Formal Verification

Prof. Leon Osterweil
Computer Science 520/620
Spring 2012

Relations and Analysis
- A software product consists of
 - A collection of (types of) artifacts
 - Related to each other by myriad Relations
- The relations are essentially desiderata
 - At least initially
- Before the product can be trusted, the relations need to be verified/confirmed
 - That is the role of analysis
 - Does the software do what it is supposed to do?
 - What are its capabilities and its strengths?
 - What is the nature of the artifact(s) that have been built?
 - What can I count on?
 - What should I worry about?

Some Examples of “Relations”
- Executing this code must compute this function
- This code must conform to that design element
- This compiled code came from this compiler
- This design element addresses those requirements
- These lower level requirements are elaborations of these higher level requirements
- This is the date by which that test must be passed
- Component invocations conform to component abstract interface specifications
- Documentation describes the actual system
- ETC....
Evaluation of Static Analysis

- Strengths:
 - Can demonstrate the absence of faults
 - Proofs can be automatically generated and proven
 - Algorithms are fast (low-order polynomial)
 - No need to generate test data
 - You know when you are done

- Weaknesses
 - Behavior specification is a model with inaccuracies
 - Not all paths are executable
 - Only certain classes of faults analyzable
 - Mostly sequence specific
 - Weak on functionality

Symbolic Execution

- Specification of Intent: Formulae, functions
- Specification of Behavior: Functions derived from annotated flowgraph, symbol table
 - Annotate nodes with function(s) computed there
 - Specify path to be studied
 - Compute function(s) computed as composition(s) of functions at path nodes, constraints of path edges
 - Comparison: Solving simultaneous constraints; symbolic algebra
- Results: Demonstrations that given paths computed the right function(s)

Representing Computation

- Symbolic names represent the input values
- the path value PV of a variable for a path describes the value of that variable in terms of those symbolic names
- the computation of the path C[P] is described by the path values of the outputs for the path

Example program

```plaintext
procedure Contrived
begin
X, Y, Z: integer;
read X, Y;
if X - Y < 0 then
endif;
else
Z := X+Y;
if X ≥ 3 then
endif;
 write Z;
end Contrived;
end Contrived;
```

Note: "X_i" means the ith value taken as input to the program
procedure Contrived is
 X, Y, Z : integer;
 begin
 if X ≥ 3 then
 Z : = 0;
 else
 if Y > 0 then
 Y := Y + 5;
 end if;
 if X - Y < 0 then
 Z := X + Y;
 else
 if X = 3 then
 Y := Y + 5;
 else
 write Z;
 end if;
 end if;
 else
 if Y > 0 then
 write Y;
 end if;
 end if;
 read X, Y;
 Z := 0;
 end Contrived;

Results (feasible path)

Results (infeasible path)

Applications of Symbolic Evaluation

- Symbolic Testing
 - examination of path domain and computation for detecting failures
 - especially useful for scientific applications
- Path and Test Data Selection
 - select paths to cover structure and determine feasibility of condition
 - select data to satisfy path condition or "revealing" condition
- Debugging
 - examine symbolic representation for faulty data manipulation
- Verification
 - prove consistency of specification assertions
 - inductive assertion method for proving correctness...

\[P = 1, 2, 3, 5, 6, 7, 9 \]
\[D[P] = \{ (ln_1, ln_3) \mid ln_2 \leq 0 \land (ln_1, ln_2) \geq 5 \} \]
\[C[P] = PV.Y = ln_2 + 5 \]
Proof of Correctness

- **Intent**
 - Usually specification of functionality
 - What function(s) does the software compute?
 - Sometimes accuracy, timing, ...

- **Behavior**
 - Inferred from semantically rich program model
 - Generally requires most of semantics of programming language
 - Generally uses symbolic execution

- **Comparison**
 - Use of formal mathematics (e.g., predicate logic)
 - Probably source of misleading name: PROOF of correctness
 - Proof is probably OK
 - Correctness is dangerously misleading

Floyd Method of Inductive Assertions

- Show that each program fragment behaves as intended
- Use induction to prove that all sequences of executable fragments behave as intended
- Show that the program must terminate

Assertion-Based Testing

- Zoom in on internal workings of the program
- Examine behaviors at internal program locations while the program is executing
 - Augments examining only final outputs
- Assertions: Specifications of intended relations among the values of program variables
 - Development of increasingly elaborate assertion languages
 - Checking relations between code and design
- Comparison: Runtime evaluation of assertions
 - Facilities for programming reactions to violations
 - Also useful as a debugging aid

Assertion-Based Dynamic Testing

- Specification of Intended Behavior
- Functional Behavior Assertions
- Intermediate Execution Results
- Reports on Internal Failures
- Comparison of Behavior to Intent
Use of Assertions

- **Assertion:** Specification of a condition that is intended to be true at a specific given site in the program text.
- **Floyd’s Method assertions** are written in Predicate Logic.
 - Initial, As: Sited at the program initial statement
 - Final, AF: Sited at the program final statement
 - Intermediate Ai: Often called a "loop invariants"
- Sited at various program locations subject to the rule:

 EVERY LOOP ITERATION (CFG CYCLE) SHALL PASS THRU
 THE SITE OF AT LEAST ONE INTERMEDIATE ASSERTION

Net Effect: Every program execution sequence is divided into a finite number of segments of non-looping code bounded on each end by a predicate logic assertion.

Mathematical Induction

- **Goal:** prove that a given property holds for all elements of a set
- **Approach:**
 - (initial step) show property holds for “first” element
 - (induction step) show that if property holds for element i, then it must also hold for element i + 1
- Often used when direct analytic techniques are too hard or complex

Example: How many edges in Cₙ

Theorem:

let $C_n = (V_n, E_n)$ be a complete, unordered graph on n nodes,

then $|E_n| = n \cdot \frac{(n-1)}{2}$

Initial Step

- show the property is true for C_1:
 - graph has one node, 0 edges

 $|E_1| = n(n-1)/2 = 1(0)/2 = 0$
Induction Step

- Assume true for \(C_n \): \(|E_n| = \frac{n(n-1)}{2} \)
- Graph \(C_{n+1} \) has one more node, but \(n \) more edges (one from the new node to each of the \(n \) old nodes)
- So, \(|E_{n+1}| = \frac{n(n-1)}{2} + n \)
 \(-= \frac{n(n+1)}{2} = \frac{n(n+1)}{2} \)
 \(-= \frac{(n+1)(n+1)}{2} \)
 \(-= \frac{(n+1)n}{2} \)

Floyd’s Method of inductive assertions

- Place assertions at the start, final, and intermediate points in the code.
- Any path is composed of sequences of program fragments all of which:
 - start with an assertion
 - are followed by some assertion free code
 - and end with an assertion
- eg. (\(A_0 \) =) \(A_0, C_1, A_1, C_2, A_2, \ldots A_{n-1}, C_{n-1}, A_n, C_n, A_{n+1}(=A_f) \)
- Show that for any executable path, if \(A_i \) is assumed true for any \(A_i \) and code \(C_i \) is executed, then \(A_{i+1} \) must always be true.

Induction in Floyd’s Method

- Initially
 - Verify that the initial assertion is correct
- Induction on length of execution path
- Prove that function computed by all execution paths of length \(L + 1 \) are correct
 - Provided that all execution paths of length \(L \) compute the correct function
- Inductive step is the hard one (as usual)
- Proof relies on the fact that there are only a (relatively) small number of path segments in any program.

Pictorially

![Diagram showing straight-line code, initial assertion, intermediate assertions, and final assertion.]

Must be sure:

assuming \(A_0 \), then executing Code \(C_n \),

necessarily \(\Rightarrow \) \(A_{i+1} \)

by forward substitution

\[A_0 \quad C_i \quad A_{i+1} \]

Why does this work?

suppose \(P = \) arbitrary path through the program can denote it by

\[P = A_0, C_1, A_1, C_2, A_2, \ldots C_n, A_f \]

where

- \(A_0 \) - Initial assertion
- \(A_f \) - Final assertion
- \(A_i \) - Intermediate assertions
- \(C_i \) - Loop free, uninterrupted, straight-line code

If it has been shown that

\[\forall i, 1 \leq i < n: A_i C_i \Rightarrow A_{i+1} \]

Then, by induction

\[A_0, \ldots, A_{i+1} \]
Loop Invariants (Loop Breakers)

- Problem: infinite number of paths
 - Must find a way to deal with loops
- Solution: Assertion, \(A_i \), that is
 - True for any number of loop iterations
 - "connects up" to adjacent assertions
- Such an assertion:
 - Is invariant with respect to loop iterations
 - Must be embedded in (break) every loop

A loop invariant must capture the essence of the work that the loop is to perform

Floyd's Method (carefully stated)

- Specify initial, final assertions to capture intent
- Intermediate assertions "cut" every program loop
- For each pair of assertions with an executable (assertion-free) path from the first to the second,
 - Assume that the first assertion is true
 - Show that for all (assertion-free, executable) paths from the first assertion to the second, that the second assertion is true
- This establishes "partial correctness"
- Show that the program terminates
 - This establishes "total correctness"

An Example: Wensley's Algorithm

Procedure Wensley (P: input, Q: input, E: input, Y: output);
 --assume 0 ≤ P < Q, 0 < E
Declare P, Q, E, Y, A, B, D real;
 A := 0.0; B := Q / 2.0; D := 1.0; Y := 0.0;
Do_While (D ≥ E)
 If (P - A - B ≥ 0.0) then {Y := Y + (D / 2.0); A := A + B};
 B := B / 2.0; D := D / 2.0;
End_do;
End Wensley;

What does Wensley's algorithm do?

- Approximating \(P/Q (=Y) \) with error \(\leq E \)
- On the kth iteration of the loop
 \[
 A_k = a_1 Q 2^{k-1} + a_2 Q 2^{k-2} + \ldots + a_k Q 2^0
 \]
 \(a_i \in \{0,1\} \)
 \(B_k = Q 2^k \)
 \(D_k = 2^k \)
 \(Y_k = a_1 2^{k-1} + a_2 2^{k-2} + \ldots + a_k 2^0 \)
 \(a_i \in \{0,1\} \)
What does Wensley's algorithm do?

- Since $0 \leq P/Q < 1$, then P/Q can be estimated as a sum of the series
 \[a_2 2^{-1} + a_3 2^{-2} + \ldots + a_k 2^{-k} \]
 \[a_i \in \{0,1\} \]

- Therefore
 - Y_k is the computed value of the quotient
 - Given Y_k, A_k is the computed dividend P
 - D_k is the computed error

- $P(A_k + B_k)$ says when to add $2^{(k+1)}$ to Y_k, ($a_{k+1} = 1$)

\[B_k = 2^{(k+1)} \cdot Q \]

Assertions

Initial: \[A_0: \{(0 \leq P < Q) \land (0 < E)\} \]

Final: \[A_F: \{(P/Q - E) < Y \leq (P/Q)\} \]

Intermediate:

- A_i: \[((A = Q \cdot Y) \land (B = Q \cdot (D/2))) \]
- \[((P/Q - D) < Y \leq (P/Q)) \]

Input: P, Q, E

Output: A, B, D, Y

Summary of Four Lemmas Needed

- **I.** Initial assertion, A_0, to A_1
- **II.** A_i, false branch, to A_i
- **III.** A_i, true branch, to A_i
- **IV.** A_i, to A_F, final assertion

Lemma I: A_0 to A_1

Lemma I: \[A_0: \{(0 \leq P < Q) \land (0 < E)\} \]

Proof:

1. $A = 0; Q \cdot Y = Q \cdot 0 = 0$
2. $A = Q \cdot Y$
3. $B = Q/2$; $D = 1$; $Y = 0; 0$

Input: P, Q, E

Output: A, B, D, Y

Lemma II: A_i, false branch, A_i

Lemma II: \[A_i: \{(P/Q - D) < Y \leq (P/Q)\} \]

Proof:

1. $D = 2^k$ for some integer k
2. $P - A \cdot B < 0$ (constraint)
3. $B \leftarrow B/2$
4. $D \leftarrow D/2$

Input: P, Q, E

Output: A, B, D, E
Proof of Lemma II

- Need to establish that A1 is a correct relation among variable values after loop execution, based on assumption that A1 was correct among variable values before loop execution
- Notation:
 - \(A, B, D, Y \) are original values of variables
 - \(A', B', D', Y' \) are values after loop execution
- Symbolic execution gives:
 - \(A' = A, B' = B/2; D' = D/2; Y' = Y \)

From symbolic execution we know:

- \(A'' = A + B; B'' = B/2; Y'' = Y + D/2 \)
- \(D'' = 2^k \) for some integer \(k \)
- \(P/Q - D < Y \)
- \(P - A - B \geq 0 \) and \(D \geq E \)

Proof of Lemma II

(Symbolic execution shows)

\[A = Q \cdot Y \]
\[B = Q \cdot D/2 \]
\[D = 2^k \] for some integer \(k \)
\[P/Q - D < Y \]
\[D \geq E \] [constraint]
\[P - A - B \geq 0 \] [constraint]
\[B = B/2 \]
\[D = D/2 \]

Proof:

1) \(A' = A = Q \cdot Y \)

2) \(B' = B/2 \) (uses \(Q > 0 \))

3) \(D' = D/2 < Y \)

4) \(A' = Q \cdot Y' \)

5) \(B' = Q \cdot D'/2 \)

6) \(D' = 2^k \) for some integer \(k \)

\[P/Q - D' < Y \]

- \(P/Q - D < Y \)

- \(P/Q - D < Y \)
This is only partial correctness

- Must also prove termination
 - In general, can not prove termination
 - For most programs, can usually do it by showing that each loop must terminate

- For our example: given that (E>0) observe that D is halved on each iteration and E does not change
 Thus, eventually D<E and the loop terminates

Observations

- Proofs are long, tedious & often hard
- Assertions are hard to get right
- Invariants are difficult to get right.
 - need to be invariant, but also need to support overall proof strategy
- Proofs themselves often require deep program insight
 - Often require axioms about the domain

Deeper Issues

- Unsuccessful proof attempt \rightarrow ???
 - incorrect software
 - incorrect assertions
 - incorrect placement of assertions
 - inept prover
 - any combination (or all) of the above
- Although failed proofs often indicate which of the above is likely to be the problem (especially to an astute prover)

Deeper Issues

- Undecidability of Predicate calculus -- no way to be sure when you have a false theorem
 - There is no sure way to know when you should quit trying to prove a theorem (and change something)
 - Proofs are generally much longer than the software being verified
 - Suggests that errors in the proof are more likely than errors in the software being verified

Mathematics as a "social process"

- Belief in a proof is a social process
 - Informally describe proof
 - Distribute an informal write-up to colleagues
 - Formal write-up is refereed
 - Accepted paper gets read by wider audience
 - Proof/Theorem is used
 - Increases confidence
- Despite this, mathematical proofs are often wrong

Specification Problem

- Real programs are not captured by simple mathematical algorithms
 - E.g. “This software correctly identifies faces”
 - Error processing issues
 - User interface issues
- Resulting specifications are
 - Large
 - Mathematically unappealing
 - Probably not complete
 - Hard to capture intent
Specification Problem

• Specification & program are not independent representations
 – Proof not 'mathematically' sound
• Very labor intensive
 – Loop invariants - usually manual
 – Input and output assertions - manual
 – Verification conditions - can be automated

Software Tools Can Help

• Proof Checkers:
 – Scrutinize the steps of a proof and determine if they are sound
 – Identify the rule(s) of inference, axiom(s), etc. needed to justify each step
 – How to know if the proof checker is right (verify it? with what?....)

Software Tools Can Help

• Verification Assistants
 – Facilitate precise expression of assertions
 – Accept rules of inference
 – Accept axioms
 – Construct statements of needed lemmas
 – Check proofs
 – Assist in construction of proofs (theorem provers)

Human/computer collaboration

• Most successful -- human/computer collaboration
 » Human architects the proof
 » Computer attempts the proof (generally by exhaustive search of space of possible axioms and inferences at each step)
 » Human intervention after computer has tried for a while

Current Status:

• Have verified some non-trivial programs or important parts of programs
 – e.g., protocol verification
• Improved theorem provers
• Improved specification languages
• Verification and testing/analysis research now viewed more as a continuum
 testing→ finite state verification→ verifications

Summary

• Verification has had a very positive impact on software engineering
 – major argument for structured programming
 » Dijkstra's "goto's considered harmful" letter
 » one-in one-out structures easier to reason about
 – major impetus for abstract data types
 » centralized all changes to a data structures
 » input/output assertions for all operations
Formal Development

- Start with assertions, develop software artifacts to fulfill them
- A top-down approach
- Very popular in Europe: A hard sell in the U.S.
- Need to prove lemmas in higher level software dictates the functional requirements (e.g., input/output assertion) pairs of lower level software artifacts.
- Also suggests the use of libraries of reusable verified software artifacts for commonly needed utilities
- This is Component-based software development

Definitive reasoning benefits from both static and dynamic analysis techniques

- Religious wars of the 70’s
- Need testing to validate the “ground truth”
- Need static analysis to evaluate more than just what can be examined with testing.
- Testing and analysis techniques currently being developed to work together
 - Testing -> Bug -> property -> verification -> counter examples -> feasibility analysis -> test cases -> testing ...

Integration of Testing Analysis and Formal Methods

- Testing
 - Is dynamic in nature, entailing execution of the program
 - Requires skillful selection of test data to assure good exercising of the program
 - Can show program executing in usage environment
 - Can support arbitrarily detailed examination of virtually any program characteristics and behavior
 - Is generally not suitable for showing absence of faults
- Analysis
 - Is static, operating on abstract program representations
 - Supports definitive demonstration of absence of faults
 - Generally only for certain selected classes of faults
- Formal Methods
 - Most through, rigorous, mathematical
 - Apply primarily to checking functional characteristics
 - Most human and cost intensive
 - The types of capabilities are complementary; suggests need for skillful integration

No Need To Restrict this only to Code

- Much of this is applicable to non-code artifacts
- Payoffs from detecting faults is greater the earlier it takes place
- How to apply this to non-code?