Symbolic Evaluation/Execution

Reading Assignment

* not required reading
Move from Dynamic Analysis to Static Analysis

- Dynamic analysis approaches are based on sampling the input space
 - Infer behavior or properties of a system from executing a sample of test cases
 - Functional (Black Box) and Structural (White Box) approaches

- Static analysis approaches tend to be based on a “global” assessment of the behavior
 - Based on an understanding of the program (artifact)
 - Again, usually must approximate the semantics to keep the problem tractable
Static Analysis Approaches

- Dependence Analysis
- Symbolic Evaluation
- Formal Verification
- Data Flow Analysis
- Concurrency Analysis
 - Reachability analysis
 - Finite-state Verification
Today's Reading Material

* not required

Symbolic Evaluation/Execution

- Creates a functional representation of a path of an executable component
- For a path Pi
 - $D[Pi]$ is the domain for path Pi
 - $C[Pi]$ is the computation for path Pi
Functional Representation of an Executable Component

X_i is the domain of path P_i

Denoted $D[P_i]$

$$X = D[P_1] \cup \ldots \cup D[P_r] = D[P]$$

$$D[P_i] \cap D[P_j] = \emptyset, \ i \neq j$$

Representing Computation

- *Symbolic names* represent the input values
- the *path value PV* of a variable for a path describes the value of that variable in terms of those symbolic names
- the *computation* of the path $C[P]$ is described by the path values of the outputs for the path
Representing Conditionals

- an interpreted branch condition or interpreted predicate is represented as an inequality or equality condition.
- the path condition PC describes the domain of the path and is the conjunction of the interpreted branch conditions.
- the domain of the path $D[P]$ is the set of input values that satisfy the PC for the path.

Example program

```plaintext
procedure Contrived is
X, Y, Z : integer;
1 read X, Y;
2 if X ≥ 3 then
   3 Z := X+Y;
   else
   4 Z := 0;
   endif;
5 if Y > 0 then
   6 Y := Y + 5;
   endif;
7 if X - Y < 0 then
   8 write Z;
   else
   9 write Y;
   endif;
end Contrived;
```

<table>
<thead>
<tr>
<th>Stmt</th>
<th>PV</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X← x true</td>
<td>true ∧ x≥3 = x≥3</td>
</tr>
<tr>
<td>2,3</td>
<td>Z ← x+y true ∧ x≥3 = x≥3</td>
<td></td>
</tr>
<tr>
<td>5,6</td>
<td>Y ← y+5 x≥3 ∧ y>0</td>
<td></td>
</tr>
<tr>
<td>7,9</td>
<td>(x≥3 ∧ y>0 ∧ x-(y+5)≥0) = (x≥3 ∧ y>0 ∧ (x-y)≥5)</td>
<td></td>
</tr>
</tbody>
</table>
Presenting the results

- \(P = 1, 2, 3, 5, 6, 7, 9 \)
- \(D[P] = \{ (x,y) \mid x \geq 3 \land y > 0 \land x - y \geq 5 \} \)
- \(C[P] = P \cdot V = y + 5 \)

Procedure

```plaintext
procedure Contrived is
    X, Y, Z : integer;
    read X, Y;
    if X \geq 3 then
        Z := X+Y;
    else
        Z := 0;
    endif;
    if Y > 0 then
        Y := Y + 5;
    endif;
    if X - Y < 0 then
        write Z;
    else
        write Y;
    endif
end Contrived
```

Statements

- \(1 \quad X \leftarrow x \quad \text{true} \)
- \(2 \quad Y \leftarrow y \)
- \(2, 3 \quad Z \leftarrow x+y \quad \text{true} \land x \geq 3 = x \geq 3 \)
- \(5, 6 \quad Y \leftarrow y+5 \quad x \geq 3 \land y > 0 \)
- \(7, 9 \quad x \geq 3 \land y > 0 \land x - (y+5) \geq 0 = x \geq 3 \land y > 0 \land (x-y) \geq 5 \)

Results (feasible path)

- \(P = 1, 2, 3, 5, 6, 7, 9 \)
- \(D[P] = \{ (x,y) \mid x \geq 3 \land y > 0 \land x - y \geq 5 \} \)
- \(C[P] = P \cdot V = y + 5 \)
- \((P \cdot V \cdot Z = x+y) \)
Evaluating another path

procedure Contrived is
X, Y, Z : integer;
1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;
else
4 Z := 0;
endif;
5 if Y > 0 then
6 Y := Y + 5;
endif;
7 if X - Y < 0 then
8 write Z;
else
9 write Y;
endif;
end Contrived;

<table>
<thead>
<tr>
<th>Stmts</th>
<th>PV</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X←x</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>Y←y</td>
<td></td>
</tr>
<tr>
<td>2,3</td>
<td>Z←x+y true ∧ x≥3 = x≥3</td>
<td></td>
</tr>
<tr>
<td>5,7</td>
<td>x≥3 ∧ y≤0</td>
<td></td>
</tr>
<tr>
<td>7,8</td>
<td>x≥3 ∧ y≤0 ∧ x-y < 0</td>
<td></td>
</tr>
</tbody>
</table>

procedure EXAMPLE is
X, Y, Z : integer;
1 read X, Y;
2 if X ≥ 3 then
3 Z := X*Y;
else
4 Z := 0;
endif;
5 if Y > 0 then
6 Y := Y + 5;
endif;
7 if X - Y < 0 then
8 write Z;
else
9 write Y;
endif;
end EXAMPLE;

<table>
<thead>
<tr>
<th>Stmts</th>
<th>PV</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X←x</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>Y←y</td>
<td></td>
</tr>
<tr>
<td>2,3</td>
<td>Z←x+y true ∧ x≥3 = x≥3</td>
<td></td>
</tr>
<tr>
<td>5,7</td>
<td>x≥3 ∧ y≤0</td>
<td></td>
</tr>
<tr>
<td>7,8</td>
<td>x≥3 ∧ y≤0 ∧ x-y < 0</td>
<td></td>
</tr>
</tbody>
</table>

P = 1, 2, 3, 5, 7, 8
D[P] = { (x,y) | x≥3 ∧ y≤0 ∧ x-y<0}

infeasible path!
Results (infeasible path)

\[y \leq 0 \]
\[x \geq 3 \]
\[(x-y) < 0 \]

Representing Computation

- **Symbolic names** represent the input values
- the **path value PV** of a variable for a path describes the value of that variable in terms of those symbolic names
- the **computation** of the path \(C[P] \) is described by the path values of the outputs for the path
Representing Conditionals

- an interpreted branch condition or interpreted predicate is represented as an inequality or equality condition
- the path condition PC describes the domain of the path and is the conjunction of the interpreted branch conditions
- the domain of the path D[P] is the set of input values that satisfy the PC for the path

what about loops?

- Symbolic evaluation requires a complete path description

 Example Paths
 - P = 1, 2, 3, 5
 - P = 1, 2, 3, 4, 2, 3, 5
 - P = 1, 2, 3, 4, 2, 3, 4, 2, 3, 5
 - Etc.
Symbolic Testing

- Path Computation provides [concise] functional representation of behavior for entire Path Domain
- Examination of Path Domain and Computation often useful for detecting program errors
- Particularly beneficial for (some) scientific applications or applications w/o oracles

Simple Symbolic Evaluation

- Provides symbolic representations given path Pi
 - path condition PC =
 - path domain D[Pi] =\{(x1, x1, ... ,x1)|pc true \}
 - path values PV .X1 =
 - path computation C[Pi] =

\[
\begin{align*}
P &= 1, 2, 3, 5, 6, 7, 9 \\
D[P] &= \{(x,y) \mid x \geq 3 \land y > 0 \land x-y \geq 5\} \\
C[P] &= PV.Y = y + 5
\end{align*}
\]
Additional Features:

- Simplification
- Path Condition Consistency
- Fault Detection
- Path Selection
- Test Data Generation

Simplification

- Reduces path condition to a canonical form
- Simplifier often determines consistency

\[PC = (x \geq 5) \text{ and } (x < 0) \]

- May want to display path computation in simplified and unsimplified form

\[PV.X = x + (x + 1) + (x + 2) + (x + 3) = 4 \times x + 6 \]
Path Condition Consistency

- strategy = solve a system of constraints
 - theorem prover
 - consistency
 - algebraic, e.g., linear programming
 - consistency and find solutions
 - solution is an example of automatically generated test data

... but, in general we cannot solve an arbitrary system of constraints!

Fault Detection

- Implicit fault conditions
 - E.g. Subscript value out of bounds
 - E.g. Division by zero e.g., Q:=N/D
 - Create assertion to represent the fault and conjoin with the pc
 - Division by zero assert(divisor ≠ 0)
 - Determine consistency
 - PCₚ and (PV.divisor = 0)
 - if consistent then error possible
 - Must check the assertion at the point in the path where the construct occurs
Fault Detection (continued)

- Checking user-defined assertions
 - Determine if the complement of the assertion is consistent with the PC
 - example
 - Assert \((A > B)\)
 - PC and \((PV.A \leq PV.B)\)
 - if consistent then assertion not valid

Comparing Dynamic and Symbolic Assertion Checking Approaches

- With run-time assertion checking, assertions are inserted as executable instructions and checked during execution
 - dependent on test data selected (dynamic testing)
- With symbolic evaluation, assertions checked when they occur on a path being evaluated
 - dependent on path, but not on the test data
 - look for violating data in the path domain
Additional Features:

- Simplification
- Path Condition Consistency
- Fault Detection
- Path Selection
- Test Data Generation

Path Selection

- User selected

- Automated selection to satisfy some criteria
 - e.g., exercise all statements at least once

- Because of infeasible paths, best if path selection done incrementally
Incremental Path Selection

- PC and PV maintained for partial path
- Inconsistent partial path can often be salvaged

\[
\begin{align*}
\text{PC} & \\
\downarrow & \\
T & \quad X > 0 \quad F \\
\downarrow & \\
T & \quad X > 3 \quad F
\end{align*}
\]

\[
\begin{align*}
\text{pc}'' &= \text{pc} \land (x \leq 0) \land (x > 3) \\
\text{INCONSISTENT!} \\
\text{infeasible path}
\end{align*}
\]

\[
\begin{align*}
\text{pc}''' &= \text{pc}' \land (x > 3) \\
\text{pc}' &= \text{pc} \land (x \leq 0)
\end{align*}
\]

\[
\begin{align*}
\text{pc}'' &= \text{pc} \land (x \leq 3) \\
\text{pc}' &= \text{pc} \land (x \leq 0) \land (x \leq 3) \\
\text{CONSISTENT [if pc' is consistent]}
\end{align*}
\]
Path Selection (continued)

- Can be used in conjunction with other static analysis techniques to determine path feasibility
 - Testing criterion generates a path that needs to be tested
 - Symbolic evaluation determines if the path is feasible
 - Can eliminate some paths from consideration

Additional Features:

- Simplification
- Path Condition Consistency
- Fault Detection
- Path Selection
- Test Data Generation
Test Data Generation

- Simple test data selection: Select test cases that satisfy the path condition pc
- Error based test data selection
 - Try to select test cases that will help reveal faults
 - Use information about the path domain and path values to select test data
 - e.g., $PV.X = a \times (b + 2)$,
 - $a = 1$ combined with min and max values of b
 - $b = -1$ combined with min and max values for a
 - values that would force X to take on “special” values
 - e.g., $a = 0$ or $b = -2$, if $X == 0$ is a special value

Enhanced Symbolic Evaluation Capabilities

- Creates symbolic representations of the Path Domains and Computations
 - “Symbolic Testing”
- Determine if paths are feasible
- Automatic fault detection
 - system defined assertions
 - user assertions
- Automatic path selection
- Automatic test data generation
An Enhanced Symbolic Evaluation System

Problems

• Information explosion

• Impracticality of all paths

• Path condition consistency

• Aliasing
 • elements of a compound type e.g., arrays and records
 • pointers
Alias Problem

A(2) := 5

read I, A(I)

X := A(2)

I > 2

Y := A(I)
Z := A(I)

Indeterminate subscript

* constraints on subscript value due to path condition

Escalating problem

- Read I
- X := A[I]
PV.X = unknown
- Y := X + Z
PV.Y = unknown + PV.Z
 = unknown
Can often determine array element

```
I := 0
I \leq 3
Y := A(I)
I := I + 1
```

Symbolic Evaluation Approaches

- symbolic evaluation
 - With some enhancements
 - Data independent
 - Path dependent
- dynamic symbolic evaluation
 - Data dependent --> path dependent
- global symbolic evaluation
 - Data independent
 - Path independent
Dynamic Symbolic Execution

- Data dependent
- Provided information
 - Actual value:
 \[X := 25.5 \]
 - Symbolic expression:
 \[X := Y \ast (A + 1.9); \]
 - Derived expression:

Dynamic Analysis combined with Symbolic Execution

- Actual output values
- Symbolic representations for each path executed
 - path domain
 - path computation
- Fault detection
 - data dependent
 - path dependent (if accuracy is available)
Dynamic Symbolic Execution

- Advantages
 - No path condition consistency determination
 - No path selection problem
 - No aliasing problem (e.g., array subscripts)

- Disadvantages
 - Test data selection (path selection) left to user
 - Fault detection is often data dependent
 - Except for user and system defined assertions

- Applications
 - Debugging
 - Symbolic representations used to support path and data selection

Symbolic Evaluation Approaches

- simple symbolic evaluation
- dynamic symbolic evaluation
- global symbolic evaluation
 - Data and path independent
 - Loop analysis technique classifies paths that differ only by loop iterations
 - Provides global symbolic representation for each class of paths
Global Symbolic Evaluation

- Loop Analysis
 - creates recurrence relations for variables and loop exit condition
 - solution is a closed form expression representing the loop
 - then, loop expression evaluated as a single node

2 classes of paths:

- $P_1: (s, (1, 2), 4, (5, (6, 7), 8), f)$
- $P_2: (s, 3, 4, (5, (6, 7), 8), f)$

Global analysis

- case
 - $D[P_1]: C[P_1]$
 - $D[P_2]: C[P_2]$
- Endcase

- analyze the loops first
- consider all partial paths up to a node
Loop analysis example

- Recurrence Relations
 \[\text{AREA}_k = \text{AREA}_{k-1} + A_0 \]
 \[X_k = X_{k-1} + 1 \]

- Loop Exit Condition
 \[\text{lec}(k) = (X_k > B_0) \]
Loop Analysis Example (continued)

- solved recurrence relations
 \[\text{AREA}(k) = \text{AREA}_0 + \sum_{i=X_0}^{X_0 + k - 1} \text{A}_0 \]
 \[\text{X}(k) = X_0 + k \]

- solved loop exit condition
 \[\text{lec}(k) = (X_0 + k > B_0) \]

- loop expression
 \[k_e = \min \{k \mid X_0 + k > B_0 \text{ and } k \geq 0\} \]
 \[\text{AREA} : = \text{AREA}_0 + \sum_{i=X_0}^{X_0 + k_e - 1} \text{A}_0 \]
 \[\text{X} : = X_0 + k_e \]

- global representation for input \((a,b) \)
 \(X_0 = a, \ A_0=a, \ B_0 = b, \ \text{AREA}_0 = 0 \)
 \(a + k_e > b \implies k_e > b - a \)
 \(K_e = b - a +1 \)
 \(X = a + (b-a+1) = b+1 \)

 \[\text{AREA} = \sum_{i=a}^{b} a = (b-a+1) a \]
Loop analysis example

```
read A, B
Area:= 0
X:= A

X ≤ B

f

write AREA
AREA:= AREA+A
X:= X+1

t
```

Find path computation and path domain for all classes of paths

- **P1 = (1, 2, 3, 4, 7)**
- **D[P1] = a > b**
- **C[P1] = (AREA=0) and (X=a)**
Find path computation and path domain for all classes of paths

- \(P_2 = (1, 2, 3, 4, (5, 6), 7) \)
- \(D[P_2] = (b>a) \)
- \(C[P_2] = (\text{AREA} = (b-a+1) a) \)

\(k_e = b - a + 1 \)
\(X = b + 1 \)

Example

```plaintext
procedure RECTANGLE (A,B: in real; H: in real range -1.0 ... 1.0; 
F: in array [0..2] of real; AREA: out real; ERROR: out boolean) is 
-- RECTANGLE approximates the area under the quadratic equation 
-- \( F[0] + F[1] \cdot X + F[2] \cdot X^2 \) From X=A to X=B in increments of H.
X,Y: real; 
s begin 
  --check for valid input 
  if H > B - A then
    ERROR := true; 
  else
    ERROR := false; 
    X := A; 
    AREA := F[0] + F[1] \cdot X + F[2] \cdot X^2; 
    while X + H \leq B loop
      X := X + H; 
      Y := F[0] + F[1] \cdot X + F[2] \cdot X^2; 
      AREA := AREA + Y; 
    end loop;
  end if;
  AREA := AREA*H; 
end RECTANGLE 
```
Symbolic Representation of Rectangle

\[
\begin{align*}
P_1 & \quad (s, 1, 2, 0) \\
D[P_1] & \quad (a - b + h > 0.0) \\
C[P_1] & \quad \text{ERROR} := false; \\
P_2 & \quad (s, 1, 3, 4, 5, 6, 10, 0) \\
D[P_2] & \quad (a - b + h \ll 0.0) \text{ and } (a - b + h > 0.0) \\
C[P_2] & \quad \text{ERROR} := false; \\
P_3 & \quad (s, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, f) \\
D[P_3] & \quad (a - b + h \ll 0.0) \\
C[P_3] & \quad \text{ERROR} := false;
\end{align*}
\]
Global Symbolic Evaluation

- Advantages
 - global representation of routine
 - no path selection problem
- Disadvantages
 - has all problems of
 - Symbolic Execution PLUS
 - inability to solve recurrence relations
 - (interdependencies, conditionals)
- Applications
 - has all applications of
 - Symbolic Execution plus
 - Verification
 - Program Optimization

Partial Evaluation

- Similar to Dynamic Symbolic Evaluation
- Provide some of the input values
 - E.g., If input is x and y, provide a value for x
- Create a representation that incorporates those values and that is equivalent to the original representation if it were given the same values as the preset values
 - $P(x', y) = P(x', y)$
Partial Evaluator

Partial evaluator

- static input
- program
- Partial evaluator
- Dynamic input
- Specialized program
- output

Why is partial evaluation useful?

- **In compilers**
 - May create a faster representation
 - E.g., if you know the maximum size for a platform or domain, hardcode that into the system
 - More than just constant propagation
 - Do symbolic manipulations with the computations
Example with Ackermann's function

- \(A(m,n) = \) if \(m = 0 \) then \(n+1 \) else
 - if \(n = 0 \) then \(A(m-1, 1) \) else
 - \(A(m-1, A(m,n-1)) \)

- \(A_0(n) = n+1 \)
- \(A_1(n) = \) if \(n = 0 \) then \(A_0(1) \) else
 - \(A_0(A_1(n-1)) \)
- \(A_2(n) = \) if \(n = 0 \) then \(A_1(1) \) else
 - \(A_1(A_2(n-1)) \)
- ...

Specialization using partial evaluation

```
Y:=A(I)
Z:=A(2)
I > 2
read I, A(I)
A(2) := 5
Y:=A(I)
Z:=5
?
read I, A(I)
A(2) := 5
I>2
I=2
I<2
Z:=eval(A(2))
```
Why is Partial Evaluation Useful in Analysis

- Often can not reason about dynamic information
 - Instantiates a particular configuration of the system that is easier to reason about
 - E.g., the number of tasks in a concurrent system; the maximum size of a vector

- Look at several configurations and try to generalize results
 - Induction
 - Often done informally

Reference on Partial Evaluation

Symbolic Evaluation Approaches

• symbolic evaluation
 • With some enhancements
 • Data independent
 • Path dependent
• dynamic symbolic evaluation
 • Data dependent --> path dependent
• global symbolic evaluation
 • Data independent
 • Path independent

Current Status of Symbolic Execution

• Not generally used for symbolic testing
 • expensive to create representations
 • expensive to reason about expressions
 • imprecision of results
• But, being incorporated into other techniques
 • Test data generation with assertions
 • Eliminate infeasible counter examples
 • Concolic testing
 CREST, http://code.google.com/p/crest/, for C
 &JCUTE for Java
• Current computing power and better user interface capabilities make it worth considering