Reachability Graphs

Reading Assignment

Analyzing Concurrent & Distributed Systems

- Dynamic analysis approaches
 - Monitor and replay
 - Coverage criteria
 - Specification-based evaluation
 - FSAs and QREs
 - Temporal Logics
- Static analysis approaches

Static analysis approaches for concurrent & distributed systems

- Reachability graphs and reachability analysis
 - Petri nets and Petri net based analysis
 - CFGs and CFG based analysis
- Finite State Verification
 - Model checking
 - Flow equations
 - Dataflow analysis
Reachability Graph

- models state space
 - Each node represents a possible state in a distributed system
 - States represent the value of all the variables, including the program counter for each task
 - If we only consider the value of the program counter for each task then each state is a vector where the ith element is the current program counter of the ith task
 - \(<\text{pc}_{1,i}; \text{pc}_{2,j}; \ldots \text{pc}_{r,l}> \)
 - Coarse-grained representation of a RG; doesn't consider values of variables

Reachability Graph

- Typically, each edge represents progress in a single task
 - Multiple concurrent events may be possible, but allowing only single events captures all states and simplifies the graph structure (interleaved execution model)
- Only have multiple tasks progress when required by the semantics of the programming construct
 - E.g., rendezvous
- Only contains states that are potentially reachable from the start state
Reachability Graph Example

Task Control Flow Graphs

- **T1**
 - `b1`: begin
 - `q`: T2.Q
 - `e1`: end

- **T2**
 - `b2`: begin
 - `q`: Accept Q
 - `e2`: end

Reachability Graph

- `b1, b2`
- `q, b2`
- `b1, q'`
- `q, q'`
- `e1, q'`
- `q, e2`
- `e1, e2`

Reachability Graph Example (clarified)

Task Control Flow Graphs

- **T1**
 - `b1`: begin
 - `q`: T2.Q
 - `e1`: end

- **T2**
 - `b2`: begin
 - `q`: Accept Q
 - `e2`: end

Reachability Graph

- `b_q, b2`
- `b1, b_q'`
- `r(q, q')`
- `e1, q'`
- `q, e2`
- `e1, e2`

Annotations

- `b_q` means that a task is blocked at `q`
- `r(q, q')` means that the rendezvous between `q` and `q'` occurs

- Need to distinguish before a rendezvous from after a rendezvous.
Alternative: Show both tasks blocked before a rendezvous

```
+----------+----------+
| b_q, b2  | b1, b_q' |
| r(q, q') | b_q, b2  |
+----------+----------+
| b_q, b2  | b1, b_q' |
| b_q, b2  | r(q, q') |
```

Use a worklist to build the reachability graph

Task control flow graphs

- **T1**
 - `e1` begin
 - `q`
 - T2.Q
 - `q`
 - `e2` end

- **T2**
 - `e2` begin
 - `q`
 - Accept Q
 - `q`
 - `e2` end

Reachability graph

- `b1, b2`
- `b_q, b2`
- `b1, b_q'`
- `r(q, q')`
- `e1, q'`
- `q, e2`
- `e1, e2`

Worklist: `<b1, b2><b_q, b2><b1, b_q'><r(q, q')><e1, q'><q, e2><e1, e2>"
Infeasible synchronizations

precise up to symbolic execution
Another example

 synchronizations

Another example

 deadlock
Analysis of the reachability graph

- **State based**
 - Look at individual nodes
 - E.g., deadlock
 - (sub)Path based
 - Sequences of states

State based analysis

- Check some characteristic of each reachable state
 - E.g., deadlock, race conditions
 - E.g., can a reader be reading and a writer writing at the same time?
- To solve, examine each state in graph for the characteristic
State based analysis

Usually ref/def info represented via bit vectors for each node:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>w</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Path based analysis

- Checking characteristics of sequences of events in the reachability graph
 - Examples:
 - Must always write at least once before reading
 - Is it not possible to have a consumer consume before a producer produces?
 - To solve, we examine all paths in the graph for the sequence
 - Number of paths may be infinite
 - Can use dataflow state propagation to check path based properties
 - Creates equivalence classes of nodes with respect to the property being examined
Reachability graph based flow analysis

Shared Resource Example for a Reactive System

class Example extends Thread {
 private final int id;
 private final CyclicBarrier barrier;

 public void run() {
 while(true) {
 x = id;
 barrier.await();
 if(x == id)
 use_resource();
 } // end while
 } // end run
} // end class

- Provide access to a shared resource
 - Only one thread should access the resource at a time

- CyclicBarrier
 - Found in java.util.concurrent
 - Allows a set of threads to all wait for each other to reach a common barrier point
Example Program with 2 threads

Thread 1:
```
  while(true) {
    0:   x = 1;
    1:   barrier.await();
    2: if(x == 1)
    3:   use_resource();
  }
```

Thread 2:
```
  while(true) {
    0:   x = 2;
    1:   barrier.await();
    2: if(x == 2)
    3:   use_resource();
  }
```

Reachability Graph

Starting state:
- Assume x is initially 1
- Both threads are at line 0

```
x, pc_1, pc_2
```

Thread 1:
```
  while(true) {
    0:   x = 1;
    1:   barrier.await();
    2: if(x == 1)
    3:   use_resource();
  }
```

Thread 2:
```
  while(true) {
    0:   x = 2;
    1:   barrier.await();
    2: if(x == 2)
    3:   use_resource();
  }
```
Reachability Graph

Either Thread 1 or 2 can take a step
• Suppose Thread 1 takes a step

Thread 1:
 while(true) {
 0: x = 1;
 1: barrier.await();
 2: if(x == 1)
 3: use_resource();
 }

Thread 2:
 while(true) {
 0: x = 2;
 1: barrier.await();
 2: if(x == 2)
 3: use_resource();
 }

Reachability Graph

Either Thread 1 or 2 can take a step
• Suppose Thread 2 takes a step

Thread 1:
 while(true) {
 0: x = 1;
 1: barrier.await();
 2: if(x == 1)
 3: use_resource();
 }

Thread 2:
 while(true) {
 0: x = 2;
 1: barrier.await();
 2: if(x == 2)
 3: use_resource();
 }

Page 12
Reachability Graph

Only Thread 2 can take a step

```
Thread 1:
  while(true) {
    0:  x = 1;
    1:  barrier.await();
    2:  if(x == 1)
    3:   use_resource();
  }

Thread 2:
  while(true) {
    0:  x = 2;
    1:  barrier.await();
    2:  if(x == 2)
    3:   use_resource();
  }
```

Reachability Graph

```
Thread 1:
  while(true) {
    0:  x = 1;
    1:  barrier.await();
    2:  if(x == 1)
    3:   use_resource();
  }

Thread 2:
  while(true) {
    0:  x = 2;
    1:  barrier.await();
    2:  if(x == 2)
    3:   use_resource();
  }
```
Checking Properties

1. Freedom from deadlock
 - Are there any nodes without outgoing edges?

Thread 1:
 while(true) {
 0: x = 1;
 1: barrier.await();
 2: if(x == 1)
 3: use_resource();
 }

Thread 2:
 while(true) {
 0: x = 2;
 1: barrier.await();
 2: if(x == 2)
 3: use_resource();
 }

Checking Deadlock

Thread 1:
 while(true) {
 0: x = 1;
 1: barrier.await();
 2: if(x == 1)
 3: use_resource();
 }

Thread 2:
 while(true) {
 0: x = 2;
 1: barrier.await();
 2: if(x == 2)
 3: use_resource();
 }
Checking Properties

1. Freedom from deadlock
 - Are there any nodes without outgoing edges?

2. Mutual exclusion
 - Are there any nodes with both PCs on line 3?

Thread 1:
 while(true) {
 0: x = 1;
 1: barrier.await();
 2: if(x == 1)
 3: use_resource();
 }

Thread 2:
 while(true) {
 0: x = 2;
 1: barrier.await();
 2: if(x == 2)
 3: use_resource();
 }

Checking Mutual Exclusion

Thread 1:
 while(true) {
 0: x = 1;
 1: barrier.await();
 2: if(x == 1)
 3: use_resource();
 }

Thread 2:
 while(true) {
 0: x = 2;
 1: barrier.await();
 2: if(x == 2)
 3: use_resource();
 }

x, pc₁, pc₂
Checking Properties

1. Freedom from deadlock
 • Are there any nodes without outgoing edges?

2. Mutual exclusion
 • Are there any nodes with both PCs on line 3?

3. Liveness
 • The resource will eventually be used
 • Are there any reachable cycles in which the resource is not used?

Checking Liveness

Thread 1:
 while(true) {
 0: x = 1;
 1: barrier.await();
 2: if(x == 1)
 3: use_resource();
 }

Thread 2:
 while(true) {
 0: x = 2;
 1: barrier.await();
 2: if(x == 2)
 3: use_resource();
 }
Thread 1:
 while(true) {
0: x = 1;
1: barrier.await();
2: if(x == 1)
 3: use_resource();
 }

Thread 2:
 while(true) {
0: x = 2;
1: barrier.await();
2: if(x == 2)
 3: use_resource();
 }

```
x, pc_1, pc_2
```
Reachability based analysis is inherently exponential

- Size of the reachability graph is exponential in the number of tasks
 - \(N \) nodes per task, \(T \) tasks
 - worse case bound on the size of the graph: \(N^T \) nodes in the reachability graph
- Data flow analysis is often quadratic in the size of the graph
 - \((N^T)^2\)
Controlling Complexity of Reachability Analysis

- Don’t consider all interleavings of events, only consider “representative” interleavings
 - Valmari, Godefroid, Wolper, McDowell
- Use compositional techniques
 - Analyze reachable states of portions of the model and summarize
- Still have exponential worst-case upper bound

Additional Problems With Reachability Analysis

- Imprecision
 - Model may not capture all information about state
 - For example, may not model all variable values
 - Aliasing may cause inclusion of events and states that are not actually possible
 - Over-approximate executable paths
 - Can lead to the consideration of infeasible paths
Non-Conservative Techniques

- Non-conservative techniques may not find a problem even though one exists.
- For reachability graphs, a common non-conservative technique is to bound the size of the graph
 - Limit depth of the graph (limit length of path from start state to any node)
 - Limit number of loop iterations
- Non-conservative techniques may under-report errors
 - False negative
- Conservative techniques may over-report errors
 - False positive

Summary of Reachability Analysis

- Reachability analysis is intuitively appealing, but difficult to implement efficiently (sub-exponentially)
- Techniques exist to control state explosion, but they still carry an exponential upper bound
 - I.e., May be practical on some problems
- Looked at a CFG based reachability graph
 - Can also be constructed from Petri Net representations
Petri nets

A Petri Net is a four-tuple, \(C=(P,T,I,O) \)

- \(P = \{p_1, p_2, \ldots, p_n\} \), \(n \geq 0 \) is a finite set of places
- \(T = \{t_1, t_2, \ldots, t_m\} \), \(m \geq 0 \) is a finite set of transitions
- \(\mu_0 = \{u_{01}, u_{02}, \ldots, u_{0n}\} \) the initial marking

I: \(T \rightarrow P \) is the input function
 - \(p_i \) is an input place of a transition \(t_j \) if \(p_i \in I(t_j) \)

O: \(T \rightarrow P \) is the output function
 - \(p_i \) is an output place of a transition \(t_j \) if \(p_i \in O(t_j) \)

\(M: P \rightarrow \text{integer} \) is the number of tokens at place \(p \)

Petri Net

- 5 places, 1 transition
- 4 tokens
Petri net firing rule

- A transition t is enabled if and only if $\forall p_i \in I(t), m(p_i) > 0$

- **Firing an enabled transition t produces a new marking m'**
 - $m'(p_i) = m(p_i) - 1, \forall p_i \in I(t)$
 - $m'(p_i) = m(p_i) + 1, \forall p_i \in O(t)$
 - $m'(p_i) = m(p_i)$ otherwise

Transition firing examples

Can't fire

![Diagram 1: Can't fire example](image1)

![Diagram 2: Firing example](image2)
Non-deterministic choice example

Synchronous task interaction

• Initial marking has one token per task
• Task interaction preserves the number of tokens per task
example

with text_io;
procedure main is
 task T0;
 task T1 is
 entry P;
 entry Q;
 end T1;
 task T2;
begin
 NULL;
end main;

begin body T1 is
 package boolean_io is new
text_io.enumeration_io
(boolean);
 done: boolean;
begin
 loop
 select
 accept P;
 or
 accept Q;
 end select;
 boolean_io.get(done);
 exit when done;
 end loop;
end T1;

begin body T0 is
 T1.P;
end T0;

begin body T2 is
 T1.Q;
end T2;

CFG representation

1. begin
2. T1.P
3. end
4. begin
5,6. select
7. accept P
8. accept Q
9. end
10. end
11. begin
12. T1.Q
13. end
Reachability Analysis from a Petri net

- The reachability graph, $R = (N, E)$, for Petri net = (P, T, I, O)
 - $N = n_1, n_2, ..., n_l$, each n_i corresponds to a Petri net marking $\mu_i = \{u_{i1}, u_{i2}, ..., u_{in}\}$
 - $E = \{..., (n_k, n_r), ..., \}$ where there is a transition from p_{ik} to p_{ir} and a series of markings that causes that transition to be taken
- reachability graph for a safe conservative Petri net with n places and k tokens can potentially have n^k nodes
 - thus, reachability graphs for Petri nets are potentially exponential in the number of tasks in the program.
Petri net reachability graph

< P0,P3,P8 >
< P0,P4,P8 >
< P1,P3,P9 >
< P1,P4,P8 >
< P0,P4,P9 >
< P1,P3,P8 >
< P0,P3,P9 >
< P0,P3,P9 >
Petri net reachability graph analysis

- **State properties**
 - checking some characteristic of each reachable state
 - examples: deadlock, critical races, multiple readers

- **Path properties**
 - Check for sequences of events

- Basically doesn't matter if the reachability graph is derived from control flow graph or from Petri net models
deadlock detection

examine nodes with no out edges for deadlocks

Problems with reachability analysis

- **complexity**
 - many reachability problems shown to be NP-complete
 - upper bound on graph size is \((\text{average task size})(\text{number of tasks})\)
 - commonly called the "state explosion problem"
 - 10 tasks, 10 states in each --> 10 billion states
- some contributors
 - consideration of all possible interleavings of events
 - nondeterminism
- reachability analysis still has the static analysis problems of imprecision
 - alias resolution
 - path infeasibility
Benefits of Reachability Analysis

- Can often be optimized to produce interesting results
 - E.g., SPIN, G. Holzmann, AT&T
 - Works with a "simplified specification language," Promela
 - State Transition Model
 - Publicly available tool
- Don’t have to analyze the whole system
 - Can evaluate subsystems
 - Can evaluate specific configurations
 - Can evaluate high-level designs
 - Better to find a problem earlier than later
- For concurrent/distributed systems, provides some assurances