Requirements Specifications
Representations and Notations

Remember, Requirements Specification should be:
- Complete
- Consistent
- Unambiguous
- Precise
- Feasible
- Even
- Understandable
- Testable
- Free from Implementation Bias

Some notations work better than others

Common Approaches
- Natural Language (English)
- Structured/Disciplined Natural Language
- Diagrams
 or some combination of all of the above

Natural Language
- Write requirements in “plain English”
- Build upon universal understanding of natural language
- Create a glossary of terms and their definitions
 - Don’t introduce a new term if a previously defined term will do
 - Use modifiers to distinguish related terms
 - E.g., “Registered Customer” and “Anonymous Customer”
 - Can use “Customer” to refer to either

Requirement Template
- Header
- Glossary of terms
- High-level overview (often a diagram)
- Functionality for each functional component
 - Functional description
 - Interfaces
 - Error handling
 - Potential future modifications/extensions
 - Constraints
 - Risk Assessment
 - Test plan

Requirement Template
- Structure the document in sections by functional description
 - Separate concerns, usually by related functionality
Requirement Template Revisited

- Header
- Glossary of terms
- High-level overview (often a diagram)
- F1: functionality for F1 (may have a diagram to help explain the decomposition)
 - F1.1
 - F1.2
- F2: functionality for F2 (may have a diagram to help explain the decomposition)
 - F2.1
 - F2.2
 - F2.3
 - F2.3.1
 - ...
- F3

Commonly Used Diagrams

- Data Flow Diagrams
- Flow Charts
- Activity Diagrams
- Finite State Machines
- State Diagrams
- Message Sequence Charts
- Use Cases

- Each good for some things, not for others

Adding More to a DFD

- Use of “open boxes” to indicate data stores
 - Not a typical computation function

Data Flow Diagram Example

- LIBRARY
- Buy new books
- Update Request List
- New Request
- Get copy of Request List
- New Request
- Delete Request
- Satisfied
- Turn on light
- Button
- Press

Control Flow Diagram

```plaintext
total, value, count, maximum : int;
total := 0;
count := 1;
read maximum;
while (count <= maximum) do
  read value;
total := total + value;
count := count + 1;
endwhile;
print total;
```
More Abstract Control flow Diagram

Activity Diagram

Finite State Machine for Digital Watch

More Finite State Machine Detail

State Transition Diagram

Message Sequence Charts
Use Cases

Selecting the “right” notation
- Use diagrams that seem to fit the purpose
- Be consistent in the notation
- Define the notation

“Almost” a data flow diagram

Requirement Template
- Header
- Glossary of terms
- High–level overview (often a diagram)
- Functionality for each functional component
 - Functional description
 - Interfaces
 - Error handling
 - Potential future modifications/extensions
 - Constraints
 - Risk Assessment
 - Test plan

Header
- Title
 - Access Control
- Authors:
- Date and Version, with version history
 - 9/28/02 v1 preliminary draft
 - 10/02/02 v1.1 preliminary draft with modified glossary
 - 11/05/02 v2 improved user interface
- ...

Glossary of terms
- Define any major “noun” that is introduced
- These are the objects/resources that will be used
- Define the conceptual structure of these objects if they are major “nouns” in the requirements
 - Not the implementation
Functional Description

- **Describe proposed behavior**
 - Short, precise statement of each required function that needs to be supported

- **Model how information flows through the system with these functions**
 - Often use diagrams

- **Sometimes show the current functionality AND the proposed functionality to highlight differences**

Interfaces

- **User interfaces**
 - kinds of information and style

- **Component interfaces**
 - other tasks/subsystems that will be used by this task
 - Brief explanation of what will be needed
 - other tasks/subsystems that are expected to use this task

- **Data interfaces**
 - type, quantity, frequency, reliability
 - operational profile (expected scenarios)
 - stress profile (worse case scenarios)

- **Hardware interfaces**

Error handling

- **errors that are anticipated and the expected response**
 - entering an incorrect password results in a denial of access
 - entering an incorrect password more than three times in a row results in a message being sent to security

Potential future modifications

- While doing the requirements, some extensions will become apparent

- Often these are generalizations of the proposed functionality
 - Processing more than one type of form
 - Allowing an administrator to define the types of forms
 - Allowing the format of the forms to change dynamically

- Indicate the expected difficulty and approach to support these extensions

Constraints

- Performance, hardware, security and reliability, etc.

Risk assessment

- Areas where there is uncertainty
 - Not sure if certain resources will be available or affordable
 - Not sure if certain approaches will be able to meet constraints
 - Alternatives to be explored to address these risks
Validation plans

- provide a high level test plan
- use cases/activity diagrams can be used to describe the major flow of information through the system
- Each flow through the one of these diagrams corresponds to a test case

Hierarchical Representation

- Header
- Glossary of terms
- Functionality
 - functional description
 - Interfaces
 - Error handling
 - Potential future modifications/extensions
 - Constraints
 - Risk Assessment
 - Test plan

For each (sub)function

- Include only the information that is appropriate
- Function F_i
 - Functionality
 - [Interfaces—only those that exist]
 - [Error handling]
 - [Potential future modifications/extensions]
 - [Constraints]
 - [Risk Assessment]
 - Test plans

Plan your presentation

- 30 minutes is a very short time
- Plan and rehearse what you will say
- Use of visuals is very important
 - Not too many, though
- 1–2 speakers
 - Everyone on your team will make a presentation at some time during the semester
- Other team members provide support
 - Help in the preparation of the slides
 - Answering questions as they arise
- The purpose is to teach and learn
 - Be prepared to do both

Presentations

- Usually best to present material top down
 - Say what you are going to say
 - Say it
 - Review what you said

Typical Outline

- Provide a high–level overview of the problem you are address
- Provide a high–level overview of your approach
- Provide an outline of what you are going to discuss based on that overview
 - For each piece (or a selected subset):
 - Provide an overview of the problem
 - Provide an overview of the approach
 - If appropriate, drill down to the next level of detail
- Return to the high–level approach and show how it all fits together