Concurrency Analysis Using Reachability Graphs, Temporal Logic and Model Checking

Computer Science 521-621
Fall 2011
Prof. L. J. Osterweil

Material adapted from slides originally prepared by Prof. L. A. Clarke

Static Flow Analysis Architecture
Model Checking: Overview

- System represented as a (possibly “abstracted”) reachability graph
 - State based=>show the values of all the “relevant” variables
- Properties often expressed in a temporal logic
- Reasoning engine propagates valid subformulas through the graph
Model Checking Approach

Power and Value of These Approaches is Best Seen When Applied to Concurrent Systems

- Concurrent software is much harder, more complicated
- Requires very powerful analysis
- Model checking and DFA shine in this domain
Concurrent systems are complex

• Non-determinism means that
 – the same inputs might produce different outputs on different executions
 – When reasoning about a system there are numerous alternatives to consider
 • Usually more than a human can reasonably consider

• In addition to the problems that can arise with sequential programs, have problems that are unique to concurrent systems
 – Data access problems
 – Synchronization problems

Data Access Anomalies

• Typically you want mutual exclusion
 – shared resource (e.g., data) that should only have a single access at a time
 – e.g., don’t want two travel agents assigning the last seat on a plane

• Typically you don’t want race conditions
 – order of execution affects results
 – undesirable nondeterminism

\[
\begin{align*}
task A & : x := x + 1; \\
& : write x; \\
task B & : x := x - 1; \\
& : write x; \\
\end{align*}
\]

if initially \(x = 5\), then could output \((6, 5), (4, 5), \) or \((5, 5)\)
Interleaved Model of Execution; Examples

```
<table>
<thead>
<tr>
<th>task A</th>
<th>task B</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := x + 1;</td>
<td>x := x - 1;</td>
</tr>
<tr>
<td>write x;</td>
<td>write x;</td>
</tr>
<tr>
<td>task B</td>
<td>task A</td>
</tr>
<tr>
<td>x := x - 1;</td>
<td>x := x + 1;</td>
</tr>
<tr>
<td>write x;</td>
<td>write x;</td>
</tr>
</tbody>
</table>
```

Infinite wait anomalies (continued)

- **Deadlock**
 - set of tasks mutually waiting on each other; none can advance
 - Often tasks hold resources that other tasks need
 - Also called, deadly embrace

- **Livelock**
 - execution does not come to a standstill but none of the tasks can advance

dining philosophers problem
Reachability-based Model Checking: some history

- Originally proposed for hardware
- **Early 80’s**: E. Clarke and Emerson; Quielle and Sifakis
- **Late 80’s**: Improved algorithms and property notations (E. Clarke, Emerson, Sistla)
- **90’s**: Symbolic Model Checking (SMV) and other optimizations (Burch, E. Clarke, Dill, Long, and McMillan)
- **Current**: Hybrid approaches that combine model checking with
 - Theorem proving techniques
 - Symbolic execution
 - Optimization techniques (e.g., points to analysis)

Reachability Graph

- **Models state space**
 - Each node represents a possible state in a distributed system
 - States represent the value of all the variables
 - For concurrent systems, this includes the program counter for each task
 - If we only consider the value of the program counter for each task then each state is a vector where the ith element is the current program counter of the ith task
 - `<pc_1,i; pc_2,i; ...pc_r,i>`
 - Coarse-grained representation of a RG; doesn’t consider values of variables
 - More powerful analysis requires more complete and detailed state vector
Reachability Graph

- Typically, each edge represents progress in a single task
 - Multiple concurrent events may be possible, but allowing only single events captures all states and simplifies the graph structure (interleaved execution model)
- Only have multiple tasks progress when required by the semantics of the programming construct
 - E.g., rendezvous
- Only contains states that are potentially reachable from the start state

Reachability Graph Example

Task control flow graphs

- **T1**
 - `b1`: begin
 - `q`: T2.Q
 - `e1`: end

- **T2**
 - `b2`: begin
 - `q'`: Accept Q
 - `e2`: end

Reachability graph

- `b1`, `b2`, `q`, `q'`, `e1`, `e2`
Reachability Graph Example (clarified)

Reachability graph

b_q means that a task is blocked at q
r(q, q’) means that the rendezvous between q and q’ occurs

Use a worklist to build the reachability graph

Worklist: <b1,b2> <b_q,b2> <b1,b_q’> <r(q,q’)>
Useful in determining possible/impossible synchronizations

Identifies two possible synchronizations

But this is “precise up to symbolic execution”
This is a bit harder

Also identifies deadlocks
Analysis of the reachability graph

• State based (what we have just seen)
 – Look at states of individual nodes
 • E.g., deadlock
• (sub)Path based
 – Look at states of sequences of nodes
 – Can do GEN, KILL, IN, OUT, etc.

Comparison of DFA and Model Checking

• Both base analysis of possible “state” at all nodes
• Model Checking usually starts by assuming a more detailed “state” (e.g. values of key variables)
 – Locks for concurrent systems
 – Test predicates for sequential systems
• Propagation can then filter out infeasible paths
• DFA “state” is usually set of states of property automaton
 – Infeasible path filtering added on as needed
Reachability analysis is inherently exponential

- Size of the reachability graph is (worst case) exponential in the number of tasks
 - N nodes per task, T tasks
 worst case bound on the size of the graph:
 N^T nodes in the reachability graph
- Data flow analysis is often quadratic in the size of the graph
 - $(NT)^2$

Properties in Model Checking
Usually Defined in Temporal Logic

- Considerable expressive power and elegance
 - Can express “live”, “forward dominator”, etc.
- Uses special “temporal” predicates to make it easier to describe “future” states
 - i.e. states that are true about the rest of an execution
- Annotate nodes with specifications of the state of affairs that holds at each node
- Propagate this state information (usually backwards) as temporal predicates
Temporal Logic

• Temporal quantifiers
 • Assume p, q are atomic propositions
 – Gp - p is globally true or always true
 – Fp - p holds sometime in the future or eventually
 – Xp - p holds in the next state
 – $p U q$ - p holds until q holds
 – $p R q$ - q is released from having to be true if p is true

• Path quantifiers
 – A, E

Temporal Logic

• Temporal operators
 – G - globally
 – F - future
 – X - next
 – U - until
 – R - release

 Path quantifiers
 – A - for all paths
 – E - for some path

• Some Examples:
 – $AG p$ means that for all paths from this state, p is true and will remain true
 – $EF p$ means that for some path from this state, p will eventually be true
Examples of Temporal Propositions That are True at the Root

AG p

AF p

EG p

EF p

More Examples

A(pUq)

AX p

E(pUq)

EX p
More examples

\[p \land R \land q - q \text{ is released from being true if } p \text{ is true} \]

(p is not required to become true)

\[A(p \land R \land q) \quad E(p \land R \land q) \]

Assigning propositions to nodes

- Mark nodes with propositions that are true at that node
- Each type of expression has a rule for how to propagate that expression through the graph
 - E.g., Mark a node with AXp (EXp) if for all (some) of its successors p is true
Some Examples of More Familiar Propositions

• \(p \equiv \) The variable \(X \) is used
 – Nice to know \(\text{EF}p \) at a node where \(P \) is defined
 – Better if \(\text{AF}p \)
• \(q \equiv \) Move elevator
 – Nice to know \(\neg \text{EG}q \) at nodes where elevator door opens
 – Sharper to know that at the root
 \(\text{AG}(q \rightarrow s) \) where \(s \equiv \) door is closed

Propagating Propositions: \(\text{AX}p \) and \(\text{EX}p \)

\(Xp \) - in the next state, \(p \) is true

Consider \(\text{AX} \ p \)

Consider \(\text{EX} \ p \)

Only need to look at the successors of the node of interest
Propagating Propositions: AFp

Fp - at some time in the future, p is true

To propagate AF p:
Mark nodes where p is true with AF p
If all of a node’s successors are marked with AF p, mark that node
Repeat Step 2 until a fixed point is reached

Propagating Propositions: EFp

Fp - at some time in the future, p is true

To propagate EF p:
Mark nodes where p is true with EF p
If at least one of a node’s successors are marked with EF p, mark that node
Repeat Step 2 until a fixed point is reached
Propagating Propositions

G p - globally in the future, p is true

• “Globally in the future” talks about paths that can be of infinite length
• Need to identify strongly connected components (SCCs) in the graph
 – A subset of the graph in which every node is reachable from every other node in the subset
 – Can be computed in time linear to the size of the graph [Tarjan 1972]

To propagate AG p:

Identify SCCs
If p is true on every node in a SCC, mark every node in that SCC with AG p
If p is true on a node and all of its successors are marked with AG p, mark that node
Repeat Step 3 until a fixed point is reached
Propagating Propositions

G p - globally in the future, p is true

To propagate EG p:
- Mark every node in a cycle where p is true on every node in that cycle with EG p
- If p is true on a node and at least one of its successors are marked with EG p, mark that node
- Repeat Step 2 until a fixed point is reached

Mutual Exclusion Example

- Need a reachability graph that shows the states (i.e., the values) of the relevant variables to support reasoning about mutual exclusion between two processes
 - process 1 can be null, trying to obtain the lock, or in its critical region (n1, t1, c1)
 - process 2 can be null, trying to obtain the lock, or in its critical region (n2, t2, c2)
 - turn is a variable that indicates which process can obtain the lock (0,1,2)
Example: mutual exclusion protocol [McMillan]

\[\text{process1} = n_1,t_1,c_1 \]
\[\text{process2} = n_2,t_2,c_2 \]
\[\text{turn} = 0,1,2 \)

Example Property

- \(\text{AG}(t_1 \rightarrow \text{AF} c_1) \)
 - If process1 tries to get the lock (t1) then eventually it gets into its critical region (c1)

- Subformulas
 - \(\text{AF} c_1 \)
 - \(t_1 \rightarrow \text{AF} c_1 \)
 - \(\text{AG}(t_1 \rightarrow \text{AF} c_1) \)

- Note, would like to prove this for all processes (e.g. for process 2 as well) but FSV approaches usually must instantiate a fixed configuration of the system (and property)
Example: propagation

\[AG(t_1 \rightarrow AF c_1) \]

\((process1, process2, turn) \)

Need to continue propagating

- \[AG(t_1 \rightarrow AF c_1) \]
- \((t_1 \rightarrow AF c_1) \)
 - equivalent to \(\neg t_1 \lor AF c_1 \)
Example: propagation

$AG(t_1 \rightarrow AF\ c_1) = AG(\neg t_1 \lor AF\ c_1)$

Example: propagation

$AG(t_1 \rightarrow AF\ c_1)$

(process1, process2, turn)
Example: propagation

Property holds in the initial node, therefore it holds for the model

AG(t1→AF c1)

Formula Propagation

• Propagate until no change
 – propagate from smaller to larger subformulas
 – Actually keep all the formulas associated with a node

\[
\text{AF c1, t1→AF c1, AG(t1→AF c1)}
\]

• “smart” algorithm: linear in the size of model and size of the formula
 – But, model is exponential
 – Many optimization techniques
 • Symbolic model checking
Controlling Complexity of Reachability Analysis

• Don’t consider all interleavings of events, only consider “representative” interleavings
 – Valmari, Godefroid, Wolper, McDowell
• Use compositional techniques
 – Analyze reachable states of portions of the model and summarize
• Still have exponential worst-case upper bound

Summary of Reachability Analysis

• Reachability analysis is intuitively appealing, but difficult to implement efficiently (sub-exponentially)
• Techniques exist to control state explosion, but they still carry an exponential upper bound
 – I.e., May be practical on some problems
Some observations: Model Checking

• Worst case bound linear in size of the model
 – Model exponential
 – Symbolic model checking encodes Boolean expressions and usually reduces the size of the model

• Experimentally often very effective!
 – Used to verify hardware and designs
 – Trying to develop appropriate abstractions to make it applicable to software systems

A quick look at three approaches to FSV

• Reachability-based Model Checking
• Flow Equations
• Data Flow Analysis
 – FLAVERS
Some Observations: Data Flow Analysis

- Overall complexity is $O(N^2S)$
 - N is the # nodes in the model
 - S is the number of states: property x constraints
 - More precisely

 \[O(N_G^2 \cdot S \cdot S_{C1} \cdots S_{Cn}) \]
 - In our experience, many important properties can be proven with a small number of constraints
 - Experimentally: performance sub-cubic
 - Usually requires several iterations to determine needed constraints
 - Constraints
 - Many automatically generated on request

High-Level Architecture of FSV Systems
Data Flow Based Verification: some history

• Mid-70’s: Originally proposed for def-ref anomalies in FORTRAN (Osterweil and Fosdick)
• Early 80’s: Extended to general properties (Olender and Osterweil) & concurrency (Taylor and Osterweil)
• 90’s: Deadlock detection (Masticola and Ryder); Efficient representation of concurrency & incremental precision improvement (Dwyer and Clarke)
• Recent: Optimizations, Java (Avrunin, Clarke, Cobleigh, Naumovich, and Osterweil)

Data Flow Analysis: FLAVERS

• Flow Analysis for VERification of Systems
• Represents property as a finite-state automaton
• Reasoning engine based on data-flow analysis
• Relatively efficient because of the system model
 – collection of annotated control flow graphs
 – intertask communication and interleavings are represented with additional nodes & edges
 – does not enumerate all reachable states
• over-approximates relevant executable behaviors
 – Uses constraints to selectively improve precision of the model