and natural lan-
guage text that are organized in a standard format. (We should note,
however, that by creating the PDL distinction, we do not mean to ex-
clude workflow languages–or any languages–that also provide analytic
capabilities.)

Improved and formal analyzability of a process is the main advantage
a PDL provides over these other process analysis techniques. There are
two reasons why PDLs improve the analyzability of a process. First,
PDLs are broadly applicable and expressive but at the same time require
components of a process to be rigorously and precisely defined. Natural
language descriptions do not require this kind of rigor, and conse-
quently can result in descriptions with vague, incomplete, imprecise, or
ambiguous language that will eventually lead to errors or omissions in
process descriptions.

Second, once analysts overcome an initial learning curve, PDLs pro-
vide clear, readable, and understandable process descriptions. There are
many ways clarity can be created in a PDL. Graphical depiction of the
process is a useful approach, for it is commonly understood that
graphics enhance the communication of complex information (Tufte,
2001). Such use of visualization could provide government process in-
spectors with substantially higher confidence in processes, simply be-
cause the inspector can absorb more of the complexity through a visual
graphic of the process.

On the other hand, visual inspection of graphical representation of
processes is typically not sufficient. Process definitions can require
much detail and the graphics can become quite complex. Thus, a visual
inspection can improve intuition, but is not sufficient by itself to address
the need to deal with volumes of detail. Thus, a second approach to clar-
ity is needed, which can be provided through abstraction–the ability to
view the details of a process at incrementally aggregated or summary
levels to make things simpler to understand, and to decompose aggrega-
tions when needed. Considerable literature exists that describes the piv-
otal role of abstraction in effective comprehensibility of software (e.g.,

68 JOURNAL OF E-GOVERNMENT



Hoffman and Weiss, 2001; Szyperski, 2002), which is readily trans-
ferred to the study of organizational processes.

Currently, natural language descriptions are widely used in the gen-
eration of requirements for public sector information systems and the
development of e-government. For example, natural language-based
use case descriptions were a major part of the requirements definitions
for transaction processing being developed for access through the Com-
monwealth of Massachusetts’s Mass.gov portal.

Our main hypothesis in this paper is the following:

The rigor and precision of a PDL helps ensure that processes are
defined more thoroughly and precisely, facilitating the identifica-
tion of errors and inconsistencies in natural language-based pro-
cess definitions.

Moreover, an additional benefit of processes defined using a PDL
over those defined in natural language is that their clarity and abstrac-
tion may help to identify process or sub-process comparability and re-
use opportunities. In the context of e-government, the identification of
reuse opportunities is particularly important for cost savings (e.g., if a
computer transaction processing program is written to serve multiple
purposes), and for improving the quality and security of online transac-
tions. If reuse opportunities can be identified, it may be easy to apply an
already proven secure and functionally correct program to another yet-
to-be-developed e-government system.

The next section provides readers with more detail of one such PDL
that exhibits these analytic qualities. This is followed by a description of
our efforts working with the developers of the Mass.gov portal, where
we used this PDL to analyze and inspect some license renewal pro-
cesses already defined using another process definition approach (i.e.,
use case descriptions) for defects and reuse possibilities. We present the
results of this effort, which support the hypothesis and statements made
above.

A PDL EXAMPLE:
DESIGNING E-GOVERNMENT LICENSE RENEWAL

TRANSACTION PROCESSING

To give readers a better understanding of a PDL “in action” and to
demonstrate some of the analyzability benefits we described above, this

Osterweil et al. 69



section describes our recent experience applying a PDL called “Little-
JIL” to support an e-government application development project. Lit-
tle-JIL is a PDL developed by Alexander Wise, Barbara Lerner, Stanley
M. Sutton Jr. and Leon J. Osterweil at the Laboratory for Advanced
Software Engineering Research at the University of Massachusetts,
Amherst. Little-JIL was applied in 2002 as part of an effort by the Com-
monwealth of Massachusetts Office of Consumer Affairs to create new
online license renewal services through its Mass.gov portal. In this sec-
tion we (1) provide a brief overview of the Little-JIL language; (2) de-
scribe the project, and present one Little-JIL license renewal diagram
developed for the project; and (3) present some examples of how this
PDL helped human inspectors detect some defects in natural language
use case descriptions. At the outset, we should emphasize that Little-JIL
is just one PDL to which we had access–there are others, which the
interested reader can explore through the references in this paper.

Overview of the Little-JIL Language

The argument we have made is that PDLs improve analyzability be-
cause their formal semantics provide precision and rigor. PDLs that also
employ graphics and abstraction thereby also improve clarity and com-
prehensibility. The Little-JIL language provides an example of a PDL
with such capabilities. A Little-JIL process is represented as a hierarchi-
cal decomposition of process steps and a graphical syntax. Figure 1
shows the various “badges” (or icons) that make up a step, and a step’s
possible connections to other steps. The “interface badge” at the top is a
circle by which this step is connected to a parent step. The interface in-
cludes declarations of the “agent” (usually a human or computer) that is
to carry out the step, resource requirements of the step, exceptions that
may take place during step execution, and messages that may be sent
from this step to another step.

Below the interface badge is the step name. To the left is a triangle
called the “prerequisite badge,” which is a step that must be success-
fully completed before this step begins. If the prerequisite is not com-
pleted successfully, the step is not allowed to execute. On the right side
of the step box is another similarly filled triangle called the
“postrequisite badge,” representing a step that begins execution imme-
diately after the step completes execution and must also successfully
complete for the parent step to be notified of the child step’s
completion.

70 JOURNAL OF E-GOVERNMENT



Within the box below the step name in Figure 1 are three more
badges. From left to right, they are the “control flow badge” (an arrow),
“reaction badge” (a lightning bolt) and “exception handler badge” (an
X). Child steps (or sub-steps) are connected to the control flow badge.
The line connecting a step to a sub-step is annotated with a list of com-
ponents or artifacts (i.e., data items or collections) needed by the step,
and a list of artifacts the step produces. The control flow badge indicates
the order in which sub-steps are executed. Little-JIL provides four
different control flow badges.

A “sequential control flow badge” indicates that sub-steps are exe-
cuted in order from left to right, beginning the next sub-step only after
the preceding sub-step completes successfully. A “parallel control flow
badge” denotes a step that allows its sub-steps to be executed at the
same time. Both sequential and parallel steps require all of their sub-
steps to be performed. A “choice control flow badge” denotes a step that
allows the agent performing the step to choose which single sub-step to
execute. A “try control flow badge” denotes a step that identifies alter-
native ways of performing the step but mandates the order in which the
alternatives should be tried from left to right. A choice or try step re-
quires exactly one of its sub-steps to be performed successfully. A step
with no control flow badge is executed completely by the agent (human
or computer program) to which responsibility for the step has been
assigned, with no specified process guidance.

If any sub-step fails to complete successfully, the parent step also
fails to complete. This creates a condition that is handled by the actions
associated with the “exception handler badge.” The “X” in the step box

Osterweil et al. 71

Interface Badge

Prerequisite Badge

Control Flow Badge

Parameter

Sub-step

Reaction Badge

Reaction

Message

Handler

Exception

Postrequisite Badge

Exception Handler Badge

Continuation BadgeStep Name

FIGURE 1. Little-JIL Syntax



of Figure 1 is such a badge, to which one or many exception handlers
can be attached. Exception handling may entail execution of a sepa-
rate step to be performed when the exception is encountered, but
must always specify a continuation badge to indicate what to do after
the exception has been handled. Little-JIL provides four alternative
continuation badges, details of which can be found in Wise (1998). A
full process is represented in Little-JIL as a hierarchical set of step
boxes. More complicated processes have sub-steps fully described in
separate, but connected, Little-JIL diagrams (an example of abstrac-
tion). It is important to note that, although these Little-JIL language fea-
tures have been described (incompletely and tersely) in English, they
are also defined completely, precisely, and rigorously by means of a
mathematical formalism: Finite State Automata (FSAs) (Aho, Hopcroft
and Ullman, 1983). Thus, this language has the rigor needed to qualify it
as a PDL.

The Mass.gov License Renewal Project

The Commonwealth of Massachusetts Office of Consumer Affairs
has begun offering professional license renewal services over the Web.
As part of that effort, they engaged consultants to capture the processes
involved using the natural language use case definition approach.1 This
approach differs significantly from the PDL approach in a few ways.
Most substantially, use case definitions describe the different views of a
process from the perspectives of its various users, and the various inter-
actions that they will need to have with the process. Thus, each use case
is a different view, or projection, of the process. In contrast, the PDL ap-
proach presents the entire process itself, indicating which steps are to be
executed by different users. Thus, a PDL definition depicts the entire
process, including, in particular, steps that might be performed by soft-
ware systems, and might therefore be transparent to any human user.
Use cases, on the other hand, do not describe how the system is going to
work internally–only what it is intended to deliver. But it is important to
clarify that what is presented to users is actually done correctly. Conse-
quently, PDL definitions focus on what is actually done, and how, by
whom, when, which are all necessary in order to support demonstra-
tions that the outcome of a process is done correctly.2

A particularly serious drawback of the use case approach is that each
of the potentially myriad variations in the path within a process must be
described as a separate use case, often leading to a voluminous set of
process definitions for one completely described process. For example,

72 JOURNAL OF E-GOVERNMENT



in a license renewal process, one possible path might be that the process
halts unsuccessfully because some information on the applicant is miss-
ing. In another situation, all information might be available and the re-
newal process completes successfully. In a use case setting, each of
these alternatives would need to be written up as separate use cases.
This creates a heightened risk that similar variations in use might wind
up being described in ways that have needless differences. PDL defini-
tions avoid this difficulty by allowing the analyst to specify all the alter-
native flows or paths through a process in the one process definition,
rather than requiring separate definitions to be written for each
alternative process scenario.

In 2001-2002, the three first authors led a team that used Little-JIL as
a tool to analyze existing use case descriptions that were guiding
Mass.gov developers and to report any identified process defects
(Sondheimer et al., 2002). Once the processes were well defined, they
were to be implemented by a state contractor. We analyzed nineteen dif-
ferent license renewal processes written in use case format (listed in Ta-
ble 1). While each of these cases exhibited differences, many followed a
generic structure, which suggested the possibility of reuse. For brevity
and demonstration sake, we provide a Little-JIL representation of some
of this generic structure (Figure 2).

The top step of this process, “Renew License,” consists of the se-
quential (by virtue of the right arrow icon) execution of the sub-steps,
“Identify Applicant,” “Validate Applicant Context,” “Process License Re-
newal,” “Calculate Payment,” “Submit Payment” and “DOI Review of
Documentation,” all of which are connected to “Renew License” by
lines emanating from the right arrow. “Identify Applicant” consists in
turn of one sub-step, “Authenticate User.” Most other steps have sub-
step decompositions. For brevity, they are not shown, but exist as sepa-
rate step diagrams. Little-JIL also supports the definition of data flow
between steps, by attaching annotations to the lines connecting the
steps. Diamonds imbedded in the middle of these lines contain arrows
depicting the direction of data flow. For example, the line connecting
“Authenticate User” to its parent step “Identify Applicant” has an up-
ward arrow in its associated diamond, indicating that it provides data to
the parent. For clarity, further annotation is provided to the left of this
line that describes the data flowing upward as “User ID.” A similar data
flow annotation is attached to the line connecting parent step “Renew
License” to its second sub-step “Validate Applicant Context.” Here the
data “User ID” flows from parent to child, and as a result of that sub-

Osterweil et al. 73



step the data “Licenses” flow back from child to parent. Other annota-
tions are elided to save space and clutter for purposes of this discussion.

This diagram also depicts the usage of resources. In particular, the
line between “Identify Applicant” and “Authenticate User” is also an-
notated (to the left) with “database: User DB,” indicating that the “Au-
thenticate User” step requires the database User DB as a resource in
order to be successful. The annotation also defines that the agent re-
sponsible for executing this step must be a “Renewal Investigator.” The
agents responsible for most other steps are not shown, again for brevity,
although note that the agent for the “Calculate Payment” step is defined
to be “Revenue Department.” Thus, this process definition is precise
and articulate in indicating which agents are responsible for which
steps. Some agents are people, some are organizations, and some could
be automated devices such as software programs. Little-JIL supports
specification of such mixed collections of agents.

74 JOURNAL OF E-GOVERNMENT

TABLE 1. The Nineteen License Renewal Use Cases Reviewed for the Com-
monwealth of Massachusetts Mass.gov Project

Board of Registration in Medicine (4 cases)

• Full medical license renewal

• Lapsed medical license renewal

• Limited medical license renewal

• Acupuncture license renewal

Alcoholic Beverage Control Commission (14 cases)

• Wholesaler, manufacturer, or commercial license renewal

• Salesman and transportation for salesman license renewal

• Storage license renewal

• Transportation and delivery license renewal

• Airline sale, airline transportation, railroad sale, and railroad transportation license
renewal

• Broker license renewal

• Ship sale license renewal (2 types)

• Express carrier and caterer transportation license renewal

• Public warehouse or bonded warehouse license renewal

• Ship chandler license renewal

• Retail license renewal–local town board

• Retail license renewal–licensee

• Out of state supplier certificate of compliance renewal

Auctioneer License Renewal (1 case)



R
en

ew
 L

ic
en

se

Id
en

tif
y

A
pp

lic
an

t

Va
lid

at
e

A
pp

lic
an

t C
on

te
xt

A
ut

he
nt

ic
at

e
U

se
r

P
ro

ce
ss

Li
ce

ns
e

R
en

ew
al

us
er

:U
se

r
ID

to
R

en
ew

:L
ic

en
se

s

lic
en

se
+

R
ev

ie
w

 F
ai

le
d

D
O

I R
ev

ie
w

of
D

oc
um

en
ta

tio
n

S
ub

m
it

P
ay

m
en

t

R
ej

ec
t R

en
ew

al

ag
en

t:
R

ev
en

ue
D

ep
ar

tm
en

t

C
al

cu
la

te
P

ay
m

en
t

ag
en

t:
R

en
ew

al
 In

ve
st

ig
at

or
da

ta
ba

se
:U

se
r

D
B

us
er

:U
se

r
ID

F
IG

U
R

E
2.

A
G

en
er

ic
Li

ce
ns

e
R

en
ew

al
P

ro
ce

ss

75



Finally, note that this Little-JIL process defines one exception, “Re-
view Failed,” and how it is handled. The step “Reject Renewal” is the
process for handling this exception by virtue of its being attached to the
“Renew License” parent step by a line emanating from the X icon at the
right of the step bar. In Little-JIL this means that if a “Review Failed”
exception occurs in any of the sub-steps of “Renew License” it is to be
handled by executing the “Reject Renewal” sub-step. Possible places
where such an exception might take place include the “Authenticate
User” sub-step and the “DOI Review of Documentation” sub-step. A
full Little-JIL definition would annotate all such steps to indicate that
they are possible sites for the occurrence of these exceptions. The up-
ward arrow imbedded in the line connecting “Reject Renewal” to its
parent “Renew License” indicates that the execution of the entire “Re-
new License” step is to be aborted once “Reject Renewal” has com-
pleted. For brevity, other sub-step processes are not shown, but readers
interested in Little-JIL specifics are encouraged to read Wise (1998) or
Cobleigh, Clarke and Osterweil (2000).

RESULTS

We argued earlier that two benefits of PDLs over natural language
representation are analyzability and reuse. We developed elaborations
and variations of the generic structure in Figure 2 for the nineteen li-
cense renewal variants listed in Table 1. These PDL implementations
coupled with human-based analysis (as opposed to computer-based
analysis, discussed further below in the “Concluding Comments” sec-
tion) resulted in the identification of twelve process irregularities or de-
fects in the natural language documentation. These failings, if left
undetected, could have led to the development of online systems whose
characteristics and behaviors would be unpredictable and less trustwor-
thy. We also identified three reuse opportunities. A short summary of
some of our specific findings follows (for more detail, see Sondheimer
et al., 2002), and we provide some example comparisons between the
use case descriptions and PDL representations.

We identified five actor inconsistencies in the natural language de-
scriptions of the nineteen license renewal processes, which occurred be-
cause looser agent specification in the natural language descriptions
allowed for the unintended omission of actors. Let us provide an exam-
ple. In the “Process Salesman and Transportation for Salesman License
Renewal” use case description, there is a section where the analyst lists

76 JOURNAL OF E-GOVERNMENT



relevant “actors.” Then, there are paragraphs written on the basic flow
of the process, and “alternative flows” which include seven pages of writ-
ten description. Embedded in two sub-steps in these alternative flow sec-
tions were references to the employer as an actor, and yet the employer was
not defined in the use case as an actor. The formal semantics Little-JIL pro-
vided were effective in helping the human inspectors to identify these prob-
lems. The precise nature of Little-JIL required agent specifications at each
step. This prevented the accidental omission of these agents, and focused
attention on specifying them consistently.

We identified seven errors in the natural language descriptions of the
nineteen processes that were caused primarily by lack of information
about the flow of artifacts between steps. For example, in the process of
translating the “Process Auctioneer License Renewal” use case into Lit-
tle-JIL, we attempted to include all of the parameter flow information in
the Little-JIL representation. While the data required for steps in the use
cases are not directly stated with the step descriptions, deducing most of
the relationships between the steps and the Data Source Field List (a
section of the use case) was not difficult. However, as we attempted to
elaborate all of the information requirements for all of the steps, we dis-
covered that not all of it was specified in the use case document. There
were several cases in which data were implicitly referred to by the step
description, but the data were not present in the Data Source Field List.
For example, one of the exception flows documented in the case indi-
cated that the application would be “flagged” to allow for follow up on
bond information. This implies that some datum will be stored some-
where indicating this flag. There was no such datum declared in the use
case Data Source Field List–an omission. Errors such as this, if left un-
detected, would result in the online system not working as intended. The
use of the PDL helped discover this omission.

We observed other irregularities, which, though related, were slightly
more complex. In another exception flow for this same process, the use
case indicated that the bond expiration to be checked can be found on
the original application and may have been updated if a letter was re-
ceived from the bond company. However, the use case does not provide
a datum for the expiration date, the bond, or the original application.
The use case makes no provision for obtaining this needed information.

There were also cases in which the use case failed to clarify what in-
formation was needed to complete a step. For example, in the Auction-
eer Renewal process, the Basic Flow section did not specify which data
needed to be saved at the end of the process. In short, the precision of the
Little-JIL PDL forces the analyst to clearly define what input artifacts

Osterweil et al. 77



are required for the completion of each step, what output artifacts each
step produces, and how the artifacts flow among steps. This additional
rigor helped us detect artifact flow inconsistencies that went unnoticed
in the natural language articulation of these processes and once again, if
these were left undetected, the resulting e-government system would
not be fully functional.

At this juncture, the reader may be wondering why these errors were
identified using the PDL and not through the use of the use case descrip-
tions? Or, could these have been simply poorly written use cases? We
will address these issues in the next section, after we discuss our other
results–identification of additional reuse opportunities.

In addition to the detection of process description defects, the use of the
PDL improved our ability to recognize commonalities or reuse opportuni-
ties between the nineteen license renewal variants. When reviewing the
natural language descriptions of processes, finding commonalities and
abstracting the commonalities to a higher level was inefficient and diffi-
cult. Missing these commonalities could result in errors and inconsis-
tencies between processes and missed opportunities to apply the same
logic in two or more license renewal variants. The abstraction capability
in the Little-JIL PDL was particularly helpful in identifying these com-
monalities. It assisted the human analysts to identify logical clusters of
related process steps and then group these steps together as an abstrac-
tion, denoted by a higher-level step. This higher-level abstraction made
it easier to identify where else this abstraction could be used.

Table 2 provides one example of the reuse opportunities we discov-
ered in the use case text. Note that the natural language descriptions for
the two separate license renewal processes existed in sixteen pages of
natural language text. It would not be very easy to discover these simi-
larities in that representation of the processes. In the Little-JIL descrip-
tion, this step was represented by a step name “Gather Applicant
Information” for both processes. This level of step aggregation or ab-
straction made it easy for our team of analysts (inspectors) to identify
these reusable components between applications.

DISCUSSION

Our Mass.gov experience provides empirical support for our main
hypothesis: The rigor and precision of a PDL helps ensure that pro-
cesses are defined more thoroughly and precisely, facilitating the iden-
tification of errors and inconsistencies in natural language-based

78 JOURNAL OF E-GOVERNMENT



process definitions. There are several reasons why we were able to de-
tect problems in our inspections of Mass.gov use case descriptions us-
ing Little-JIL and why these were difficult to detect in the use case
descriptions.

First, the PDL is particularly amenable to rigorous and definitive
analysis or inspection. Little-JIL’s carefully defined syntax badges (in-
cluding pre- and postrequisites, control flows, interfaces, exceptions,
reactions and handlers) provide precision to the documentation of pro-
cesses. Moreover, the PDL requires the specification of agents and ex-
ceptions as part of every step, which therefore encouraged us to think
about just who was responsible for executing each step, and what might
go wrong at each step. In short, the formal requirements of the PDL
forced the analysts to think more carefully about components such as
agents and exceptions. Natural language-based tools such as use cases
did not have such formal requirements and therefore it is all too easy to
overlook a missing agent. It was not uncommon for us to find that pro-
cess components like agents, exceptions, and others listed above had
not previously been considered in the natural language descriptions of

Osterweil et al. 79

TABLE 2. An Example of a Reuse Finding (Use case text provided by Massa-
chusetts Office of Consumer Affairs)

Step 4 of “Process Retail License Renewal–Licensee” (use case natural language)

The user is asked to complete the following Applicant Information. Note: This
information appears in the signature area of the current application.

a. Name of signatory

b. Date

c. Telephone number

d. Social Security number (if individual) OR federal ID number (if corporation)

The user completes the information in the area provided.

Step 9 of “Process Out of State Certificate of Compliance Renewal”

The user is asked to complete the following Applicant Information. Note: This
information appears in the signature area of the current application.

a. Social Security number (if individual) or federal ID number (if corporation)

b. Individual’s name (if individual)

c. Corporate officer name (if corporation)

d. Business mailing address

e. Date

The user completes the information in the area provided.



the processes, not because the use cases were poorly written, but be-
cause the use case methodology does not provide nagging requirements
to remind the analyst to include these details. The PDL descriptions
were more complete, more accurate, and better understood than their
natural language counterparts.

Second, as we have stated, use cases focus on the end-user view of
the world, and do not pay as much attention to how things get done in
the process, and parts of the process that are not visible to the user. This
can lead to arbitrary choices of agents to perform activities that are not
clearly visible to the user. The PDL formalism requires that all activities
be specified and thought-through. Activities (especially “hidden” activ-
ities) that are common to more than one use case will, in the PDL defini-
tion, receive one agent, thereby avoiding these difficulties found in use
case descriptions.

Third, Little-JIL’s visual or graphical nature helped to construct a
clear, readable, and understandable structure for processes we analyzed.
The hierarchical structure of the language helped clarify which excep-
tions are handled, at which places and in which ways. This makes it
more straightforward for human analysts to review such process defini-
tions to assure that necessary exceptional conditions are handled prop-
erly. While it takes some initial effort to learn the language semantics,
our experience has been that the level of effort is modest, and once the
analyst does this he or she can quite readily understand the structure of
processes and make indicated adjustments quickly and surely.

Fourth, because the language is broadly applicable and expressive,
we were able to easily apply it to all nineteen license renewal processes.
In fact, the components of Little-JIL are capable of describing most
imaginable processes (online or offline).

In addition to the analyzability property, our experiences with the
Commonwealth of Massachusetts analysis supported our contention
that PDLs are particularly effective in supporting reuse. Here again, the
support of abstraction through the hierarchical structure of the language
is most useful and important. During the activities directed towards
identification of the principal parts of the license renewal process, we
were struck by the fact that activities such as the checking of credentials
and application details appeared to take place at different times. Having
once defined these activities as process steps, we questioned whether
their occurrences at subsequent times were no more than repetitions of
the earlier activities, just in different contexts. This led the Little-JIL an-
alysts to make significant reuse of process steps. We do not mean to im-
ply that analysts working with natural language descriptions could not

80 JOURNAL OF E-GOVERNMENT



discover reuse capabilities. But, in this experience, we identified several
instances where the reuse opportunities were not recognized during the
use case development process. The graphical and abstract descriptions
of the PDL made it easier for us to identify these opportunities.

This reuse capacity of Little-JIL, and PDLs more generally, will have
efficiency benefits in e-government applications and in the implemen-
tation of government processes in general. For example, U.S. states pro-
cess many different types of licenses, but the renewal structure is often
similar between them. Analysts can start with the generic structure of a
process that over time has proven itself to be secure; and, if documented
in a PDL, analysts could then easily copy the process structure and
apply it in other relevant contexts.

Until now, our discussion about the utility of and our experience with
PDLs has been generally positive. But readers might be asking several
questions: First, why couldn’t the errors detected through the use of
PDLs also be detected using more traditional methods, such as through
rigorous testing? Second, what are the downsides to using a PDL? Let
us address both of these questions.

It is possible that the errors we caught could have been detected
through a close examination of the natural language or in future testing
of the e-government application. However, in a classical observation,
Dijkstra (1972) once said that testing can demonstrate the presence of
errors in computer programs, but is hopelessly inadequate for showing
the absence of errors. Indeed, the absence of errors could only be shown
by executing, and studying, a completely exhaustive set of test cases for
a piece of software. But even small, straightforward pieces of software
can have myriads of possible execution paths, when considering (as is
necessary) all possible logic flows and input values. Thus, totally ex-
haustive testing is not a feasible possibility. This explains why so many
errors in application software are encountered by end users. Conse-
quently, people in the disciplines of computer science and software en-
gineering have advocated the use of “static analyzers” to complement
testing approaches, and to demonstrate the absence of certain classes
of errors. This capability for demonstrating the absence of errors
seems to us to be of great importance in assuring the quality and reli-
ability of e-government processes. Static analyzers rely on docu-
mented models of processes they are to analyze, and their accuracy
in diagnosing errors (or proving their absence) is dependent on the
accuracy, precision, correctness, and completeness of the models
upon which they work. Thus, natural language is an unacceptable
medium for the definition of models that are subjected to static anal-

Osterweil et al. 81



ysis. PDLs open up the possibility of detecting defects in processes
without the need for exhaustive testing, which is in many cases practi-
cally impossible anyway.

Let us turn to the second question that readers might be asking: What
are the downsides of Little-JIL and PDLs, in general? Like many lan-
guages, Little-JIL is relatively complex and powerful, and consequently
it requires some substantial upfront costs and effort to learn how to use
it effectively. Our experience with it shows that the subtle attributes of
the language make it easy for the analyst to make mistakes, particularly
in the early stages of using it. In addition, the Little-JIL end-user inter-
face software is still primitive and hard to use. This leads us to the most
important limitation of PDLs in general: the field is still in its infancy,
and much of the available PDL work is still in prototype form. Beyond
what is reported in this paper, there is growing evidence that PDLs can
be quite effective in defining processes–especially complicated ones
(Cass and Osterweil, 2004; Ellison et al., 2004). But much remains to be
done to determine just what these process description languages should
look like and what supporting end-user tools are needed to make them
more intuitive and easy to use.

CONCLUDING COMMENTS AND A LOOK TO THE FUTURE

E-government developers need to clearly and precisely define the pro-
cesses they are automating. In this paper we argued that there is a spectrum
of process definition approaches, from more readily comprehensible (by
humans, not computers) approaches such as data flow diagrams and
workflow descriptions to more formal and precise approaches we call
Process Definition Languages. We argued that the qualities PDLs pro-
vide–rigor, precision and clarity through the use of graphics and ab-
straction–improve the chances that human analysts or inspectors will
more thoroughly articulate a process or identify errors or omissions in
process logic than when processes are articulated in natural language.
We presented an example of one such PDL called “Little-JIL” and de-
scribed how this PDL helped us identify errors and omissions in natural
language descriptions of license renewal processes during the develop-
ment of the Commonwealth of Massachusetts’ e-government portal.
The PDL application also helped us identify opportunities for process
reuse that were not originally detected in standard use case descriptions
of the same processes.

82 JOURNAL OF E-GOVERNMENT



But the analytic benefits we have shown here related to human in-
spectors using PDLs are only scratching the surface compared to the po-
tential benefits PDLs could provide in the future as these technologies
advance. In the Mass.gov case, our team of human analysts discov-
ered errors, omissions and reuse opportunities in the use case de-
scriptions because the Little-JIL PDL forced them to be rigorous and
precise in their definition of the processes. Still, human inspection
cannot prove definitively (as in a mathematical proof) that a process
definition is error free, which is where the future of PDLs and pro-
cess description in e-government, and in public administration in
general, lies.

Software engineers have developed automated (computer software)
approaches to analyzing software logic for defects. Osterweil (1987)
makes the argument that organizational processes are one type of soft-
ware. They exhibit logic, structure, dataflows, and modules (subtasks)
just like computer software, but tend to reside in the minds of humans
rather than in the hard disks of computers. Consequently, automated
analysis techniques developed in the field of software engineering to
detect software defects could be applied to the analysis of process de-
scriptions. This is where the field of PDLs is now moving. It has impor-
tant implications for the quality of future e-government processes, and
has broader implications for the analysis of manual processes that need
high levels of assurance that they are defect-free (such as processes re-
lated to homeland security). But just how might future analysis of
public administration processes be done?

In the field of software engineering, there are two main types of auto-
mated software analysis approaches, static and dynamic, that can be ap-
plied to the analysis of online or offline processes (or a combination of
the two) described in a PDL. The most elementary automated static ana-
lyzers are rule-checkers, namely computer programs that can detect de-
fects predefined in process logic. Generic rules to be checked might
include, for example, the verification that all inputs needed for a step in
a process are defined in some previous step, or the identification of step
outputs (e.g., a report) that are never used in later stages of the process.
Analyzers that are effective in detecting these kinds of situations may
identify processes that are incomplete, flawed, or produce unneeded
and unwanted process outputs. Thus, rule-checking static analysis
could contribute to increased e-government and manual process trust-
worthiness through defect removal or identification of products that are
never again used.

Osterweil et al. 83



Another area where rule-checking could be applied is in the comparison
of processes that are intended to mirror one another. This is an important el-
ement of e-government application development, where in many or most
cases online processes should be identical to the over-the-counter version
of that same transaction process. Indeed, in most settings, because of digital
divide issues, e-government will not entirely replace over-the-counter pro-
cessing. Therefore, an important concern of public administrators will be
whether online and offline processes follow the same logic. If online and
offline processes are articulated precisely in a PDL, the opportunity exists
for the analyst to apply a static analysis program that would look to ensure
that the two processes are indeed identical or to reveal where differences
exist. These kinds of “difference” tools are common in the field of software
development. There is no reason why they cannot be applied to the study of
organizational processes.

Finite state verification (FSV) is a more sophisticated automated
static analysis approach. FSV provides analysts with the ability to de-
fine customized rules to be checked (e.g., defining a rule to check for
prior authorization before moving to the next process step). It also pro-
vides automated tools to scan process sequences for violations of these
custom properties. FSV tools can therefore locate troublesome execu-
tion sequences, or, more importantly, prove that a process definition is
completely free of such sequences.

While automated static checkers provide powerful validations of
processes that should greatly enhance our ability to create error-free
e-government applications, some stakeholder doubt could remain,
particularly in processes handling sensitive data or ones needing
high levels of security. Dynamic analysis can help here, as a tech-
nique for monitoring ongoing process execution. PDL process repre-
sentations allow the analyst to specify where and when monitoring
information is to be generated. During process execution, PDLs can
produce audit-trail information for review by humans or computer
programs external to the process. These audits can be conducted ei-
ther in real-time, or post-execution, to detect rule violations. Real-time
detection could lead to on-the-spot correction. Post-facto execution
could trigger compensatory efforts. Both would lead to increased qual-
ity in e-government applications.

In short, the analytic benefits of PDLs demonstrated in this study
provide an initial demonstration of some of the benefits PDLs could
offer to public administrators and e-government developers in the fu-
ture. Many other analytic benefits are coming as PDLs advance. But
for public organizations to move to this next level of process analysis

84 JOURNAL OF E-GOVERNMENT



and error detection, the first step is to move government organizations
toward more formal and rigorous process definitions of e-government
(and offline) processes. This paper introduced PDLs to public admin-
istration theorists, practitioners, e-government developers, and other
stakeholders to encourage their future use and deployment.

Received: 05/15/04
Revised: 09/19/04

Accepted: 11/05/04

ACKNOWLEDGMENTS

This material is based upon work supported by funds from the Commonwealth of
Massachusetts’ Information Technology Division and the National Science Foundation
under Grant No. EIA-223599. The authors would like to thank Val Asbedian, Tim Healy
and Tom Price for supporting and helping supervise the work from the Government side,
Matt Billmers and Joel Sieh for their modeling efforts, and Sandy Wise, the lead devel-
oper of Little-JIL, for his continuing support and production of figures. The authors also
thank three anonymous reviewers for extremely helpful comments on an earlier draft.

Any opinions, findings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views of the Commonwealth
of Massachusetts or the National Science Foundation.

NOTES

1. In the interest of brevity, we do not present a complete example of a use case.
Many of the use cases we analyzed were over 10 pages in length. Describing the use
case approach would have added significantly to the length of this paper. Interested
readers on the use case approach are encouraged to review Cockburn (2001) or Schnei-
der and Winters (2001).

2. It is still true that data flow diagrams and workflows also try to get at this issue of
how results are to be obtained. But we have already pointed out that, insofar as they of-
fer the same semantics as process languages, we will consider them to be process lan-
guages. Most data flow diagrams and workflows, however, have weaker semantics that
do not enable them to capture important details and nuances that can have a major im-
pact upon whether or not a process is done correctly–even in non-nominal cases.

REFERENCES

Aho, A. V., Hopcroft, J. E. & Ullman, J. D. (1983). Data structures and algorithms.
Reading, MA: Addison-Wesley.

Bandinelli, S. & Fuggetta, A. (1993). Computational reflection in software process
modeling: the SLANG Approach. Proceedings of the Fifteenth International Con-
ference on Software Engineering. Baltimore, MD. 144-154.

Osterweil et al. 85



Bandinelli, S., Fuggetta, A. & Grigolli, S. (1993). Process modeling in-the-large with
SLANG. Proceedings of the Second International Conference on the Software Pro-
cess. Berlin, Germany: IEEE Computer Society Press.

Belkhatir, N., Estublier, J. & Walcelio, M. L. (1991). Adele 2: A support to large soft-
ware development process. Proceedings of the First International Conference on
the Software Process. Redondo Beach, CA. IEEE, New York, 159-170.

Belkhatir, N., Estublier, J. & Walcelio, M. L. (1993). Software process model and
workspace control in the Adele system. Second International Conference on the
Software Process. New York, 75-83.

Belkhatir, N., Estublier, J., & Walcelio, M. L. (1994). ADELE-TEMPO: An environ-
ment to support process modeling and enactment. In A. Finkelstein, J. Kramer and
B. Nuseibeh (Eds.) Software process modeling and technology (pp. 187-222). New
York, NY: John Wiley & Sons Inc.

Cass, A. G. & Osterweil, L. J. (2000). Design guidance through the controlled applica-
tion of constraints. Proceedings of the 10th International Workshop in Software
Specification and Design (IWSSD 10), 195-199. Retrieved August 8, 2004, from
http://laser.cs.umass.edu/techreports/00-67.pdf.

Cass, A. G. & Osterweil, L. J. (2004). Process support to improve novice software de-
signer performance. Technical Report UM-CS-2004-080. University of Massachu-
setts: Department of Computer Science.

Cobleigh, J. M., Clarke, L. A. & Osterweil, L. J. (2000). Verifying properties of pro-
cess definitions. Proceedings of the ACM Sigsoft 2000 International Symposium on
Software Testing and Analysis (ISSTA) 2000, Portland, OR, 96-101. Retrieved Au-
gust 8, 2004, from http://laser.cs.umass.edu/techreports/00-65.pdf.

Cockburn, A. (2001). Writing effective use cases. Reading, MA: Addison-Wesley.
Dennis, A., Wixom, B. H. & Tegarden, D. (2002). Systems analysis and design: An ob-

ject-oriented approach with UML. Hoboken, NJ: John Wiley and Sons.
Dijkstra, E. W. (1972). The humble programmer. Communications of the ACM, 15 10,

859-866.
Ellison, A. M., Osterweil, L. J., Hadley, J. L., Wise, A., Boose, E., Clarke, L., Foster,

D. R., Hanson, A., Jensen, D., Kuzeja, P., Riseman, E. & Schultz, H. (2004). An an-
alytic web to support the analysis and synthesis of ecological data. Technical Report
UM-CS-2004-080. University of Massachusetts: Department of Computer Science.

Estublier, J. A. (1985). Configuration manager: The Adele data base of programs.
Workshop on Software Engineering Environments for Programming-in-the-Large.
Harwichport, MA.

Heineman, G. T., Kaiser, G. E., Barghouti, N. S., & Ben-Shaul, I. Z. (1992). Rule
chaining in Marvel: Dynamic binding of parameters. IEEE Expert. 7 6, 26-32.

Ho, A. T. (2002). Reinventing local governments and the e-government initiative. Pub-
lic administration review, 62 4, 434-444.

Hoffman, D. M. & Weiss, D. M. (Eds.). (2001). Software fundamentals: Collected pa-
pers by David L. Parnas. Boston, MA: Addison Wesley.

Kaiser, G., Barghouti, N. S., & Sokolsky, M. H. (1990). Experience with process model-
ing in the MARVEL software development Environment kernel. Proceedings of the
23rd Annual Hawaii International Conference on System Sciences. 1990. Kona, HI.

86 JOURNAL OF E-GOVERNMENT

http://laser.cs.umass.edu/techreports/00-67.pdf
http://laser.cs.umass.edu/techreports/00-65.pdf


La Porte, T. R. & Thomas, C. W. (1995). Regulatory compliance and the ethos of qual-
ity enhancement: Surprises in nuclear power plant operations. Journal of Public Ad-
ministration Research and Theory, 5, 109-137.

Moon, M. J. (2002). The evolution of e-government among municipalities: Rhetoric or
reality? Public Administration Review, 62 4, 424-433.

Osterweil, L. J. (1987). Software processes are software too. Proceedings of the 9th In-
ternational Conference on Software Engineering, 2-13.

Schneider, G. & Winters, J. (2001). Applying use cases: A practical guide. Addison-
Wesley: New York.

Seville European Council. (2002). eEurope 2005: An information society for all. An
action plan adopted by the Seville european council. Retrieved May 18, 2004, from
http://europa.eu.int/information_society/eeurope/news_library/eeurope2005/index_
en.htm.

Sondheimer, N. K., Osterweil, L. J., Schweik, C. M., Billmers, M., Canavan, D., Kelly,
A., Lee-Davis, C., Li, C. & Sieh, J. (2002). Online license renewal analysis: Pro-
cess modeling and state practice review final report. Amherst, MA: Electronic En-
terprise Institute and the Center for Public Policy and Administration.

Szyperski, C. (2002). Component software: Beyond object-oriented programming.
Addison-Wesley: New York.

Tufte, E. R. (2001). The visual display of quantitative information. Cheshire, CT:
Graphics Press.

Weber, M. (1946). Bureaucracy. In H. H. Gerth & C. W. Mills (Eds.), From Max
Weber: Essays in sociology (196-244). New York: Oxford University Press.

West, D. (2002a). State and federal e-government in the United States, 2002. Retrieved
January 24, 2004, from http://www.insidepolitics.org/Egovt02us.html.

West, D. (2002b). Urban e-government, 2002. Retrieved from http://www.insidepolitics.
org/egovt02city.html.

Wise, A. (1998). Little-JIL 1.0 Language Report. Amherst, MA: University of Massa-
chusetts, Department of Computer Science.

Osterweil et al. 87

http://europa.eu.int/information_society/eeurope/news_library/eeurope2005/index_
http://www.insidepolitics.org/Egovt02us.html
http://www.insidepolitics

