Formal Verification

Prof. Leon Osterweil
Computer Science 520/620
Spring 2013
Some Examples of “Relations”

- Executing this code must compute this function
- This code must conform to that design element
- This compiled code came from this compiler
- This design element addresses those requirements
- These lower level requirements are elaborations of these higher level requirements
- This is the date by which that test must be passed
- Component invocations conform to component abstract interface specifications
- Documentation describes the actual system
- ETC.....
Evaluation of Static Analysis

- **Strengths:**
 - Can demonstrate the absence of faults
 - Proofs can be automatically generated and proven
 - Algorithms are fast (low-order polynomial)
 - No need to generate test data
 - You know when you are done

- **Weaknesses**
 - Behavior specification is a model with inaccuracies
 - Not all paths are executable
 - Only certain classes of faults analyzable
 - Mostly sequence specific
 - Weak on functionality
Symbolic Execution

- Specification of Intent: Formulae, functions
- Specification of Behavior: Functions derived from annotated flowgraph, symbol table
 - Annotate nodes with function(s) computed there
 - Specify path to be studied
 - Compute function(s) computed as composition(s) of functions at path nodes, constraints of path edges
 - Comparison: Solving simultaneous constraints; symbolic algebra
- Results: Demonstrations that given paths computed the right function(s)
- What to do about the fact that most programs have many (perhaps an unlimited amount of) paths?

Formal Verification

- Prove that a program must always deliver the specified functional behavior
 - Regardless of what path is executed
 - Even if there are unlimited numbers of paths
- Requires a formal specification of the desired functional behavior.
- Requires a formal specification of the computation that is to deliver this behavior
- Requires solid mathematical reasoning

Previously this was misleadingly called “Proof of Correctness”
Formal Verification

- **Intent**
 - Usually specification of functionality
 - What function(s) does the software compute?
 - Sometimes accuracy, timing, ...

- **Behavior**
 - Inferred from semantically rich program model
 - Generally requires most of semantics of programming language
 - Generally uses symbolic execution

- **Comparison**
 - Use of formal mathematics (eg. predicate logic)

Formal Verification

- Specification of Intended Behavior
- Specification of Actual Behavior
- Final and Intermediate 1st-Order Logic Assertions
- Symbolic Execution of Path Segments
- First-Order Logic Theorems and Proofs
- Proof of the Absence of All Functional Faults
- Comparison of Behavior to Intent
Formal Verification

- Specification of Intended Behavior
- Final and Intermediate First-Order Logic Assertions
- Not necessarily functionality, could also be timing, etc.
- Symbolic Execution of Path Segments
- Not necessarily code segments
- First-Order Logic Theorems and Proofs
- Proof of the Absence of All Functional Faults
- Comparison of Behavior to Intent

Floyd Method of Inductive Assertions

- Show that each program fragment behaves as intended
- Use induction to prove that all sequences of executable fragments behave as intended
- Show that the program must terminate
Example Assertion

\[\begin{align*}
&\text{<code sequence>} \\
&X := Y; \\
&\text{Time := Y * 2.0 * T;} \\
&\text{ASSERT Time > 0.0;} \\
&\text{<rest of code>}
\end{align*} \]

Use of Assertions in Testing

- Zoom in on internal workings of the program
- Examine behaviors at internal program locations while the program is executing
 - Augments examining only final outputs
- Assertions: Specifications of intended relations among the values of program variables
 - Development of increasingly elaborate assertion languages
 - Often: Checking relations between code and design
- Comparison: Runtime evaluation of assertions
 - Facilities for programming reactions to violations
- Previously seen as a debugging aid
- Now we will see it as a key support for static verification
Use of Assertions in Verification

- **Assertion**: Specification of a condition that is intended to be true at a specific given site in the program text
- **Floyd's Method assertions** are written in Predicate Logic
- In Floyd's Method, there are three types of assertions
 - Initial, A_i: Sited at the program initial statement
 - Final, A_f: Sited at the program final statement
 - Intermediate A_i: Often called a "loop invariants"
- Sited at various program locations subject to the rule:

 EVERY LOOP ITERATION (CFG CYCLE) SHALL PASS THRU THE SITE OF AT LEAST ONE INTERMEDIATE ASSERTION

Net Effect: Every program execution sequence is divided into a finite number of segments of non-looping code bounded on each end by a predicate logic assertion
Mathematical Induction

• Goal: prove that a given property holds for all elements of a set
• Approach:
 – (initial step) show property holds for "first" element
 – (induction step) show that if property holds for element i, then it must also hold for element i + 1
• Often used when direct analytic techniques are too hard or complex

Example: How many edges in C_n

Theorem:
let $C_n = (V_n, E_n)$ be a complete, unordered graph on n nodes,
then $|E_n| = n \times (n-1)/2$
Initial Step

- show the property is true for C_1:
- graph has one node, 0 edges

- $|E_1| = n(n-1)/2 = 1(0)/2 = 0$

Induction Step

- assume true for C_n: $|E_n| = n(n-1)/2$
- graph C_{n+1} has one more node, but n more edges (one from the new node to each of the n old nodes)
- so, $|E_{n+1}| = n(n-1)/2 + n$
 \[= n(n-1)/2 + 2n/2 = (n(n-1)+2n)/2\]
 \[= (n(n+1))/2 = n(n+1)/2\]
 \[= (n+1)((n+1)-1)/2\]
 \[= (n+1)(n)/2\]
Floyd’s Method of inductive assertions (informal description)

- Place assertions at the start, final, and intermediate points in the code.
- Any path is composed of sequences of program fragments all of which:
 - start with an assertion
 - are followed by some code that is:
 » Assertion-free
 » Loop-free
 - and end with an assertion
 eg. \(A_s = A_0, C_1, A_1, C_2, A_2, \ldots A_{n-1}, C_{n-1}, A_{n-1}, C_n, A_n A_{n+1} (= A_i) \)
- Show that for any executable path, if \(A_i \) is assumed true for any \(A_i \) and code \(C_i \) is executed, then \(A_{i+1} \) must always be true

Induction in Floyd’s Method

- Initially
 - Verify that the Initial Assertion is correct
- Induction on length of execution path
- Prove that function computed by all execution paths of length \(L + 1 \) are correct
 - Provided that all execution paths of length \(L \) compute the correct function
- Inductive step is the hard one (as usual)
- Proof relies on the fact that there are only a (relatively) small number of path segments in any program.
Pictorially

Must be sure:

assuming A_i, then executing Code C_i, necessarily $\Rightarrow A_{i+1}$

by forward substitution
Must be sure:

assuming \(A_i \), then executing Code \(C_i \), necessarily \(\Rightarrow A_{i+1} \)

by forward substitution

\[\begin{align*}
A_i & \quad C_i \quad A_{i+1} \\
\text{STRAIGHT-LINE CODE} & \\
\end{align*} \]

KEY POINT: There are only a small number of these in any realistic program

Why does this work?

suppose \(P \) = arbitrary path through the program can denote it by

\[P = A_s C_1 A_1 C_2 A_2 \cdots C_n A_f \]

where

- \(A_s \) - Initial assertion
- \(A_f \) - Final assertion
- \(A_i \) - Intermediate assertions
- \(C_i \) - Loop free, uninterrupted, straight-line code

If it has been shown that

\[\forall i, 1 \leq i < n: A_i C_i \Rightarrow A_{i+1} \]

Then, by induction

\[A_s \cdots A_{f} \]

AGAIN: There are only a small number of these in any realistic program
Loop Invariants (Loop Breakers)

- Problem: infinite number of paths
 - Must find a way to deal with loops
- Solution: Assertion, A_i, that is
 - True for any number of loop iterations
 - “connects up” to adjacent assertions
- Such an assertion:
 - Is invariant with respect to loop iterations
 - Must be embedded in (break) every loop

A loop invariant must capture the essence
Of the work that the loop is to perform

Schematic Example of a Loop Invariant

A_i is a loop invariant because of its relation to other assertions:

NOTE THAT:

A_i, false branch, $\Rightarrow A_i$
A_i, true branch, $\Rightarrow A_i$

BUT ALSO:

Initial assertion A_s to A_i $\Rightarrow A_i$
A_i, false branch, \Rightarrow final assertion A_f
A_i, true branch, \Rightarrow final assertion A_f
How Many Path Segments?

A_s -> A_i
A_i true -> A_i
A_i false -> A_i
A_i true -> A_f
A_i false -> A_f
A_s -> A_f

Floyd’s Method (carefully stated)

• Specify initial, final assertions to capture intent
• Intermediate assertions "cut" every program loop
• For each pair of assertions with an executable (assertion-free) path from the first to the second,
 – Assume that the first assertion is true
 – Show that for all (assertion-free, executable) paths from the first assertion to the second, that the second assertion is true
• This establishes “partial correctness”
• Show that the program terminates
 – This establishes “total correctness”
Sort Example

procedure sort(values, size);
declare values real array[1000], temp real,
i, j, size integer;

ASSERT INITIAL
do for i = 1 to size-1
 do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;

ASSERT INNER
 end do;

ASSERT OUTER
end do;

ASSERT FINAL
end sort;
ASSERT OUTER

values[i] ≥ values[j] for all j, where i < j ≤ size

Sort Example

procedure sort(values, size);
declare values real array[1000], temp real,
i, j, size integer;

ASSERT INITIAL
do for i = 1 to size-1
do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;

ASSERT INNER
end do;

ASSERT OUTER
end do;

ASSERT FINAL
end sort;
SORT EXAMPLE

procedure sort(values, size);
declare values real array[1000], temp real,
 i, j, size integer;

assert initial
do for i = 1 to size-1
 do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;
 end do;

assert inner
end do;

assert outer
end do;

assert final
end sort;
ASSERT INITIAL

size > 0

and

size < 1000

Sort Example

procedure sort(values, size);
declare values real array[1000], temp real,
i, j, size integer;

ASSERT INITIAL
do for i = 1 to size-1
do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;

ASSERT INNER
end do;

ASSERT OUTER
end do;

ASSERT FINAL
end sort;
ASSERT FINAL

For all $i < j \leq \text{size}$:
 $\text{values}[i] \geq \text{values}[j]$

AND: values’ is a permutation of values:

For all $i < j \leq \text{size}$, there exists a k such that
 $\text{values}[k] = \text{IN}_i$
Lemma 1: ASSERT INNER, false => ASSERT INNER

procedure sort(values, size);
declare values real array[1000], temp real,
 i, j, size integer;
ASSERT INITIAL
 do for i = 1 to size-1
 do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;
 ASSERT INNER
 end do;
 ASSERT OUTER
 end do;
ASSERT FINAL
end sort;

Lemma 1: ASSERT INNER, false => ASSERT INNER

procedure sort(values, size);
declare values real array[1000], temp real,
 i, j, size integer;
ASSERT INITIAL
 do for i = 1 to size-1
 do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;
 ASSERT INNER
 end do;
 ASSERT OUTER
 end do;
ASSERT FINAL
end sort;

ASSERT INNER:
values[i] ≥ values[k] for all i < k ≤ j-1
Lemma 1: ASSERT INNER, false \(\Rightarrow \) ASSERT INNER

```plaintext
procedure sort(values, size);
declare values real array[1000], temp real,
i, j, size integer;

ASSERT INITIAL
do for i = 1 to size-1 
do for j = i+1 to size 
    if values[j] > values[i] then 
        temp := values[i];
        values[i] := values[j];
        values[j] := temp;

ASSERT INNER
end do;

ASSERT OUTER 
end do;

ASSERT FINAL 
end sort;
```

ASSERT INNER:
values[i] ≥ values[k] for all \(i < k \leq j-1 \)

Symbolic Execution:

Symb. Vals. Path Conditions
values[j] = IN
values[i] = IN
\(\text{Symb. Vals. Path Conditions} \)
Lemma 1: ASSERT INNER, false => ASSERT INNER

procedure sort(values, size);
declare values real array[1000], temp real,
i, j, size integer;

ASSERT INITIAL
do for i = 1 to size-1
do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;
end do;

ASSERT OUTER
end do;

ASSERT FINAL
end sort;

ASSERT INNER:
values[i] ≥ values[k] for all i < k ≤ j-1

Symbolic Execution:

<table>
<thead>
<tr>
<th>Symb. Vals</th>
<th>Path Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>IN1 ≤ IN2</td>
</tr>
<tr>
<td>IN1</td>
<td></td>
</tr>
<tr>
<td>IN2</td>
<td>values[j] ≤ values[i]</td>
</tr>
</tbody>
</table>

Thus:
values[i]’ ≥ values[j]’
(because IN1 ≤ IN2)
Lemma 1: **ASSERT INNER, false => ASSERT INNER**

procedure sort(values, size);
declare values real array[1000], temp real,
i, j, size integer;

ASSERT INITIAL
do for i = 1 to size-1
 do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;

end do;

ASSERT OUTER
end do;

ASSERT FINAL
end sort;

ASSERT INNER:
values[i] ≥ values[k] for all i < k ≤ j-1

Symbolic Execution:

<table>
<thead>
<tr>
<th>Symb. Vals.</th>
<th>Path Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values[j] = IN₁</td>
<td>values[j] ≤ values[i]</td>
</tr>
<tr>
<td>Values[i] = IN₂</td>
<td>IN₁ ≤ IN₂</td>
</tr>
</tbody>
</table>

Thus:
values[i]’ ≥ values[j]’
(because IN₁ ≤ IN₂) and so
values[i]’ ≥ values[k]’ for all i < k ≤ j
Lemma 2: ASSERT INNER, true => ASSERT INNER

procedure sort(values, size);
declare values real array[1000], temp real,
i, j, size integer;

ASSERT INITIAL
do for i = 1 to size-1
 do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;
 end do;
end do;

ASSERT OUTER
end do;

ASSERT FINAL
end sort;
Lemma 2: ASSERT INNER, true => ASSERT INNER

procedure sort(values, size);
declare values real array[1000], temp real,
i, j, size integer;

ASSERT INITIAL
do for i = 1 to size-1
 do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;
 end if
 end do;
end do;

ASSERT OUTER
end do;

ASSERT FINAL
end sort;

Symbolic Execution:

Symb. Vals. Path Conditions
values[j] = IN
values[i] = IN

Lemma 2: ASSERT INNER, true => ASSERT INNER

procedure sort(values, size);
declare values real array[1000], temp real,
i, j, size integer;

ASSERT INITIAL
do for i = 1 to size-1
 do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;
 end if
 end do;
end do;

ASSERT OUTER
end do;

ASSERT FINAL
end sort;

Symbolic Execution:

Symb. Vals. Path Conditions
values[j] = IN
values[i] = IN
Lemma 2: ASSERT INNER, true => ASSERT INNER

procedure sort(values, size);
declare values real array[1000], temp real,
i, j, size integer;

ASSERT INITIAL
do for i = 1 to size-1
 do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;
 end do;
 end do;
end do;

ASSERT OUTER
end do;

ASSERT FINAL
end sort;

ASSERT INNER:
values[i] ≥ values[k] for all i < k ≤ j-1

Symbolic Execution:

<table>
<thead>
<tr>
<th>Symb. Vals.</th>
<th>Path Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>IN1 > IN2</td>
</tr>
<tr>
<td>IN1</td>
<td>IN > IN2</td>
</tr>
<tr>
<td>IN2</td>
<td></td>
</tr>
</tbody>
</table>

Lemma 2: ASSERT INNER, true => ASSERT INNER

procedure sort(values, size);
declare values real array[1000], temp real,
i, j, size integer;

ASSERT INITIAL
do for i = 1 to size-1
 do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;
 end do;
 end do;
end do;

ASSERT OUTER
end do;

ASSERT FINAL
end sort;

ASSERT INNER:
values[i] ≥ values[k] for all i < k ≤ j-1

Symbolic Execution:

<table>
<thead>
<tr>
<th>Symb. Vals.</th>
<th>Path Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>IN1 > IN2</td>
</tr>
<tr>
<td>IN1</td>
<td>IN > IN2</td>
</tr>
<tr>
<td>IN2</td>
<td></td>
</tr>
</tbody>
</table>
Lemma 2: ASSERT INNER, true => ASSERT INNER

procedure sort(values, size);
declare values real array[1000], temp real,
i, j, size integer;

ASSERT INITIAL
do for i = 1 to size-1
do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;
 end do;
end do;

ASSERT OUTER
end do;

ASSERT FINAL
end sort;

Symbolic Execution:

Symb. Vals. Path Conditions
values[j] = IN
values[j] > values[i]
values[i] = IN
temp = IN

values[i] ≥ values[k] for all i < k ≤ j-1

Lemma 2: ASSERT INNER, true => ASSERT INNER

procedure sort(values, size);
declare values real array[1000], temp real,
i, j, size integer;

ASSERT INITIAL
do for i = 1 to size-1
do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;
 end do;
end do;

ASSERT OUTER
end do;

ASSERT FINAL
end sort;

Symbolic Execution:

Symb. Vals. Path Conditions
values[j] = IN
values[j] > values[i]
values[i] = IN
temp = IN

values[i] ≥ values[k] for all i < k ≤ j-1
Lemma 2: ASSERT INNER, true => ASSERT INNER

procedure sort(values, size);
declare values real array[1000], temp real,
i, j, size integer;

ASSERT INITIAL
do for i = 1 to size-1
do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;
 end if
end do;

ASSERT OUTER
end do;

ASSERT FINAL
end sort;

Symbolic Execution:

Symb. Vals. Path Conditions
values[j] = IN_1
values[j] > values[i] IN_1 > IN_2
values[i] = IN_2
Thus:
values[i]’ > values[j]’
(because IN_1 > IN_2)
Lemma 2: \textbf{ASSERT INNER, true }\rightarrow\textbf{ ASSERT INNER}

procedure sort(values, size);
declare values real array[1000], temp real, i, j, size integer;

\textbf{ASSERT INITIAL}
do for i = 1 to size-1
do for j = i+1 to size
if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;

\textbf{ASSERT INNER}
end do;
\textbf{ASSERT OUTER}
end do;
\textbf{ASSERT FINAL}
end sort;

\textbf{Lemma 2: ASSERT INNER, true }\rightarrow\textbf{ ASSERT INNER}

Symbolic Execution:
\begin{tabular}{|l|l|}
\hline
\textbf{Symb. Vals.} & \textbf{Path Conditions} \\
\hline
values[j] = IN & values[j] > values[i] \\
values[i] = IN & IN > IN \\
\hline
\end{tabular}

Thus:
values[i]’ > values[j]’
(because $\text{IN}_1 > \text{IN}_2$) and so

values[i]’ ≥ values[k]’ for all i < k ≤ j

Thus:
values[i]’ > values[j]’
(because $\text{IN}_1 > \text{IN}_2$) and so

values[i]’ ≥ values[k]’ for all i < k ≤ j
Lemma 2: ASSERT INNER, true => ASSERT INNER

procedure sort(values, size);
declare values real array[1000], temp real,
i, j, size integer;

ASSERT INITIAL
do for i = 1 to size-1
do for j = i+1 to size
 if values[j] > values[i] then
 temp := values[i];
 values[i] := values[j];
 values[j] := temp;
 end do;

ASSERT OUTER
end do;

ASSERT FINAL
end sort;

ASSERT INNER:
values[i] ≥ values[k] for all i < k ≤ j-1

Symbolic Execution:

<table>
<thead>
<tr>
<th>Symb. Vals.</th>
<th>Path Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>values[j] = IN₁</td>
<td>values[j]>values[i]</td>
</tr>
<tr>
<td>values[i] = IN₂</td>
<td>IN₁ > IN₂</td>
</tr>
</tbody>
</table>

Thus:

values[i]’ > values[j]’
(because IN₁ > IN₂) and so

ASSERT INNER:
values[i]’ ≥ values[k]’ for all i < k ≤ j

NOTE: Proving that values’ is a permutation of values derives from proving this is true for this step

Loop Invariants

- Should be able to identify loop invariant for every loop that you write
- Should be able to state initial and final assertions too
- Maybe not in formal mathematics
- Should be able to reason about how they support overall program logic
An Example: Wensley's Algorithm

Procedure Wensley (P: input, Q: input, E: input, Y: output);
--assume 0≤ P<Q, 0< E
Declare P, Q, E, Y, A, B, D real;
A :=0.0; B :=Q / 2.0; D :=1.0; Y := 0.0;
Do _While (D>=E)
 If (P - A - B >= 0.0) then {Y := Y+(D / 2.0); A := A+B};
 B :=B / 2.0; D := D / 2.0;
End_do;
End Wensley;

Wensley’s Algorithm

- Input P, Q, E
- A ← 0.0
- B ← Q/2
- D ← 1.0
- Y ← 0.0

- D ≥ E
- P-A-B ≥ 0.0
- Y ← Y+(D/2.0)
- A ← A+B

- B ← B/2.0
- D ← D/2.0
What does Wensley's algorithm do?

- Approximating P/Q ($= Y$) with error $\leq E$
- On the kth iteration of the loop

 $A_k = a_1 Q^2^{-1} + a_2 Q^2^{-2} + \ldots + a_k Q^2^{-k}$

 $a_i \in \{0,1\}$

 $B_k = Q 2^{-k}$

 $D_k = 2^{-k}$

 $Y_k = a_1 2^{-1} + a_2 2^{-2} + \ldots + a_k 2^{-k}$

 $a_i \in \{0,1\}$

Input P, Q, E

$A \leftarrow 0.0$

$B \leftarrow Q/2$

$D \leftarrow 1.0$

$Y \leftarrow 0.0$

- $P-A-B \geq 0.0$
- $D \geq E$
- $B \leftarrow B/2.0$
- $D \leftarrow D/2.0$
- $Y \leftarrow Y+(D/2.0)$
- $A \leftarrow A+B$

What does Wensley's algorithm do?

- since $0 \leq P/Q < 1$, then P/Q can be estimated as a sum of the series

 $a_1 2^{-1} + a_2 2^{-2} + \ldots + a_k 2^{-k}$

 $a_i \in \{0,1\}$

- therefore

 - Y_k is the computed value of the quotient
 - given Y_k, A_k is the computed dividend P
 - D_k is the computed error
 - $P-(A_k + B_k)$ says when to add $2^{-(k+1)}$ to Y_{k+1} ($a_{k+1} = 1$)

 $B_k = 2^{-(k+1)} \times Q$
Assertions

Initial: \[A_s: \{ (0 \leq P < Q) \land (0 < E) \} \]

Final: \[A_f: \{ ((P/Q - E) < Y \leq (P/Q)) \} \]

Intermediate:
\[A_i: \{ (A = Q \times Y) \land (B = Q \times (D/2)) \]
\[\land (k \geq 0, k \text{ integer} \land D = 2^{-k}) \]
\[\land ((P/Q) - D) < Y \leq (P/Q) \} \]

Summary of Four Lemmas Needed

I. Initial assertion, \(A_0 \), to \(A_i \)
II. \(A_i \), false branch, to \(A_i \)
III. \(A_i \), true branch, to \(A_i \)
IV. \(A_i \), to \(A_f \), final assertion

Lemmas called verification conditions
Lemma I: \(A_s \) to \(A_i \)

\(A_s \): Initial Assertion

\[(0 \leq P < Q) \land (0 < E) \]

Input P, Q, E

\[
\begin{align*}
A &\leftarrow 0; \\
B &\leftarrow Q/2; \\
D &\leftarrow 1; \\
Y &\leftarrow 0;
\end{align*}
\]

\(A_i \):

\[
\begin{align*}
A &= Q \times Y \\
B &= Q \times D/2 \\
D &= 2^{-k}, k = 0 \\
P/Q - D &< Y \leq P/Q
\end{align*}
\]

Proof:

1) \(A = 0; \ Q \times Y = Q \times 0 = 0 \)

2) \(B = Q/2 = Q \times 1/2 = Q \times D/2 \)

3) \(D = 1 = 2^0 \)

4) \(P/Q - 1 < Y = 0 \leq P/Q \)

because \(0 \leq P/Q < 1 \) given by input assertion
Lemma II: A_i, false branch, A_i

\[A_i: \]
\[A = Q \cdot Y \]
\[B = Q \cdot D/2 \]
\[D = 2^k \text{ for some integer } k \]
\[P/Q - D < Y \leq P/Q \]
\[D \geq E \] [constraint]
\[P - A - B \leq 0 \] [constraint]

\[B \leftarrow B/2 \]
\[D \leftarrow D/2 \]

\[\Rightarrow A_i: \]
\[A = Q \cdot Y \]
\[B = Q \cdot D/2 \]
\[D = 2^{-(k+1)} \]
\[P/Q - D < Y \leq P/Q \]

Proof of lemma II

- Need to establish that A_i is a correct relation among variable values after loop execution, based on assumption that A_i was correct among variable values before loop execution.

- Notation:
 - A, B, D, Y are original values of variables
 - A', B', D', Y' are values after loop execution

- Symbolic execution gives:
 - $A' = A$, $B' = B/2$; $D' = D/2$; $Y' = Y$
Proof of Lemma II

(A = Q * Y)
(B = Q * D/2)
(D = 2^k for some integer k)
(P/Q - D < Y ≤ P/Q)

D ≥ E [constraint]
P - A - B < 0 [constraint]
B ← B/2
D ← D/2

A' = Q * Y'
B' = Q * D'/2
D' = 2^{(k+1)} for some integer k
P/Q - D' < Y' ≤ P/Q

(Another symbol execution shows)
A' = A, B' = B/2; D' = D/2; Y' = Y

Proof:
1) A’ = A = Q * Y = Q * Y'

2) B’ = B/2 = (Q * D/2)/2
 = (Q * 2D'/2)/2 = Q*D'/2

3) D' = D/2 = 2^{-k}/2 = 2^{-k-1} = 2^{-(k+1)}

4) a) P - A - B < 0 (constraint)
 P - Q * Y - Q * D/2 < 0
 P/Q - Y - D/2 < 0 (uses Q > 0)
 P/Q - D/2 < Y
 but D' = D/2, so P/Q - D' < Y'
 b) Y ≤ P/Q => Y' ≤ P/Q

Lemma III: Ai; True branch; Ai

A: A = Q * Y
B = Q * D/2
D = 2^k for some integer k
P/Q - D < Y ≤ P/Q

D ≥ E [constraint]
P - A - B ≥ 0 [constraint]
Y ← Y+(D/2.0)
A ← A+B
B ← B/2
D ← D/2

A:
A'' = Q * Y''
B'' = Q * D''/2
D'' = 2^{(k+1)} for some integer k
P/Q - D'' < Y'' ≤ P/Q

From symbolic execution we know:
A'' = A + B; B'' = B / 2;
D'' = D / 2; Y'' = Y + D / 2;

We also know: P - A - B ≥ 0 and D ≥ E
Proof Lemma III

From symbolic execution we know:
- \(A'' = A + B; \quad B'' = B / 2; \quad D'' = D / 2; \quad Y' = Y + D / 2; \)
- We also know: \(P - A - B \geq 0 \) and \(D \geq E \)

Proof:
1. \(A'' = A + B = Q \cdot Y + Q \cdot (D/2) = Q \cdot Y' \)
2. \(B'' = B/2 = Q \cdot D/2/2 = Q \cdot D'/2 \)
3. \(D'' = D/2 = 2^{(-k-1)} = 2^{-(k+1)} \)
4. a) \(P - A - B \geq 0 \Rightarrow P - Q \cdot Y - Q \cdot (D/2) \geq 0 \)
 \(\Rightarrow P/Q - D/2 \geq Y \Rightarrow P/Q - D/2 \geq Y' - D/2 \)
 \(\Rightarrow P/Q \geq Y' \)
 b) \(P/Q - D < Y \Rightarrow P/Q - D < Y' - D/2 \)
 \(\Rightarrow P/Q - D/2 < Y' \Rightarrow P/Q - D'' < Y'' \)

Lemma IV \(A_i, A_f \)

- \(A_i, \) false, \(A_f \)
Lemma IV

\[A_i: (A=Q*Y) \land (B=Q*(D/2)) \land (k \geq 0, \text{ k integer } \land D=2^k) \land ((P/Q)-D)<Y \leq (P/Q) \]

\[D < E \] code

\[\Rightarrow A_f: ((P/Q-E)<Y \leq (P/Q)) \]

Proof:
Given \(((P/Q)-D)<Y \leq (P/Q)\) and \((D < E) \Rightarrow ((P/Q)-E)<((P/Q)-D)<Y \leq (P/Q) \Rightarrow A_f\)

This is only partial correctness

- Must also prove termination
 - In general, can not prove termination
 - For most programs, can usually do it by showing that each loop must terminate

- For our example: given that \((E>0)\) observe that \(D\) is halved on each iteration and \(E\) does not change Thus, eventually \(D<E\) and the loop terminates
Observations

- Proofs are long, tedious & often hard
- Assertions are hard to get right
- Invariants are difficult to get right.
 - need to be invariant, but also need to support overall proof strategy
- Proofs themselves often require deep program insight
 - Often require axioms about the domain

Deeper Issues

- Unsuccessful proof attempt \Rightarrow ???
 - incorrect software
 - incorrect assertions
 - incorrect placement of assertions
 - inept prover
 - any combination (or all) of the above
- Although failed proofs often indicate which of the above is likely to be the problem (especially to an astute prover)
Deeper Issues

• Undecidability of Predicate calculus -- no way to be sure when you have a false theorem
 – There is no sure way to know when you should quit trying to prove a theorem (and change something)

• Proofs are generally much longer than the software being verified
 – Suggests that errors in the proof are more likely than errors in the software being verified

Mathematics as a "social process"

• Belief in a proof is a social process
 – Informally describe proof
 – Distribute an informal write-up to colleagues
 – Formal write-up is refereed
 – Accepted paper gets read by wider audience
 – Proof/Theorem is used
 – Increases confidence

• Despite this, mathematical proofs are often wrong
Specification Problem

• Real programs are not captured by simple mathematical algorithms
 – E.g. “This software correctly identifies faces”
 – Error processing issues
 – User interface issues
• Resulting specifications are
 – Large
 – Mathematically unappealing
 – Probably not complete
 – Hard to capture intent

Specification Problem

• Specification & program are not independent representations
 – Proof may lack complete axiomatic details
• Very labor intensive
 – Loop invariants - usually manual
 – Input and output assertions - manual
 – Verification conditions - can be automated
Software Tools Can Help

• Proof Checkers:
 – Scrutinize the steps of a proof and determine if they are sound
 – Identify the rule(s) of inference, axiom(s), etc. needed to justify each step
 – How to know if the proof checker is right (verify it? with what?)

Software Tools Can Help

• Verification Assistants
 – Facilitate precise expression of assertions
 – Accept rules of inference
 – Accept axioms
 – Construct statements of needed lemmas
 – Check proofs
 – Assist in construction of proofs (theorem provers)
Human/computer collaboration

- Most successful -- human/computer collaboration
 - Human architects the proof
 - Computer attempts the proof (generally by exhaustive search of space of possible axioms and inferences at each step)
 - Human intervention after computer has tried for a while

Current Status:

- Have verified some non-trivial programs or important parts of programs
 - e.g., protocol verification
 - TOKENEER
- Improved theorem provers
- Improved specification languages
- Verification and testing/analysis research now viewed more as a continuum

 testing--> finite state verification--> verifications
Summary

- Verification has had a very positive impact on software engineering
 - major argument for structured programming
 » Dijkstra's "goto's considered harmful" letter
 » one-in one-out structures easier to reason about
 - major impetus for abstract data types
 » centralized all changes to a data structures
 » input/output assertions for all operations

Formal Development

- Start with assertions, develop software artifacts to fulfill them
- A top-down approach
- Very popular in Europe: A hard sell in the U.S.
- Need to prove lemmas in higher level software dictates the functional requirements (eg. input/output assertion) pairs of lower level software artifacts.
- Also suggests the use of libraries of reusable verified software artifacts for commonly needed utilities
- This is Component-based software development
Integration of Testing Analysis and Formal Methods

- **Testing**
 - Is dynamic in nature, entailing execution of the program
 - Requires skillful selection of test data to assure good exercising of the program
 - Can show program executing in usage environment
 - Can support arbitrarily detailed examination of virtually any program characteristics and behavior
 - Is generally not suitable for showing absence of faults

- **Analysis**
 - Is static, operating on abstract program representations
 - Supports definitive demonstration of absence of faults
 - Generally only for certain selected classes of faults

- **Formal Methods**
 - Most thorough, rigorous, mathematical
 - Apply primarily to checking functional characteristics
 - Most human and cost intensive

- The types of capabilities are complementary; suggests need for skillful integration

Definitive reasoning benefits from both static and dynamic analysis techniques

- Religious wars of the 70’s
- Need testing to validate the “ground truth”
- Need static analysis to evaluate more than just what can be examined with testing
- Testing and analysis techniques currently being developed to work together
 - Testing -> Bug -> property -> verification -> counter examples -> feasibility analysis -> test cases -> testing ...
No Need To Restrict this only to Code

- Much of this is applicable to non-code artifacts
- Payoffs from detecting faults is greater the earlier it takes place
- How to apply this to non-code?
DEVELOPMENT PHASES

Requirements Specification → Architecting → Implementation Designing → Coding

System Test Plan → Software Sys. Test Plan → Integration Test Plan → Unit Test Plan

TEST PLANNING

System Testing → Software Sys Testing → Integration Testing → Unit Testing

TESTING PHASES